Knowledge Representation and Reasoning 391

Many problems that arose in earlier chapters were not resolved because they
required knowledge of context. Two important aspects of context are general
knowledge about the world and specific knowledge about the situation in which
the linguistic communication is occurring. To analyze these, you need a for-
malism for representing knowledge and reasoning. This area of study is called
knowledge representation (KR).

Knowledge representation means different things to different researchers.
For some, knowledge representation concerns the structure of the language used

" “to express the knowledge—whether it is in logic, semantic networks, frames, ot
other specially designed representational formalisms. For others, knowledge
representation concerns the content of sentences—what predicates are needed
and how are they organized. Both of these issues are important. Sometimes, what
seems to be a vigorous debate about knowledge representation is actually the
result of each of the debaters focusing on one of the aspects of representation
without considering the concerns of the other.

There is not the space here for an extended discussion of knowledge
representation formalisms. Rather, the central concern is how knowledge and
reasoning can be used to facilitate langnage understanding. Because of this, an
abstracted representation based on the first-order predicate calculus will be used.
This will enable the discussion of relevant representational issues with the
minimum introduction of new material and notation. This does not mean that the
underlying knowledge representation used in a system would have to directly
represent logical formulas or use theorem-proving techniques as a model of
inference. The underlying representation system could be a semantic network, a
description logic, a frame-based system, a connectionist model, or any other
formalism, as long as the system has at least the expressive power described here.
Many modern knowledge representation systems fulfill this requirement.

Section 13.1 discusses some general issues in knowledge representation.
The next two sections develop the abstract knowledge representation language
that will be used throughout the rest of the book: Section 13.2 discusses a simple
representation based on the FOPC, and Section 13.3 discusses a framelike
representation as a way of clustering information and representing defaults about
stereotypical objects and situations. Section 13.4 discusses an important issue in
mapping the logical form language to the knowledge representation language,
namely the representation of the complex quantifiers found in natural language.
The rest of the chapter is optional but is important if your focus is knowledge
representation. Section 13.5 examines the representation of temporal information
in language, as revealed by tense and aspectual class. The remaining sections
give examples of some different reasoning strategies that are used in knowledge
representation systems. Section 13.6 discusses some basic concepts in automated
deduction, which are used in systems based on deductive techniques as well as
systems based on logic programming. Section 13.7 discusses an approach that

~uses a.procedural semantics .and ‘illustrates its use in- a question-answering
system. Section 13.8 discusses some issues in developing hybrid reasoning

392 CHAPTER13

13.1 Knowledge Representation

systems, which-allow different reasoning techniques to be used dependihg 0
what sort of information is required. g

This chapter assumes that the reader has a basic understanding of the firs
order predicate calculus, at least to the level introduced in Appendix A.

There are two forms of knowledge that are crucial in any knowledg
representation system: general knowledge of the world and specific knowledge of
the current situation. Some aspects of general world knowledge have alread
been considered, such as type hierarchies, part/whole relationships, and so.on
This consists of information about general constraints on the world.and-the
semantic definition of the terms in the language. For the most part, general
knowledge is specified in terms of the types or kinds of objects in the world
does not concern information about specific individuals. For instance, it might
encode that OWNT1 is a relation between people and objects but not that a
particular person, say John, owns a particular car. This latter information, know]-
edge about individuals, is equally important in language understanding and is'a
major component of what we call the specific setting of the sentence being
understood. Virtually all knowledge representation systems support reasoning at
both of these levels in one way or another.

General world knowledge is essential for solving many language inter-
pretation problems, one of the most important being disambiguation. For-
example, the proper attachment of the final PP in the following two sentences
depends solely on the reader’s background knowledge of the appropriate time
needed for reading and for evolution:

I read a story about evolution in ten minutes.
I read a story about evolution in the last million years.

Specific knowledge of the situation is important for many issues, includin;
determining the referent of noun phrases and disambiguating word senses base
on what makes sense in the current situation.

We will sometimes talk informally of the knowledge representation a
encoding the knowledge and beliefs of the understanding system. But since the
terms knowledge and belief will be given more precise technical definitions lates
more neutral terminology is introduced. A knowledge représentation consists of’
database of sentences called the knowledge base (KB) and a set of inference
techniques that can be used to derive new sentences given the current KB. A :
of inference techniques is sound if it only derives.true new sentences when th
original sentences in the KB are all true. Not all useful inference techniques n
be sound, however, as you will see later. §

-“The language-in which the sentences-in the KB-are defined is-called-
knowledge representation language (KRL). The KRL could be the same:as.
logical form language, but there are practical reasons why they often differ.

Knowledge Rep ion and o 393

two languages are driven by different needs. The logical form language must be
very expressive in order to simplify the semantic interpretation process and to
allow the effective resolution of ambiguity. The knowledge representation
language, on the other hand, must support efficient and predictable reasoning
within a specific domain. In other words, it should be relatively easy to define the
set of sentences that ean be inferred from a particular KB and to build -compu-
tational models that perform such inferences in a reasonable amount of time.

For example, consider the treatment of quantifiers. In the logical form
language a wide range of quantifiers was introduced, closely corresponding to the
different word senses of English quantifiers. This allows disambiguation tech-
niques, such as those needed for scoping quantifiers, to use subtle differences
between the actual quantifiers (say between each and every). In most current
knowledge representation languages, however, there are usually only a few
quantifiers and often only one—a construct allowing universal quantification.
Thus inference processes can be easily defined. By keeping the languages
separate and defining a mapping function between them, you can have the advan-
tages of both. Of course, the success of this approach will depend on whether or
not the mapping function can be effectively defined.

Substantial research will be needed before the best way to satisfy the need
for an expressive logical form and an effective knowledge representation can be
determined. Given the current state of knowledge, maintaining a separate logical
form and knowledge representation languages seems the best compromise.

When a formula P must be true given the formulas in a KB, or given
formulas representing the meaning of a sentence, then we say that the KB (or
sentence) entails P. Many of the conclusions that need to be drawn to understand
language are not entailments, however, but are implications of the sentence.
Implications are conclusions that can typically be drawn from a sentence but that
could be explicitly denied in specific circumstances. For instance, the sentence
Jack owns two cars entails that Jack owns a car (that is, this fact cannot be
denied), but only implies that he doesn’t own three cars, as you could continue by
saying In fact, he owns three cars. KR systems must support both these forms of
inference.

Types of Inference

Many different forms of inference are necessary to understand natural language.
Inference techniques can be classified into deductive and nondeductive forms.
Deductive forms of inference are justified by the logical notion of entailment.
Given a set of facts, a deductive inference process will make only conclusions

- that logically follow from those facts. Nondeductive inference falls into several

classes. Examples include inference techniques that involve learning generalities
from examples (inductive inference) and techniques that involve inferring -
causes from effects (a form of abductive inference).

Knowledge Repr

-394 CHAPTER 13

Abductive inference can be contrasted with deductive inferenc
considering the axiom

ADB

Deductive inference would use this axiom to infer B when given A. Abductj

" inference would use it to infer A when given B, since A is a reason that B is triie
Many systems allow the use of default information. A default rule is
inference rule to which there may be exceptions; thus it is defeasible. If.y
write default information using the notation A = B, then the default infereh
rule could be stated as follows: If A = B, and A is true, and =B is not provablg
then conclude B. It has been suggested that default rules may provide a go
account of generic sentences. For example, the meaning of the sentence Bird,
could be represented by the FOPC formula S

vV x BIRD(x) => FLIES(%)

This has the effect that whenever there is a bird B for which it is not provable thaf
aFLIES(B), then it can be inferred that FLIES(B). In other words, a specific.b
will be assumed to be able to fly unless it is explicitly stated that it cannot.

Defeasible rules introduce a new set of complexities in a representati
Without such rules, most representations are monotonic, because adding new
assertions only increases the number of formulas entailed. Specifically, in
monotonic representation, if the knowledge base KB1 entails a conclusion C, and
if you add an additional formula to KB1 to form a new consistent knowledge
base KB2, then KB2 will also entail C. This is not true of a representation that
uses default rules, and hence they are called nonmonotonic representations. Foj
example, consider a knowledge base K consisting of the formulas

Cat(Sampson)
TabbyCat(Sampson)
Y ¢ . Cat(c) = Purrs(c)

Sampson is a cat.
Sampson is a tabby cat.
Cats purr.

Given this KB, you can conclude Purrs(Sampson) using the default rule because
there is no information to contradict Purrs(S). On the other hand, if you add-a
new fact that no tabby cats purr, then the extended knowledge base would ne
longer entail that Sampson purrs.

There are other useful techniques for introducing nonmonotonic conc!
sions besides default rules. For instance, the closed world assumption (CWA)
asserts that the KB contains complete information about certain predicates. For
example, for a predicate P for which the CWA holds, if a proposition involving P
cannot be proven from a KB, then its negation is assumed to be true. Consider a
database query application for airline schedules. The KB stores information abou
flights that exist—say, that flight FDG100 flies from Rochester to Boston—but i
doesn’t explicitly contain negative information—say, that flight FDG100 does!
fly to Chicago or that there is no flight FDG455. Such information can onl
concluded if the inference process makes the closed world assumption on flight;

and Reasoning 395

BOX 13.1 A S tics for Nonmonotonic Logic

You can develop a model theoretic semantics for many nonmonotonic constructs
using the concept of minimal models. For example, consider the closed world
assumption for a predicate P. We can define an ordering on all the models of the

" KB'as follows:
ml <pm2 iffI;;(P) = [p(P)

In other words, a model m1is smaller than a model m2 with respect to a predicate
P if and only if the set of objects x such that P(x) is true in m1 is a subset of the set
of objects x such that P(x) is true in m2. With this ordering defined, the minimal
models with respect to P consist of the set of models {m | there is no m' <p m}.
Given a suitable knowledge base K, it can be shown that the conclusions derivable
from K making the closed world assumption on P are exactly the conclusions that
are entailed by the minimal models (with respect to P) of K.

Another way to formalize the closed world assumption is to add an axiom to the
KB that specifically entails the closure. This axiom is called the predicate com-
pletion axiom. Consider a KB containing the propositions

HA), P(B), AC), XA)
The predicate completion axiom for P would be
Y x. P(x)=(x=A v x=B)

This axiom would allow you to conclude that P is only true for A and B. Thus you
could infer ~P(C), as desired. It can be shown that the set of models for the KB
extended with the predicate completion axioms is exactly the set of minimal
models (with respect to P) of the initial KB. Predicate completion axioms can
handle more complex KBs as well. For instance, if the KB also included the axiom

V5. Q0(s)D K(s),
then the predicate completion axiom for P would be
V x.P(x)=(x=A v x=B v Q(x)

Predicate completion cannot be applied to all KBs, however, as it can’t handle
axioms that contain more than one positive occurrence of P. A generalization,
called circamscription (McCarthy, 1980), can generate an appropriate closure
axiom, but may require using a second-order logic (that is, involving quantification
over predicates).

.

Inference Techniques

The two main classes of inference techniques found in knowledge representation
systems are procedural and declarative. Most systems combine these
techniques to some extent, forming a continuum from purely declarative

396 CHAPTER13

L AGENT Y
Creron> [o |

L THEME SN
OBV/ACTION PHYSOBJ

Figure 13.1. -An example of simple inheritance ;
representations to purely procedural ones. The declarative end of the continuum
would be a logic-based theorem prover. The KB is represented as a set of axioms
and inference is performed using a deductive theorem-proving algorithm. In a
strongly declarative system, the emphasis is on assigning a formal semantics to
the expressions of the representation independent of the inference component:-
Procedural inference systems, on the other hand, emphasize the inferential
aspects of the representation, and in extreme cases the expressions in the KB may
be given no meaning independent of how they are manipulated by the program.
An example of a procedural representation might be a system that uses the
computer’s own built-in arithmetic procedures to evaluate arithmetic expressions
without any explicit representation of knowledge about mathematics, such as
Peano’s axioms of arithmetic. In practice, procedural systems can be very
effective at specific inference tasks in well-defined domains but are often hard to
analyze because they lack formality. ;
Consider an example. In Chapter 10 the technique of inheritance was intro-
duced for semantic networks. This inference process can be realized procedurally
or declaratively. A purely declarative approach would model each fact about
subtypes and roles as an axiom and the inheritance properties would result from
standard deductive inference. For example, given the simple network in Figure
13.1, the following FOPC axioms might represent this information:

Vx.ACTION(x) o Ja.AGENT(x, a) & ANIMATE(a)
Va3Jx.ACTION(x) & AGENT(x, 2) > ANIMATE(a)

¥ x . OBJ/ACTION(x) > ACTION(x)

V x . OBJ/ACTION(x) o 3 o. THEME(x, 0) & PHYSOBI(0)
¥ 03 x. OBJ/ACTION(x) & THEME(x, 0) > PHYSOBJ(0)

Using these axioms, you can prove that the class OBJ/ACTION “inherits” the
AGENT role. In other words, for any object A such.that OBJ/ACTION(A) is
you could prove that A has an agent role; that is,

" 3a.AGENTA, a) & ANIMATE(a)

AW

using axioms:3 and 1.

ning 397

Knowledge Repr fon and R

As described in Chapter 10, a procedural version of this ‘would be ‘a”
program that starts at the specified node OBJ/ACTION, finds all roles attached at
that node; and then follows the S arc up to the supertype ACTION and finds all
the roles attached there. The complete set of roles gathered by this procedure is
the answer. Thus any OBJ/ACTION has an AGENT role inherited from the class
ACTION. .

Both these techniques.compute the same result, but the first does it by
using deduction over logical formulas, while the second uses a program that
performs a graph traversal. The first technique seems more rigorously-defined,
but the second is probably more efficient. In cases like this, in which you can
prove that the two techniques obtain the same results, you can have the best of
both approaches: a rigorously defined semantics and an efficient procedire to
perform that form of inference.

132 A Representation Based on FOPC

The KRL used in this book will be an extended version of the first-order
predicate calculus. Note that by choosing the language, you are not committed to
any particular form of inference. For example, later sections will show how the
KRL can be used with both deductive and procedutal inference techniques.

The syntax of FOPC was introduced earlier and will not be presented again
here. We will focus on the extensions to standard FOPC that are needed to
represent the meaning of natural language sentences, and comment on the differ-
ences between this language and the logical form language. The terms of the
language consist of constants (such as Johnl), functions (such as father(Johnl)),
and variables (such as x and y). Note that the logical form language did not use
constants. Rather, everything was expressed in terms of discourse variables to
keep the representation context independent. In the KB, constants are used to
represent the specific individuals. For example, the logical form term (NAME j1
“John”) represents the meaning of a phrase whose referent is named “John.” The
actual person referred to in a given context might be represented by the constant
Johnl in the KB.)

It is convenient to use restricted quantification in the KRL, making it
similar to the generalized quantifier notation in the ‘logical form language.
Restrictions follow the quantified variable separated by a colon. As mentioned in
Chapter 8, for the existential and universal quantifiers, this notation can be
treated as an abbreviation and does not extend the expressive power of the
language. Thus

3 x : Man(x) Happy(x) is equivalent to 3 x . Man(x) & Happy (x) and
V x : Man(x) Happy(x) is equivalent to V x . Man(x) > Happy(x)

We will also need the equality predicate, (a = b), which states that terms a and b
have the same denotation. Given a simple proposition P, involving a constant a,

398 CHAPTER 13

if Py is true and a = b, then Pp, must be true as well, where Pp, is the same
except that @ has been replaced by b.
Many knowledge representation systems do not explicitly use quan
They -do include variables, however, which act like universally quantifi
variables with wide scope. For example, a formula such-as (P 7x A) in a K
would correspond in meaning to the FOPC formula V x. P(x, A). Existentia]
quantified variables are handled by a technique called skolemization, w
replaces the variable with a new constant that has not been used before.
example, the formula 3 y V x. P(x, y) would be encoded in the KB in a formu
such as (P ?x Sk1), where Skl is a new constant that has not been used- befor
that stands for the object that is known to exist. Quantifier scoping dependenci
are indicated using new functions, called Skolem functions. For example,
formula ¥ y 3 x. P(x, y) would be encoded as a formula such as (P (Sk2 2y).2
in the KB, where Sk2 is a new function that produces a (potentially): different
object for each value of ?y. Often, formulas will be written in a format metgi
these two approaches, where the universal quantifiers are still present but
existential variables have been skolemized: For examplé, the formula V.y 3.x.:2
P(x, y) may be written as V y P(SkI(y), y): It can be proven that all these different:
forms of representation are equivalent.
Saying that the basic representation language is FOPC does not place many.
restrictions on the style of the representation: In particular, it says nothing ab
what the predicates are. There is a wide range of possibilities in selecting the
predicates: At one énd you could have a different predicate for each word sen:
essentially the strategy used in the logical form language. At the other end yoii
could have a preset set of predicates, called the primitives, and every word sense
would have to be defined in terms of these primitives. Consider some of the
advantages of each position. By allowing a predicate for each word sense, you
are able to capture subtle differences between semantically close terms. For
example, you might have information in the KB defining SAUNTERSI as
action that involves walking slowly, using a manner that suggests a carefree state
of mind. Thus the sentence Jack sauntered down the street might have differen
implications than Jack walked down the street. Of course, you pay for this power
by having a wide range of predicates. that for the most part have very similar
axioms defining them. Specifically, the definitions for SAUNTERSI and
WALKS1 would overlap significantly.
In an approach using primitives, on the other hand, both of these senses
would be reduced to- the predicate (or set of predicates) that captures the basic
action, say MOVE-BY-FOOT. Inference rules are then defined only on the prim
itive predicates. This approach allows the commonalities between words:to bf?
captured very succinctly. Without inference rules on the word senses, however.
is very difficult to capture the subtle distinctions between senses. Of course, y0
would have to-define a new primitive to.capture the distinction between s;
ing and walking, say a new primitive concerning state-of-mind. Sauntering migh
then be defined as MOVE-BY-FOOT and CAREFREE-STATE. The-

399

g ion and R

complex the decomposition of the senses, however, the less advantageous the
primitive representation becomes, because the number of primitives grows sig-
nificantly, driven by examples. More crucially, inference rules would have to be
based on complex clusters of primitives rather than single predicates, so the
inference process is no longer so simply defined.

As with many 4ssues, there is considerable middle ground to be explored.
Specifically, many of the advantages of a primitive-based representation can be
captured by using type hierarchies. If you assert that SAUNTERS1 and
WALKSI are both subclasses of the more abstract action MOVE-BY-FOOT,
then they could inherit most of their common properties from MOVE-BY -
FOOTwithout the need for additional axioms. This still leaves you free, however,
to add other axioms for SAUNTERS1 to cover its special characteristics.

This approach would also allow you to handle incomplete knowledge. Say
the system only knows that SAUNTERSI is a type of walking. It doesn’t know
any additional information about the word but can still make most inferences
required about it using information inherited from MOVE-BY-FOOT. In addi-
tion, it knows that. SAUNTERSI1 is somehow different from WALKS1, even
though if doesn’t know why. If, at a later stage, the system acquires additional
knowledge about sauntering, this can be added incrementally.

In addition to hierarchical relations, a knowledge representation should also
be able to take advantage of other ways to define word senses. Sometimes a
complete definition of a term is known. For example, you could define the predi-
cate father as a male parent, that is,

V x. FATHER(x)=3 y PARENT(x, y) & MALE(%)

But most words are not so precisely defined. For instance, there is no set of
properties that precisely defines most natural kinds, such as dogs, cats, chairs,
and so on. These can be classified into type hierarchies, and axioms stating
necessary conditions can be stated, but no absolute definition is possible. Viewed
as FOPC axioms, this means that such definitions involve a one-way implication.
For instance, an axiom for DOG1 might be

V x. DOGI(x) > CANINE (x) & DOMESTIC-PET(x)

where CANINE itself is defined as a type of MAMMAL, and so on. Such axioms
capture much of the important properties of being a dog but do not define the
concept completely. For instance, someone might have a pet wolf that satisfies all
the properties of being a dog but still isn’t a dog.

From the point of view of generating sentences, the more the predicates in
representation language are abstracted from the words in the language, the harder
it is-to produce sentences based on meanings. For instance, assume you are given
the formula

Y'p : (MaleHuman p) & 3 ¢ . Pareni(p, c)).
MoveByCar(p, L1) & Building (L1) & Used-for-teaching(LL)

400 CHAPTER 13

13.3 Frames: Representing Stereotypical Information

which has a natural realization as the sentence All fathers drove to the school.
generate such a sentence, the system would have to be able to realize the form !
((Male p) & 3 c . Parent(p, c)), which literally might be realized as male humag;
who have a child, as the word father, and realize the proposition MoveByCa;
LI) & Building (L1) & Used-for-teaching(L1),/ which literally might be realized:
moved by car to a building used for teaching, as the phrase drove to-schog
Clearly, this would require substantial knowledge about the meaning; of
specific words father and drive, and a complex process of matching formul ’
the KRL to these predicates. If there are no predicates corresponding to the
word meanings in the KRL, then this process is especially complicated, If su
predicates are included, the hierarchical organization would suggest methods for:
identifying possible realizations of a formula. Specifically, given an-abstra
predicate, say MaleHuman, you could consider all the predicates below it in
abstraction hierarchy to see if any of therm more concisely capture the desired
meaning. In this case Father would be a good choice as it not only entail
MaleHumar but also another part of the meaning, namely 3 c . Parent(p;). :

The trick in designing an effective knowledge representation is to choose
the set of predicates so as to make the hierarchical relationships most effectiv
Often, the best representation will mirror linguistic generalizations that can be
made. This aids both in interpreting sentences and in generanng sentences from
expressions in the KB.

Much of the inference required for natural language understanding 1nV01v
making assumptions about what is typically true of the objects or situations being
discussed. Such information is often encoded in structures called frames. In its
most abstract formulation, a frame is simply a cluster of facts and objects that.
describe some typical object or situation, together with specific inference strat
gies for reasoning about the situation. The situations represented could ran
from visual scenes, to the structure of complex physical objects, to the typic
method by which some action is performed. Frame-based systems usually- offt
facilities such as default reasoning, automatic inheritance of properties throu
hierarchies, and procedural attachment. In some implementations all reasonmg
accomplished by specialized inference procedures attached to the frame; in othe
the frames are mostly declarative in nature and are interpreted by a more uniforn
inference procedure. Either way, the key idea is the clustering of information
characterize the properties of commonly occurring objects and situations.
The principal objects in a frame are assigned names, called slots or rol
(similar to the thematic roles in the logical form). For instance, the frame for:
house may have slots such as kitchen, living room, haliway, front door;-and
on. The frame also specifies the relationships between the slots and the obje:
__represented by the frame. For example, the Kitchen slot of the house fi
be physically located within the house, and it contains various apphan ST

401

Knowledge Representation and Reasoning

BOX 13.2 Conceptual Dependency: A Primitive-Based Representation

Several very influential early semantic representations were based on small sets of
primitives that were used to support a set of specialized reasoning techniques. One
of the most influential was conceptual dependency (Schank, 1975; Schank and
Riesbeck, 1981). This representation primarily focused on action verbs and posited
a small set of action types. Specifically, the major action types included three
notions of transfer:

ATRANS—abstract transfer (as in transfer of ownership)
PTRANS—physical transfer
MTRANS—mental transfer (as in speaking)

There were also primitives based on bodily activity,

PROPEL (applying force)
MOVE (moving a body part)
GRASP

INGEST

EXPEL

as well as the mental actions,

CONC (conceptualize or think)
MBUILD (perform inference)

These primitives, together with a set of case roles and a few causal connectives,
essentially completed the representation. In early works, it was claimed that this
representation was adequate to express the meaning of all action verbs, but in later
work primitives were used as building blocks to construct larger structures to cap-
ture the meaning of verbs (for example, see Section 15.5). It was found that infer-
ence had to be specified in terms of these larger structures rather than in terms of
the primitives. Thus the advantages of the primitive-based representation were lost.

for preparing meals. You can view each of these slots as a function that takes an
object described by the frame (an instance of the frame) and produces the
appropriate slot value. Thus a particular instance of the house frame—say, H1—
consists of a particular instance of a kitchen, which can be referred to as “the
kitchen-slot of H1,” or kitchen(HI), plus particular instances of all the other slots
as well.

As an example, the definition of a frame type for personal computers might
look as follows:

Define Object Class PC (e):

Roles: Keyb, Diskl, MainBox :
Constraints: Keyboard (Keyb), DiskDrive(Diskl), CPU(MainBox)

_ This structure means that all objects of type PC have slots of type keyboard, disk

dnve and CPU (which are identified by the functions Keyb, Dlsk] and MainBox,

402 CHAPTER 13

Keyboard
: Diskl S
/ Drive

MainBox

Keyb

CPU

Figure 13.2 A semantic network defining the slots of PC

respectively). This is the same style of representation used in many. seman
network systems. In fact, you could easily represent this structure in a semantic
network notation as well, as shown in Figure 13.2. -

An instance of the type PC—say, PC3—having the subparts KEYSI
DDI1, and CPU00023 would be represented in the frame notation as

(PC3 isa PC with Keyb= KEYI3, Diskl = DDI11, MainBox = CPU00023;

This definition can be viewed as an abbreviation of the FOPC formula PC(PC3)
& Keyb(PC3) = KEYI3 & Diskl(PC3)= DDI11 & MainBox(PC3) = CPU00023

Slots with Restrictions

In general, you need more than a superficial knowledge of the structural co
ponents of a PC. For instance, the PC frame might contain more informati
about how the slot values typically interrelate. You might want to assert that ea
slot is a subpart and indicate how the parts are connected: the keyboard, for
example, as well as the disk drive, plug into the CPU box at the approprianeﬁ
connector. To assert this, you would have to define the CPU itself as a fram

structure with slots such as KeyboardPlug, DiskPort, PowerPlug, and so on. The
notation is extended as in the following example that redefines the class of PCs
so that the keyboard and disk are subparts and are connected to the CPU.

Define Object Class PC(p):

Roles: Keyb, Diskl, MainBox

Constraints: Keyboard(Keyb) & PART-OF (Keyb, p) &
CONNECTED-TO(Keyb, KeyboardPlug (MainBox)) &
DiskDrive(Diskl) & PART-OF(Diskl, p) &
CONNECTED-TO(Diskl1, DiskPort(MainBox)) &
CPU(MainBox) & PART-OF (MainBox , p)

dge Representation and Reasoning 403

With this definition, an instance of PC—say, PC4—with slot values
KEY14, DD12, and CPU07, would be written as

(PC4 isa PC with Keyb= KEYI4, Diski = DDI2, MainBox = CPUO7)
which implies all the following informatiqn;

PC(PC4) & Keyb(PC4) = KEY14 & PART-OF(KEY14, PC4) &
CONNECTED-TO(KEYI4, KeyboardPlug(CPU07)) &
Diskl(PC4) = DDI2 & PART-OF(DDI2, PC4) &
CONNECTED-TO(DDI2, DiskPor((CPU07)) & -
MainBox(PC4) = CPUO7 & PART-OF(CPU(07, PC4)

Since frames are a way of encoding knowledge about classes of objects, it
makes sense that frame information should be inherited through the type
hierarchy. For example, if you define a subtype of PCs called PC-With-Second-
Disk; this type should inherit all the slots of PC: If you define a new slot for this
type—say, Disk2—then all instances will have four slots: Keyb, Diskl, MainBox,
and Disk2.

Note that the information in a frame should be viewed as default condi-
tions. For instance, it is possible to have a PC, say PC5, in which the keyboard is
not connected to the computer. The fact that this property is violated does not
make PC5 fall out of the class of PCs; it just isn’t a typical PC.

Frame-based representation can be used to encode additional information
about situations beyond their subcomponents. One of the most useful examples
of this for natural language understanding occurs in representing actions. As you
will see in later chapters, knowledge about the usual situations in which actions
occur can be very useful in interpreting language. In particular, knowledge about
causality—what effects an action typically has and what conditions are typically
necessary for the action to occur—are very important. The slot notation is
extended to allow relations between the instance of the frame and other propo-
sitions or events. For actions, the following relations are useful:

preconditions—properties that typically enable the action,

effects—properties that are typically caused by the action,

decomposition—the way in which an action is typically performed
(usually defined in terms of a sequence of subactions).

For example, Figure 13.3 shows the definition of the action of buying something.
The action involves four objects: the buyer, the seller, the object, and an amount
of money equal to the price of the object. Furthermore, the definition states that a
purchase action can occur only when the buyer has enough money and the seller
has the object (the preconditions), and that typically at the end the buyer owns the
object and the seller has the money (the effects). Finally, a typical way something
is purchased involves the buyer giving the seller the money and the seller giving
the buyer the object (the decomposition). While this might seem to be quite

mundane everyday information, such knowledge is crucial for understanding the

404 CHAPTER 13

Knowledge Representation and Reasoning 405

The Action Class BUY (b):
Roles: Buyer, Seller, Object, Money
Constraints: Human(Buyer), SalesAgent (Seller), IsObject{ Object)
Value (Money, Price(Object))
Preconditions: OWNS(Buyer, Money)
OWNS(Seller, Object)

Effects: —~OWNS(Buyer, Money)

—OWNS (Seller, Object)

OWNS(Buyer, Object)

OWNS(Seller, Money)
Decomposition: GIVE(Buyer, Seller, Money)

GIVE(Seller, Buyer, Object)

13. 4 Handling Natural Language Quantification

Figure 13.3 The definition of BUY with its decomposition

connections between actions and states described in sentences, which in turn:ar
crucial for ambiguity resolution.

With the basic KRL defined, you can now consider some issues in mapping the==
logical form language into the KRL. One of the most obvious differences
between the two languages is the treatment of quantifiers. The logical form
contains a wide range of quantificational forms corresponding to the English
quantifiers, while the KRL allows only universal and existential quantification
Reconciling this difference seems almost hopeless at first glance. Significant
progress can be made to reduce the differences, however, by extending th
- ontology of the KRL to allow sets as objects. :

A set is a collection of objects viewed as a unit. While sets in general may.
be finite (such as the set consisting of John and Mary) or infinite (such as the sef
of numbers greater than 7), we will only use finite sets in the KRL. A set can b
indicated by listing its members in curly brackets; for example, {Johnl Maryl
refers to the set consisting of the denotation of Johnl and the denotation
Maryl. The order doesn’t matter; { Johnl Maryl} = (Maryl Johnl}. We also
allow constants to denote sets. Thus S7 might be a set defined by the formula §.
= {Johnl Maryl }. Full set theory would allow sets to be members of other sets
‘We will not use such sets in the KRL. Sets will usually be defined in terms-o
some property. This will be written in the form {y | Py}, which is the set of al
objects that satisfy the expression Py. The set of all men is {y | Man(y)}. I
addition, we introduce the following predicates to relate sets and individuals:

1 < 82 iff all the elements of SI are'in"S2
x € Siff x is a member of the set S

With setlike objects in the representation, we can produce an interpretation for
Some men met at three, as follows:

IM: Mc {xIMan(x)} . Meet](M , 3PM)

that is, there is a subset of men M that met at three. By convention, we will
always use uppercase names for variables ranging over sets. In principle, sets are
allowed in all situations where individuals have been allowed. In practice, certain
verbs require only sets or only individuals in certain argument positions. For
example, the verb meet requires its agent to be a set with more than one element,
as a single individual cannot meet. Other verbs require individuals and exclude
sets, and others allow both sets and individuals as arguments.

Consider the different formulas that arise from the collective/distributive
readings. There are two interpretations of the sentence Some men bought a suit,
which has the following logical form (omitting the tense operator):

(SOME m1 : (PLUR MAN1)
(Asl : SUITL
(BUY1 ml s1))

The collective reading would map to
AMI Ml c{z| Man(z)} 3 s: Suit(s) . Buyl (M1, 5)

that is, there is a subset of the set of all men who together bought a suit. The
distributive reading involves some men individually buying suits and would be
represented by

AIM2 M2 iz Man(Q)}V m:me M2
s : Suit(s) . Buyl(m, s)

Note that the collective and distributive readings both involve a common core
meaning involving the subset of men. The only difference is whether you use the
set as a unit or quantify over all members of the set.

The set-based representation can also be used to ensure that more than one
man bought a suit. To do this we introduce a new function that returns the
cardinality of set. For any given set S, let IS| be the number of elements in S.
Using arithmetic operators, we can now encode constraints on the size of sets.
For example, the meaning of Three men entered the room would be as follows,
again with tense informiation omitted,

IM: (M (yl Man(y)} & 1M =3)
V' m: me M. Enterl (m, Rooml)

By changing the restriction to |M! > 3, you get the meaning of At least three men
entered the room, and so on.)

. More problematic quantifiers can also be given an approximate meaning
using sets. For instance, if we define most as being true if more than half of some

- set has a given property, then Most men laughed might have the meaning

406 CHAPTER 13

o 13.5 Time and Aspectual Classes of Verbs

3M: (M < (1 Man(y)) & 13 > 11Ol

Y m:me M. Laughed(m)

In an actual discourse, the interpretation of the quantified terms will usually
relative to some previously defined set. For example, the sentence Most me;
laughed typically will refer to most of the men in a previously mentioned se
rather than to most of the men in the world. In other words, the sentence woul
not claim that more than half of all men laughed, but that more than half the me;
in a certain context (say in a given room) laughed. This type of interpretation
be discussed further in Chapter 14.

You have seen that by introducing sets as explicit objects in a repr
sentation, a wide range of quantificational constructs can be captured.in
intuitively satisfying way. While the development here was in terms of exter
sions to. FOPC, similar capabilities are needed in any representation to captury
the same phenomena. For example, assume you are using a semantic netw
representation. To handle quantification you must be able to have nodes that
represent sets, be able to state cardinality restrictions on these nodes, and be abl
to quantify over these sets to obtain the distributive reading.

One of the central components of any knowledge representation that supports
natural language is the treatment of verbs and time. Much of language involves:
time, including temporal information implicit in the tense @nd aspect of sentences
and explicit temporal information conveyed by a wide range of temporal adver-
bials (for example, for five minutes, yesterday, at 3 o’clock, after they had left).

In the logical form language, temporal information was handled in sever:
ways. There were modal operators to represent tense (for example, PAST, PRES,
PROG, FUT) and temporal connectives (for example, BEFORE, DURING), an
all predicates could take time arguments. To handle such phenomena, we need to-
introduce additional extensions to FOPC to represent time. :

There are several different types of times. A time point is an instantaneou
time that is generally associated with some transition in the world, such as-a lig
turning on or someone finding a lost pen. An interval of time is an extended
stretch of time over which some event occurs. All intervals have durations (fori
example, five minutes long), while points cannot have durations. Many predi
cates can be defined only over intervals. For example, consider the predicate that
asserts that John drove his car to work at a certain time. This can be true only
over an interval of time, because driving to a destination necessarily takes tim
-_you cannot drive in a single point.)) L

Points and intervals have to be distinguished because different relationship;
can hold between them, For example, two intervals may overlap, whereas poin
cannot overlap. In addition, two intervals may meet: One ends where the
begins, but they do not overlap in time or have any time between them. A poi

Knowledge Representation and Reasoning 407

or an interval may be contained within another interval, but ho[hing -can be
contained within a point. The following predicates are allowed for temporal
relations:

t1<t2 point/interval t1 is before point/interval t2

tl:2 . interval t1 meets interval t2, or point t1 defines the
beginning of interval t2, or point t2 defines
the end of interval t1

tlct2 point/interval t1 is contained in interval t2

As previously mentioned, some predicates can be true only over intervals of
times, whereas others can be true only at points, and others can be true at either.
The classification of predicates corresponds with different aspectual classes of
verb phrases.

Sentences describe propositions that fall into at least three distinct classes:
those that describe states (stative propositions), those that define ongoing activi-
ties (activity propositions), and those that define completed events (telic proposi-
tions). Stative propositions describe some property of the world that can hold for
an-instant or-extend indefinitely, as'in the sentences

Jack is happy.
I believe the world is flat.

Stative propositions describe situations that lack a precisely defined ending point,
and cannot appear in certain linguistic contexts. For instance, they do not
naturally appear in the progressive form

#Jack is being happy.
*I am believing that the world is flat.

Activity propositions describe activities that occur over an interval of time.
Activities are often expressed using the progressive form, as in the sentences

Jack is running.
The door was swinging to and fro.

Sentences describing states and activities do not usually allow temporal modi-
fiers, such as in five minutes, but they do allow duration modifiers, such as for
five minutes.

Telic sentences describe events that are brought to completion, as in

Jack fell asleep.
Jack climbed the mountain.

In both sentences, the event ends at some time (called the culmination point),
and you know that some resulting property starts at the culmination point. For
instance, with the first sentence you know that Jack is asleep at the end of the
event, and with the second you know that Jack is at the top of the mountain.

408 CHAPTER 13

Sentences describing telic propositions can include temporal modifiers such ag
an hour; as in .

They climbed the mountain in two days.
Jack fell asleep in an hour.

Telic eventualities are often broken down into two subclasses, dependingon
whether they essentially describe a transition only (the achievement clas:
involve some activity leading up to the culmination (the accomplishment class).

Knowledge Repr ion and ing 409
Aspectual - Can Be True Can Be True Temporal
Class at a Point? at an Interval? Modifier in
Stative Phrase YES YES NO
Activity NO YES NO
Achievement i YES NO YES
Accomplishment NO YES YES

The previous examples describe accomplishments, whereas the follo
describe achievements:

Jack recognized the man.
Helen woke up.

The four types of proposition classes can be distinguished by differen
types of temporal arguments. In particular, stative propositions can be trie a
point or an interval. For example, it makes sense to speak of a ball being red at
particular instant of time or over an extended interval of time. Stative proposi
tions are homogeneous—whenever they hold over an interval, they also h
over all subintervals of that interval.

Achievement sentences, such as Jack reached the summit or Helen L‘lose
the door, map to propositions that describe transitions. The first describes’
transition after which Jack is at the summit, whereas the second describes a tran:
sition after which the door is closed. Such predicates cannot hold over intervals,
but their definitions might include information about resulting states, such as

Y al, 11, t] . Reach(al, 11, t]1)> 3 T1.tl: Tl & At(al, 1], TI)

that is, if an agent al reaches a location 11 at time point t1, then al is at11 fo
some interval of time that starts at t1.

Propositions that describe processes correspond to activity verbs, such'a
Jack ran. Process predicates can occur only over intervals and tend to b
homogeneous, although not in a strict way as with statives. In particular, it coul
be true that Jack was running between 2 and 3 o’clock, even if he stopped for '
five-minute rest sometime during that time. Thus there can be a defeas1bl
implication, but not an entailment, that if a process P occurs over an interval Tl
then it is likely to have occurred over an interval T2 within T1.

Accomplishment sentences, such as Jack ran to the store, have a mor
complex structure that seems to combine several forms. We can handle this b
mapping the logical form predicates to a more complex sentence in the KRL. 1
particular, the logical form for Jack ran to the store could map to a formul
indicating that a process of running occurred that culminated in a state of bein,
the store, that'is, .

I TI, T2. Running(Jackl, T1) & At(Jackl, Storel, T2y & T1 : T2

Figure 13.4 summarizes some distinguishing properties of the aspectual clas

Figure 13.4 Different properties of the aspectual classes

Encoding Tense

Tense operators can also be represented directly in the temporal logic without the
need for modal operators. The basic idea is to map tense operators to temporal
relations with respect to some indexical term referring to the current time. For the
following examples, let us assume that the constant NOW1 denotes the current
time. Given this, we could map the PAST operator into a formula that existen-
tially quantifies over a time before now; that is, the sentence John was happy
would map to the KR expression

3TI1.TI <NOWI . Happy(Jackl, T1)

The same sentence in the simple present, John is happy, would map to
3T1.NOWI c Tl . Happy(Johnl, NOWI)

and the simple future, John will be happy, would map to
ATI.TI>NOWI . Happy(Jackl, TI)

Note that there is ambiguity in the interpretation of tense, because some simple
present sentences refer to the future, as in The flight arrives at noon, whereas
some simple future sentences refer to the present, as in Jack will be in class by
now. But we will ignore these complications in this development.

Even without ambiguity, there are some difficult problems. For instance,
there are two ways to assert that something was true in the past, corresponding to
the simple past and the past perfect, for example,

Helen saw the books.
Helen had seen the books.

‘What is the difference between these two readings? As isolated sentences, it is
hard to tell, but consider these forms in more complex sentences, such as

When Jack opened the door, Helen saw the books.
When Jack opened the door, Helen had seen the books.

In the first sentence the act of seeing is cotemporal with or immediately after the
time Jack opened the door, whereas in the second the act of seeing preceded

410 CHAPTER 13

Jack’s opening the door. The generally accepted account of this difference way

proposed by Reichenbach (1947), who suggested the notion of reference time. In*

these examples the reference time for the main clause is the time that Jac]

opened the door. The simple past equates the time of the event (of seeing) with:

the reference time, whereas the past perfect asserts that the event precedes th
reference time. Specifically, Reichenbach developed a theory that tense-giv
information about three times: i

S — the time of speech
E — the time of the event/state
R — the reference time

The reference time can be provided by temporal adverbials, as above, or ca
often be determined by the discourse context, as will be discussed in Chapter 15,

In the simple tenses the reference time is the same as the event time, that is;
E =R. The three forms are generated by varying the relationship between R and

S: :
Jack sings ...simple present: S =R, E=R '
Jack sang simple past: R<S,E=R
Jack will sing simple future: S<R,E=R

The perfect tenses, on the other hand, have the event time preceding the referes
time, and differ, as before, in terms of how the reference time and speech time
are related. Thus we have i

Jack has sung present perfect: S=R,E<R
Jack had sung past perfect: R< S, E <R
Jack will have sung future perfect: S<R,E <R

This analysis also provides an account of the posterior tenses, in which R <E:

Jack is going to sing posterior present: S =R, R <E
Jack was going to sing posterior past: R <.S,R<E
Jack will be going to sing posterior future: S<R,R<E

These orderings are shown graphically in Figure 13.5.

o 13.6 Automating Deduction in Logic-Based Representations

The previous sections have developed the abstract knowledge representation
language that will be used through the rest of this book. The remaining sections
change the focus and look at selected reasoning strategies used in knowledge
representation systems. This section describes some techniques for automated
reasoning in knowledge representations. As mentioned earlier, reasoning system
fall into two main categories: the declarative techniques.based.on.deductive.pre

techniques and the procedural approaches. This section considers some purely:

deductive techniques.

Knowledge Repr ion and R i 411

Simple Perfect Posterior
IS IE Is _+§ |E
Present 13 1R R |
E -

E S
—-i—i—- IE_IR IS IR]S |E
Past R T 1 T 1
Future S ﬁ _'S__F.}R__ S_IR_{E

Figure 13.5 Some temporal configurations allowed by the tenses

If you have ever studied proof methods such as natural deduction for
FOPC, you know that finding proofs is complicated because there are many
different ways to try to prove any given formula. In addition, there are often
many syntactic ways to express the same content. Most work in automated
reasoning attempts to reduce this complexity before starting the task. In parti-
cular, a normal form is used for formulas that uses a restricted subset of the full
FOPC syntax. Many formulas that are logically equivalent but syntactically
different have the same normal form. For example, the formulas

P& Q
~Pv-0Q)
SCEL

are all logically equivalent. In a representation based on conjunctive normal
form (CNF), described later in this section, these all map to the same formula. A
second technique concerns the handling of variables. In general, with quantified
variables, many particular instantiations of those variables could be used to
establish a proof. Thus, when searching for a proof, thete is ample opportunity to
pick the wrong instantiation and have to reconsider later. The unification
technique partially avoids this problem by always computing the most general
solution possible for a given line of reasoning. If you are not already familiar
with unification, see Appendices A and B.

Many different reasoning systems can be viewed with the framework of
automatic proof systems, from simple pattern-based retrieval from databases, to
Horn clause systems similar to PROLOG, to fully general theorem-proving
systems. The differences arise from the form of expressions each system can
represent and reason about. To see this, let’s first develop a fully general normal
form for FOPC. At the level of constants, functions, and atomic propositions,

412 CHAPTER 13

Formula in FOPC Clause Form Equivalent

P (P<)

-P (< P)

P& Q two clauses: (P <-) and (Q <-)
PvQ Po<)

Qv-P Q< P)

PoQ (Q<-P)

~(P >Q) two clauses: (P <-) and (<- Q)
P& Q) VR two clauses: (PR <-)and (Q R <-)

Figure 13.6 Formulas in clause form

conjunctive normal form is identical to FOPC. A literal corresponds to an atomic
proposition, possibly negated, such as the following:

Person(Johnl)
Car(Carl)
Owns(Johnl, Carl)
~Happy(Johnl)

A clause is simply a disjunction of literals such as the following, which asserts
that either Helen owns a particular car or she is not happy:

Owns (Helenl, Car2) v ~Happy(Helenl)

In many systems, clauses are written using a form of the implication operator
instead, and the preceding clause would be written as

(Owns(Helenl, Car2) <- Happy (Helenl))
In general, a clause is written as
(PI, .., Pn<- Q1. ..., Om)

which states that if Q1, ..., Qm are true, then at least one of PI, ..., Pn is tru
Viewing a clause as a disjunctive formula, the Qi’s are all the negated litera
while the Pi’s are all the positive literals. It can be shown that all formulas in
FOPC have an equivalent clause form. Figure 13.6 gives some examples of some
propositional formulas using standard logical operators and their equivalent form
in conjunctive normal form. Quantification is handled in clause-based systems
using variables and skolemization, as discussed in Section 13.2.

A very useful restriction of this type of expression is the Horn clau
which has exactly one literal on the left side, that is, exactly one positive liter
In a KB restricted to Horn clauses, the backward chaining strategy used in PR
LOG is able to find a proof of any formula that logically follows from the KB

Reasoning with clauses makes extensive use of the unification algorith
Consider first a very limited: KR that allows only literals in the KB, similar

Knowledge Representation and Reasoning 413

relational database that allows quantification. The intuition we want is that a
literal P follows from the KB if we can retrieve a formula in the KB that unifies
with it. Consider how variables are treated in such a system. The FOPC formula
V y 3x P(x y) would correspond to the literal P(Sk2(?y), ?y). If the KB contains
this literal, consider what would happen if you later want to see whether Vw 3 z
P(w, z) follows front the KB. If you convert it to clause form, you would obtain a
literal such as P (Sk3(?w), w), which will not unify with the literal in the
database since the Skolem functions are named differently. In pattern retrieval
systems, this is handled by changing the interpretation of quantifiers when they
are used as a query. Thus, as a query, Vy 3x P(x y) would map to a literal
P(?z, Sk4), which would unify with the literal for the same formula already in the
knowledge base.

At first glance, this technique of changing the interpretation of quantifiers
for queries may seem rather arbitrary, but it actually follows from the underlying
proof strategy being used. In particular, there are always two general methods for
proving a formula P. The first is to build a proof of P directly from the KB using
the rules of inference. The second is to show that =P is inconsistent with the KB
(and thus P must follow from the KB). The latter approach is called a refutation
proof and turns out to be the most useful technique for automatic deduction. It
forms the foundation for pattern-matching techniques as previously described,
Horn clause proof strategies, and general resolution-based theorem-proving
systems. All of these can be viewed as specialized implementations of a single
rule of inference called the resolution rule. A simple case of the resolution rule
resembles modus ponens. In particular, given a clause

(Q <- P) (that is, P implies Q)
and the clause
(P <-) (thatis, Pistrue)

the resolution rule allows you to conclude (Q <-) (that is, Q is true). Another
simple case of the resolution rule detects contradictions. Given (P <-) (that is, P
is true) and (<- P) (that is, P is false), the resolution rule gives the empty clause
(<-), which indicates that the database is inconsistent.

The resolution rule is generalized to FOPC by using unification to
instantiate the variables in the two clauses to make the X’s identical. For
example, consider a KB that includes clauses asserting that all dogs bark and that
Fido is a dog:

(Bark(?x) <- Dog(?x))

(Dog (Fidol) <)

The resolution rule would allow you to conclude that Fido barks, for after
substituting Fidol for ?x in the two clauses, you can cancel the literal
Dog(Fidol) from both clauses to obtain the resulting clause:

(Bark(Fidol) <-)

414 CHAPTER 13

o 13.7 Procedural Semantics and Question Answering

With the resolution rule in hand, you can now consider the refutation pr
strategy. Given a consistent KB in clause form, we can determine whethe
formula P follows from the KB by negating P, converting it to clause for}nan
adding it to the KB, and then showing that we can derive the empty clause ugin
the resolution rule. Since this indicates that the KB is now inconsistent, P m
follow from the KB. It can be proven that the resolution strategy is compl
the sense that if P does follow from the KB, then a proof can be found. However
the converse is not true in the general case. If P-does not follow from the:
proof strategy may never be able to tell this fact. By limiting the form of
clauses that can be used, you obtain different properties. For instance, with ¥
consisting solely of Horn clauses, you can tell whether a formula P does or d
not follow from the KB in every circumstance.

In deductively based systems, a common technique for mtroducmg
default mechanism is called proof by failure. A new operator called UNLESS i
introduced that recursively calls the theorem prover on the formula that is i
argument. If the recursive call to the theorem prover stops without proving
formula true, then the UNLESS formula is true. For example, the default rule
cats purr might be expressed as the following axiom:

V. Cat(c) & Unlesx(—wPurr(c)) > Purr(c)

That is, you can conclude that a cat purrs except when you can prove it doesn’
purr. Because of the potential expense of recursively calling the prover, suc
techniques are usually used only with restricted proof systems, such as i
PROLOG-style Horn-clause representations. Another technique used in man:
such systems that is closely related to the closed world assumption is’ th
negation as failure rule, where a proposition is false if it can’t be proven true
that is, for any proposition P, Unless(P) > —P. Of course, you would have to by
very careful if using default rules in a system that uses negation as failure. Foi
instance, in a system using negation as failure, the previous default rule woul
state that you-can conclude that cats purr only when you can conclude that cat;
purr—not a very useful rule!

The notions of clauses, unification, and refutation proofs provide the for
mal underpinnings of virtually every modern knowledge representation systent,
that is, any system that uses pattern matching with variables can be seen as
special case of the general technique. Of course, this does not mean that matching
covers all the reasoning that a knowledge representation system can do, but it is
crucial part of every system.

Procedurally based techniques are frequently used in database query application:
where there is a large difference in expressive power between the logical fe
language and the database language. Cast in terms of the formalism-in- thy
section, the-KB (that is, the database) consists only of positive literals,

Knowledge Repr ion and i 415

(FLIGHT F1) (ATIME F2 CHI 1000HR)
(FLIGHT F2) (ATIME F3 CHI 900HR)
(FLIGHT F3) (ATIME F4 BOS 1700HR)
(FLIGHT F4) (DTIME F1 BOS 1600HR)
(AIRPORT BOS) (DTIME F2 BOS 900HR)
(AIRPORT CHI) (DTIME F3 BOS 800HR)

(ATIME F1 CHI 1700HR) (DTIME F4 CHI 1600HR)

Figure 13.7 A simple database of airline schedules

without variables. Rather than convert the logical form language into extended
FOPC as described in earlier sections, the logical forms are treated as expressions
in a query language. Each logical form language construct corresponds to a
particular procedure that performs the appropriate query. For example, the query
Does every flight to Chicago serve breakfast? with the logical form

(EVERY f1 : (& (FLIGHT f1) (DEST f1 (NAME ¢1 “Chicago”)))
(SERVE-BREAKFAST f1))

would be interpreted as a procedure as follows:

1. Find all flights in the database with destination CHI (the
database symbol for Chicago).

2. For each flight found, check if it serves breakfast. If all do,
return yes; otherwise return no.

This section shows how to interpret logical form expressions as procedures, a
method of interpretation often called procedural semantics.

To make the development concrete, consider the very simple database
retrieval system shown in Figure 13.7. The database consists of a set of positive
literals containing no variables. Times are indicated in international notation; for
example, 1700HR is 5:00 PM. The relation (ATIME f ¢ t) indicates that flight f
arrives at airport ¢ at time t, and (DTIME f ¢ t) indicates that flight f leaves from
airport ¢ at time t. The database system provides a simple interface based on
pattern matching of literals, where the query may contain variables. Two data-
base query functions are assumed:

(Test <literal>1 ..., <literal>p,)—returns true if there is some binding
of the variables such that each literal is found in the database.

(Retrieve <var> <literal>] ..., <literal>p,)—like Test, but if it
succeeds it returns every instance of the indicated variable that
provides a solution.

For example, given the database in Figure 13.7, the query

(Retrieve 7% (FLIGHT 7x) (ATIME ?x CHI 1000HR))

416 - CHAPTER 13

would return the list (F2) because F2 is the only binding of ?x where both th
literals are in the database. ;
All expressions in the logical form language must be interpreted ina was
that reduces eventually to these two query forms on the database. The way thi;
done is by mapping the logical form into a procedure that performs:
appropriate queries on the database. Thus answering a question is done in-twi
steps: translating the logical form into a program and then executing that program
to compute the answer. .
Consider the translation step first. For any logical form expression E; th
translation of E in the database query language will be indicated as T(E). Th
translation of expressions varies depending on the constructs. For instance
expressions such as (NAME ¢l “Chicago”) will be translated into the appropriat
database constant, in this case CHI. But in addition, the symbol ¢1 must be store
with the constant CHI on a structure called the symbol table, so that if ¢1.4
found again in another part of the logical form, it can also be replaced by its -
value CHL
Some logical form relations will translate directly into database relations,
whereas others will translate into more complex expressions. For instance, the
logical form relation DEST is not used in the database; rather, the destination of
flight is encoded in the ATIME relation that includes both the flight’s destination -
and its arrival time. Thus the logical form relation (DEST f1 (NAME ¢l
“Chicago™)), where f1 has already been associated with a variable ?f, would
translate into the database relation

(ATIME ?f CHI)

Since the time is not included in the DEST relation, it is interpreted as an uncon
strained variable in the translation. In general, the translation of each relation in
the logical form must be specified.

The procedural semantics approach gets more interesting as it interpret:
logical connectives and quantifiers, which of course have no corresponding con
structs in the relational database. The logical operators are interpreted as follows:

Conjunctions: (& Ry ..., Ry)—will translate into a program of the
form (CHECK-ALL-TRUE T(R1) ..., T(Ry)), which when
executed will successively query each T(R;) to make sure it is
true and pass on the variable bindings to the queries that
follow. If there is a set of variable bindings such that querying
each T(R;) succeeds, then the program succeeds; otherwise it
fails.

Disjunctions: (OR Rj ..., Ry)—will translate into a program of the
form (FIND-ONE-TRUE T(R}) ..., T(Rp)), which when
executed will successively query each T(R;) until one of the R;
succeeds, -in- which case the program succeeds. If no Rj
succeeds, then the program fails.

Knowledge Repr ion and Reasoning 417

The procedure for negation assumes the closed world assumption on all relations
in the database, and uses proof by failure:

(NOT R)—translates into a program of the form (UNLESS T(R)),
which succeeds only if querying T(R) fails.

The most complex translations occur with quantifiers. Each quantifier translates
to a program that does the appropriate operations on the database. Because of the
limitations of the database language, only the distributive readings of plural
quantifiers are usually supported. Consider three quantifiers important in
question-answering applications: THE, EACH and WH.

(THE x : Ry Py)—translates into a program (FIND-THE 7x T(R 25)
T(P9x)), which first does a retrieval to find all ?x that satisfy
T(Ro9x), that is, (Retrieve ?x T(R9x)). If a single answer is
found, then that answer is substituted for 7x in the entire
expression, and T(P9y) is executed to provide the answer for
the entire expression. If no object is found when querying
T(R9x), then there is a presupposition violation that might be
handled by the question-answering system in a special way,
say, notifying the user that there is no such object. If multiple
answers are found, the designer of the system must decide what
is best to do. Some systems allow this situation and execute
T(Px) for each of the values; other systems treat it as a failure.

(EACH x : Ry Py)—translates to a program (ITERATE ?x T(R9x)
T(P 2x)), which also starts by doing a retrieval to find all ?x that
satisfy T(R9x). It then iteratively executes T(P9x) for each
value found and succeeds only if each of these queries
succeeds.

(WH x : Ry Py)—translates into a program (PRINT-ALL ?x T(R9y)
T(P9x)), which retrieves all objects that satisfy the translations
of Ry and Py, that is, (Retrieve ?x T(R9x) T(Pax)), and then
prints out the results. Determining the best format for printing
the answers, especially determining whether additional infor-
mation should be provided, is a complex issue. Here we assume
it simply prints the answers found.

This is enough mechanism to show some examples using the database in
Figure 13.7. The query Which flight to Chicago leaves at 4PM? would have the
logical form (after scoping)

(WH f1 : (& (FLIGHT f1) (DEST f1 (NAME el “Chicago”)))
(LEAVE 11 (NAME t1 “4PM”)))

This would translate into a query of the form
(PRINT-ALL ?f (FLIGHT ?f) (ATIME ?f CHI ?t) (DTIME ?f ?s 1600HR))

418 CHAPTER 13

Here, the DEST relation maps to an ATIME relation as previously desctibed, and
the LEAVE predicate maps into the DTIME relations. Note that the departure
location was not specified in the logical form and so is treated as a variable here.
In a real application the departure city would be determined by context or-by:
default. With the small database shown in Figure 13.7, however, there is only one
flight matching the current description, namely F1, so it works in this case. -

Consider a more complex example that involves iteration, as in the request
Give the departure time of each flight to Chicago with the logical form

(EACH f1 : (& (FLIGHT f1) (DEST f1 (NAME cl “Chicago”)))
(THE t1 : (DEPART-TIME f1 t1)
(GIVE-SPECIFY1 gl)))

This would translate into the query

(ITERATE ?f1 (CHECK-ALL-TRUE (FLIGHT ?f1) (ATIME % CHI %1))
(FIND-THE ?t1 (DTIME ?f1 Zcity ?t1)
(PRINT 2t1)))

In this case, the interpretation of the verb give simply involves printing ou
argument, i.e., the departure time. The execution of the expression then proceeds
as follows:

1. The first part of the ITERATE step is to find all ?f1 satisfying
the restriction. The CHECK-ALL-TRUE procedure succeeds
for 71 only if both (FLIGHT ?f1) and (ATIME ?f CHI ?t1) are
in the database. This step returns the flights F1, F2, and F3.

2. The second part of the step is to execute (FIND-THE ?t1
(DTIME ?f1 ?city ?t1) (PRINT ?t1)) for each of the three
values. Consider the execution with the first value, F1. The
expression is

(FIND-THE ?t1 (DTIME F1 ?city ?7t1) (PRINT ?t1))

The program for FIND-THE first performs the query (Retrieve
2t1 (DTIME F1 ?city ?t1)). This returns a unique answer,
namely the time 1700HR. The second step of the FIND-THE
program executes PRINT on this value, causing 1700HR to be
printed. The second and third iterations print the values
1000HR and 900HR, respectively.

Many natural language database query systems use the procedural seman-
tics technique. It provides a convenient way to capture the appropriate behavior
for many constructs whose meaning cannot be expressed within the limited.
language of the database system. Because of the nature of database application:
the limitations of these techniques do not appear to be a problem in practice.
instance, database systems don’t typically encode information that would-mal
- queries using collective interpretations of quantifiers necessary. In addition, since

Knowledge Repr ion and Reasoning ~ 419

BOX 13.3 LUNAR: A Natural Language Database Query System

With the discussion of procedural semantics, you have now seen most of the
central components of the LUNAR system. LUNAR, developed in the 1970s, acted
as a front-end query system to a database containing information about the rock
samples brought back from the Apollo missions to the moon. It was the first natural
language system to demonstrate extensive coverage in a realistic application
domain, and many of the techniques that are common in the field today either
originated or were first developed to an advanced stage in this system. The system
used an ATN parser (see Section 4.6) that produced a representation based on
grammatical relations, which was then interpreted by a semantic interpretation
module that used a recursive pattern-matching technique to produce an expression
in a meaning representation, as in Section 11.1. Quantifier information was
maintained separately from the rest of the semantic representation and was then
ordered using heuristics similar to those described in Section 12.3. The result was a
final meaning representation expressed in a meaning representation language
similar to our fully scoped logical form. This was then executed using a procedural
semantics approach as described in this section. Some examples of queries that
LUNAR could handle are

Give me all lunar samples with magnetite.

In which samples has apatite been identified?

‘What is the specific activity of A126 in soil?

‘What is the average concentration of olivine in brecchias?

In which brecchias is the average concentration of titanium greater than
6 percent?

For more information on LUNAR, see Woods (1970; 1977; 1978).

the database does not contain disjunctive information, the limited forms for
disjunctive queries also do not pose a problem.

Procedural semantic techniques can also be used with Horn-clause-based
databases as well. Most of the procedural definitions of constructs can be defined
by Horn clause axioms, with the addition of an ability to recursively invoke the
prover to perform tasks such as finding all objects that satisfy some set of literals.
With extensions to handle finite sets, such a representation can handle a wide
range of quantifiers procedurally using the encoding techniques described in
Section 13.4. With their additional expressive power, Horn-clause-based data-
bases are a very attractive generalization to the traditional relational database for
supporting natural language query systems.

13.8 Hybrid Knowledge Representations

Even if a knowledge representation language remained first-order, general search
“strategiesin theorem proving would usually be too inefficient for practical sys-
tems. The theoretical cleanness of viewing inference as theorem' proving,

420 CHAPTER 13

ANIMAL

Ts
MAMMAL

Ts

DOG . e

Tisa

Fidol

Figure 13.8 A small type hierarchy

however, has many attractive properties. Hybrid KR systems attempt to gain
advantages of using efficient procedural inference for some tasks while retainin;
the theoretical framework of theorem-proving systems.

As a start, the ideas of unification and refutation proof can be carried ove
into most systems. A hybrid system, however, does not depend entirely on thes
techniques. Rather, certain forms of inference are accomplished using special
purpose techniques that can be considerably more efficient. For exampk
consider the implementation of type hierarchies in a KR system. You saw earlie
that type hierarchies can be encoded as axioms (for example, V x . DOG(x)
MAMMALC(x)), or as graphs, as in semantic networks. These techniques may by
formally equivalent, but they can produce radically different computation:
properties.

One way to combine these techniques is to assume a typed logi
resembling the restricted quantification logic developed in Section 13.2. The type
hierarchy is predefined in a semantic network structure in which DOG
subtype of MAMMAL which is a subtype of ANIMAL, and Fidol is predefin
to be a member of the set DOG. Given this general knowledge, the KB encodin;
the assertion All animals have a mother would be

(MOTHER (?x:ANIMAL, SkI(?x)) <-)

where the notation ?x:ANIMAL indicates a variable ranging over type ANIMA
Such expressions could be reasoned about by extending the unification algorithm,
so that two terms may unify only if they are of compatible types; that i
?xANIMAL and Fidol will unify only if Fidol is a member of the set ANIM;
This constraint can be checked procedurally using the semantic network show:
Figure 13.8. Now the query as to whether Fido has a mother—that
MOTHER (Fidol, ?y)—can be proved using a single unification step.

The procedural approach allows you to write highly optimized procedus
that are significantly faster than would be possible doing the same work ‘usin
axioms. The hybrid representation also allows for a more intuitive encodin;
the information, using a semantic network for the type information, and.
could permit other nondeductive algorithms to be performed on the
network. ‘

Knowledge Repr ion and ni 421

Another example of a specialized reasoner that can be put to very effective
use concerns equality reasoning, It is very difficult to axiomatize equality directly
into a theorem-proving system because it is hard to encode the equivalence of
formulas that differ only in using two different names for the same object. Very
efficient algorithms exist, however, for maintaining equality information between
ground terms based on equivalence classes. If such techniques are built into the
unifier, then no explicit axioms about equality need be encoded in the system.
Rather, the extended unification algorithm would use the procedures defined for
equality to check whether two terms are equal and thus can be unified. '

" Other forms of specialized reasoning systems can be integrated by defining
procedures that establish the truth of particular predicates. The technique is.called
procedural attachment. For instance, consider temporal reasoning. While it is
possible to use an axiomatization of time to drive temporal reasoning, the
resulting system would be very inefficient. There are, however, specialized
reasoning techniques that can manage temporal information quite effectively.
Such systems can be integrated into a hybrid system using special predicates. To
see this, consider what roles propositions play in a reasoning system. There are
generally three different operations applicable to propositions:

Assert that it is true (that is, add it to the KB)
Query whether it is true (that is, invoke the theorem prover on it)
Retract it (that is, remove it from the KB)

While each of these operations was defined in terms of a theorem-proving
system, this does not have to be the only way such operations are accomplished.
In fact, you could define arbitrary procedures to perform each of the tasks. For
instance, consider a specialized temporal reasoning system that maintains a graph
of temporal relations and uses graph search techniques to. establish temporal
relations. Assume that there is a predicate BEFORE in the KB that indicates that
one time precedes another. When a proposition such as (BEFORE t1 t2) is to be
added to the KB, the specialized temporal reasoner is invoked to add the
information to its temporal graph. When the same proposition is queried (either
directly by the user, or as a substep of a more complex proof), then the special -
ized tempora.l reasoner is called to establish it. As a result, the specialized
temporal reasoner can be fully integrated into the theorem prover, and used
whenever temporal information is required. Of course, to be fully integrated, the
specialized reasoning would have to be able to handle variables and return results
equivalent to unification. For instance, if the theorem prover needed to establish
(BEFORE t1 7x), the temporal reasoner would have to return a binding for ?x. In
addition, it would need to be able to handle backtracking when alternate solutions
need to be explored.

Hybrid reasoning systems offer an attractive way to integrate spec1ahzed
reasoning algorithms into a uniform framework.

422 CHAPTER 13

“Summary

Related Work and Further Readings

Natural language understanding requires a capability to represent and rease;
about knowledge of the world. While there are many different techniques
representing knowledge, every representation sufficient for general langu
understanding must at least support the following general capabilities:

. a full range of logical operators and logical quantlflcatlon, as
found in FOPC
. a way to represent default, stereotypical information about the
objects and situations that occur in the domain
. a way to explicitly represent and reason about finite sets
. a method of representing and reasoning about temporal
information

These are representative but by no means exhaust the areas of concern. In a fi
general system, for instance, you would also explore the spatial informationj,
language, and the representation of mental attitudes.

This chapter developed an abstract representation language, combining
techniques of FOPC and frame-based systems, that satisfies the requirements: ju;
listed. This abstract representation could be realized within a wide range
knowledge representation systems using different techniques. Any knowle
representation system must support basic capabilities for pattern matching,
which the notion :of unification and inference based on refutation provide
formal basis. Many systems also specify specialized procedures for some or all o
the reasoning tasks. A system that uses a mix of techniques, including deductive
and procedural techniques, is called a hybrid system.

Knowledge representation is a highly diverse area in artificial intelligence and-i;
fundamental to many problems beyond language understanding. A good intro
duction to the field is the collection of papers in Brachman and Levesque (198
A good sample of current work in the field can be found in the proceedings of the
Conferences on Knowledge Representation and Reasoning (for example, Brach
man, Levesque, and Reiter (1989); Allen, Fikes, and Sandewall (1991); ani
Nebel, Rich, and Swartout (1992)). Norvig (1992) has written an excellent tex
that discusses different implementation techniques for knowledge representatlo
systems.

The introduction of frames by Minsky (1975) produced a large body o
subsequent work in representation. One of the first knowledge representati
systems based on these ideas was KRL (Bobrow and Winograd, 1977).-Ha
(1979) performed an analysis of KRL in terms of FOPC. Most modern repres:
tation systems, such as the systems described in Brachman and Levesque (198
can be seen as combinations of frame systems, semantic networks, and‘dedﬁ

Knowledge Representation and Reasoning 423

logic. A large class of systems organize knowledge around descriptions of
categories of objects and are called term subsumption languages. There are
good examples in Brachman and Levesque (1985). A good reference for
semantic network-based systems is Sowa (1991).

The strongest proponents of knowledge representations based on decompo-
sitions into a small set of primitives have been Schank (1975) and Wilks (1975).
Most current representation systems, however, use abstraction as the organiza-
tional tools in representations, and are often based on semantic networks and
frame systems. There have also been many proposals for decomposition in
linguistics (such as Dowty (1979) and Jackendoff (1990)).

The treatment of quantifiers by using explicit sets is common in compu-
tational systems (for example, Woods (1977); Warren and Pereira (1982); and
Alshawi (1992)) and in linguistics (for example, McCawley (1993)).

The study of tense and aspect is a very active area of research in linguistics,
philosophy, and computational linguistics. A good reference on tense and aspect
in the computational literature is a special issue of Computational Linguistics
(1988). An excellent place to start in the linguistics literature is with Dowty
(1979; 1986) and Bach (1986). More recent work in the area includes Parsons
(1990) and Pustejovsky (1991). The classic reference for tense is Reichenbach
(1947). There is also a large literature on the treatment of tense as a modal
operator (for example, Prior (1967)). McCawley (1993) contains a good intro-
duction to linguistic issues in dealing with tense and aspect. Allen (1984)
describes a temporal logic that explicitly involves predicates in three different
aspectual categories. Davis (1990) describes a logic-based representation that
includes specialized representations for time, space, and many other aspects of
the world.

Most deductive techniques have evolved from work in resolution theory
proving as introduced by Robinson (1965). Robinson introduced the resolution
rule and proved that the resolution refutation proof technique was complete. The
technique of proof by failure was used in the early' Al programming language
PLANNER (Hewitt, 1971), and was formalized by Clark (1978). Much of the
work on default logics stems from work by Reiter (1980). Etherington and Reiter
(1983) used this formalism to define inheritance formally with exceptions in type
hierarchies. There is a large body of literature on representation using semantic
techniques based on minimal models. A good general overview can be found in
Genesereth and Nilsson (1987).

Procedural semantics was extensively used in early systems, notably
Winograd (1973) and Woods (1978), and is still a common technique in database
query systems. The CHAT-80 system (Warren and Pereira, 1982) used similar
techniques within a PROLOG-based representation to produce an elegant and
quite powerful query mechanism. For a brief survey of question-answering
techniques, see Webber (1992). A good example of a more current question-

- answering system is the TEAM system (Grosz et al., 1987). TEAM was aimed at

being transportable, which means it can be relatively easily adapted to a different

424 - CHAPTER 13

database without having to rewrite the grammar and semantic interpreter, To dq
this, it uses a context-independent logical form similar to the approach use
Chapter 8.

Exercises for Chapter 13

L

(easy) Give a plausible logic-based representation for the meaning of th
following sentences, focusing on the interpretation of the quantifiers. If tt
sentence has a collective/distributive ambiguity, give both interpretations.

Several men cried.
Seven men in the book met in the park.
All but three men bought a suit.

(easy) For each of the following lists of sentences, state whether-the fir,
sentence entails or implies each of the sentences that follow it, or that thet
is no semantic relationship between them. Justify your answers using som
linguistics tests. .

a John didn’t manage to find the key.
John didn’t find the key.
John looked for the key.
The key is hard to find.

b. John was disappointed that Fido was last in the dog show.
Fido was last in the dog show.
Fido was entered in the dog show.
John wanted Fido to win.
Fido is a stupid dog.

(easy). Classify the indicated verb phrases in the following sentences as
whether they describe a state, an activity, an achievement, or an accom
plishment. Justify your answers with some examples that demonstrate theii
linguistic behavior. Discuss any problems that arise in your classification.

Jack ran to the store.

Jack was running to the store.

Jack hated running.

Jack runs every day.

Jack stopped running when he broke his leg.

(medium) One of the classic examples of decompositional semantics is the
encoding of the verb kill using a causation operator and a predicate DIE. I
particular, the meaning of the sentence John killed Sam would be

CAUSE(Johnl, DIEI(Sam))

Does this decomposition éompletely capture the meaning of the-verb Kill:
Consider whether John killed Sam and John caused Sam to die are equiva

ledge Repr ion and Reasoning . 425

lent in all situations. Given your position on this issue, would it be better
for a KR to decompose all instances of kill to this form, or to, use a meaning
postulate and retain a predicate KILL in the KR? Justify your answer.

(medium) - Using the translation of inheritance networks into logic
described in Section 13.1, give the axioms for the simple network
AGENT -

/—>

OBJ/ACTION

PHYSOBJ
s THEME

—_—>

THEME

|

Note that the definition of the drive action places a more restrictive
constraint on the type of the THEME role. Does the axiomatization do the
right thing, that is, does it show that the resulting axioms are consistent and
that, for any drive action D, 3 0 . THEME(D,0) A CAR(0)? Did the defi-
nition of the THEME role on the general class OBJ/ACTION interfere with
this in any way? In answering these questions, explicitly specify any
assumptions you need to make about the type hierarchy to do each proof.

(medium) Using the frame-based representation described in this chapter,
define an action class DRIVE that corresponds to a sense of the verb drive
in

i I drove to school today.

In particular, your definition should contain enough detail so that each of
the following statements could be concluded from sentence i.

ii. I'was inside the car at some time.

iii. Ihad the car keys.

iv. The car was at school for some time.
v. Topened the car door.

For each of these sentences, discuss in detail how the necessary knowledge
is represented (as a precondition, effect, decomposition, and so on) and
what general principle justifies it being a conclusion of sentence i. Identify
three other conclusions that can be made from sentence i, and discuss how
the required knowledge to make each conclusion is encoded. Should any of
the definitions be considered to be default knowledge? If so, why? If not,
identify one further conclusion that could be made if some default
knowledge were used.

