PLIN064 Úvod do digital humanities

Zuzana Nevěřilová xpopelk@fi.muni.cz

Centrum zpracování přirozeného jazyka, B203 Fakulta informatiky, Masarykova univerzita

20. listopadu 2019

Mathematical Representation of Words and Their Meanings ${\color{black}\bullet}{\color{black}\circ}}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}\\{\color{black}\circ}{$

Mathematical Representation of Words and Their Meanings

Assumptions:

- words (or other finite representations) exist
- words are used in texts with different frequency (in a certain distribution)
- some words are used together more often than other word tuples (n-grams)

word \rightarrow number = not practical (what numbers are similar?) word \rightarrow vector = practical (vector similarity measured by their angle)

How to Convert one Word to a Vector

there are ∞ possibilities, however, we never count with one word let's focus on words in contexts

The	cat	sat	on	the	mat	
1	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	1	0	0	0	0
0	0	0	1	0	0	0
1	0	0	0	0	0	0
0	0	0	0	0	1	0
0	0	0	0	0	0	1

How to Convert one Word to a Vector

there are ∞ possibilities, however, we never count with one word let's focus on words in contexts

The	cat	sat	on	the	mat	
1	0	0	0		0	0
0	1	0	0		0	0
0	0	1	0		0	0
0	0	0	1		0	0
1	0	0	0		0	0
0	0	0	0		1	0
0	0	0	0		0	1

How to Convert one Word to a Vector

there are ∞ possibilities, however, we never count with one word let's focus on words in contexts

The	cat	sat	on	the	mat	
1	0	0	0		0	0
0	1	0	0		0	0
0	0	1	0		0	0
0	0	0	1		0	0
1	0	0	0		0	0
0	0	0	0		1	0
0	0	0	0		0	1

one hot encoding = the angle between two different vectors is always 90°

How to Convert one Word to a Vector

there are ∞ possibilities, however, we never count with one word let's focus on words in contexts

vocabulary matrix of size V = 6

Mathematical Representation of Words and Their Meanings $\texttt{oo}\bullet\texttt{oo}\texttt{oo}\texttt{oo}$

Ont Hot Encoding

There is no information about meaning in one hot encoded vectors. The only information that is present is:

- the word is in the vocabulary
- the word is different from another word

For encoding/decoding, we need a lookup table:

the	1
cat	2
sat	3
on	4
mat	5
	6

Ont Hot Encoding

- does not encode information about word distribution
- the vector space dimensionality is too big

Challenge:

- make the vector space more dense
- encode the word in a way that similar words have vectors to similar direction (the angle between two vectors → 0°)

Training Word Embeddings

- count-based: co-occurrence matrix
- context-based: skip-grams in sliding window

Training Word Embeddings

- count-based: co-occurrence matrix
- context-based: skip-grams in sliding window

	the	cat	 .
the	0.4	0.3	 0.1
cat	0.3	0.1	 0.2
	0.1	0.2	 0.1

Training Word Embeddings

- count-based: co-occurrence matrix
- context-based: skip-grams in sliding window

	the	cat								
the	0.4	0.3		0.1	the	cat	sat	on	the	mat
cat	0.3	0.1	· · · · · · · · · ·	0.2	—	—	—			
	0.1	0.2		0.1						

Training Word Embeddings

- count-based: co-occurrence matrix
- context-based: skip-grams in sliding window

	the	cat								
the	0.4	0.3		0.1	the	cat	sat	on	the	mat
cat	0.3	0.1		0.2		—	—	—		
	0.1	0.2	· · · · · · · · · ·	0.1						

Training Word Embeddings

- count-based: co-occurrence matrix
- context-based: skip-grams in sliding window

t	he 🛛	cat							
the 0 cat 0).4 1	0.3	 0.1	the	cat	sat	on	the	mat
cat 0	0.3	0.1	 0.2			_		_	
0									

Training Word Embeddings

- count-based: co-occurrence matrix
- context-based: skip-grams in sliding window

	the	cat		.						
the	0.4	0.3		0.1	41					
cat	0.3	0.1		0.2	the	cat	sat	on	the	mat
		•••		• • •				—	—	—
	0.1	0.2	 	0.1						

Context-Based Representation Learning

In (supervised) machine learning, we provide the algorithm:

- input and correct output in many examples
- loss function

Context-Based Representation Learning

In (supervised) machine learning, we provide the algorithm:

- input and correct output in many examples
- Ioss function

The algorithm: splits the input data into training and validation sets

- 1. makes hypotheses about the function from input to output on training data
- 2. measures the loss (the error) on validation data
- 3. changes the hypothesis and recalculates

Context-Based Representation Learning

In (supervised) machine learning, we provide the algorithm:

- input and correct output in many examples
- Ioss function

The algorithm: splits the input data into training and validation sets

- 1. makes hypotheses about the function from input to output on training data
- 2. measures the loss (the error) on validation data
- 3. changes the hypothesis and recalculates

machine learning = iterative process

Context-Based Representation Learning

the cat sat on the mat

Context	Target
(Ø, cat)	the
(the, sat)	cat
(cat, on)	sat
(sat, the)	on
(on, mat)	the

Context-Based Representation Learning

the cat sat on the mat

Context	Target
(Ø, cat)	the
(the, sat)	cat
(cat, on)	sat
(sat, the)	on
(on, mat)	the

Context-Based Representation Learning

the	cat	sat	on	the	mat
-----	-----	-----	----	-----	-----

Context	Target
(Ø, cat)	the
(the, sat)	cat
(cat, on)	sat
(sat, the)	on
(on, mat)	the

Context-Based Representation Learning

the cat sat on the mat

Context	Target
(Ø, cat)	the
(the, sat)	cat
(cat, on)	sat
(sat, the)	on
(on, mat)	the

Context-Based Representation Learning

the cat sat on the mat

Context	Target
(Ø, cat)	the
(the, sat)	cat
(cat, on)	sat
(sat, the)	on
(on, mat)	the

Context-Based Representation Learning

the cat sat on the mat	the	cat	sat	on	the	mat
------------------------	-----	-----	-----	----	-----	-----

Context	Target
(Ø, cat)	the
(the, sat)	cat
(cat, on)	sat
(sat, the)	on
(on, mat)	the

Context-Based Representation Learning

the cat sat on the mat

Context	Target
(∅, cat)	the
(the, sat)	cat
(cat, on)	sat
(sat, the)	on
(on, mat)	the

The learning objective

given context word w_i what is the target word w_j ? The loss function number of correct targets in the validation set

Context-Based Representation Learning

vocabulary matrix V, embedding matrix E, context matrix C

Context-Based Representation Learning

vocabulary matrix V, embedding matrix E, context matrix C

Words w_i and w_i are one hot encoded in V as vectors v_i and v_i

Context-Based Representation Learning

vocabulary matrix V, embedding matrix E, context matrix C

Words w_i and w_i are one hot encoded in V as vectors v_i and v_i

the *i*-th row is selected from *E* (using multiplication v_i) \rightarrow embedding vector e_i

Context-Based Representation Learning

vocabulary matrix V, embedding matrix E, context matrix C

Words w_i and w_i are one hot encoded in V as vectors v_i and v_i

the *i*-th row is selected from *E* (using multiplication v_i) \rightarrow embedding vector e_i

the j-th column is selected from C (using multiplication e_i , e_i is not one hot)

 \rightarrow context vector c_j

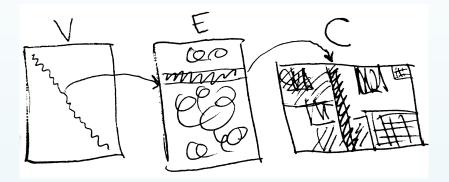
By the two transformations, we calculate that the word w_j is the target for context w_j .

The loss function decides whether the calculation is (in)correct.

Mathematical Representation of Words and Their Meanings $\tt 000000000000$

Context-Based Representation Learning: Summary

- we need lookup table
- we build vocabulary matrix arbitrarily
- we build context matrix from observations
- the embedding matrix is calculated iteratively
- the vectors calculated using the embeddings, encode similar words to similar vectors (having a small angle)



Mathematical Representation of Words and Their Meanings ooooooooooo

Context-Based Representation Learning: Summary

Example DH project: <https://www.clarin.eu/sites/ default/files/clarin2019_keynote_teich.pdf> Mathematical Representation of Words and Their Meanings ${\scriptstyle 000000000} \bullet$

 Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011).
Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12:2493–2537.

https://lilianweng.github.io/lil-log/2017/10/15/learning-word-embedding.html