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There have been recent developments in our understanding of

the auditory neuroscience of non-human primates that, to a

certain extent, can be integrated with findings from human

functional neuroimaging studies. This framework can be used

to consider the cortical basis of complex sound processing in

humans, including implications for speech perception, spatial

auditory processing and auditory scene segregation.
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Introduction
In comparison with vision, auditory processing has tradi-

tionally been the poor relation of neuroscience. This is

partly because of the technical difficulties involved in

studying audition, both in recording from primate audi-

tory areas and in stimulus selection and presentation, and

because of the perceived dominance of vision — a dom-

inance that neatly reverses if different tasks are used [1].

The processing demands of audition differ from those of

vision in several important ways. First, sounds only have

structure that evolves over time — in terms of both

steady-state and changing aspects of the structure [2]

— which potentially places different demands on the

nature of auditory ‘memory’ [3]. Second, spatial informa-

tion in sound needs to be reconstructed from two inputs

(the binaural hearing system) [4], which has important

consequences for the neurophysiology of auditory scene

segregation. Whereas the primate auditory system solves

many of the physical problems of auditory spectral and

temporal structure and spatial organization subcortically

[5], the information also needs to be represented corti-

cally, and this probably contributes to acoustic scene

segregation [6]. Third, sounds are generated by physical

action — be it animate or inanimate. This means that

information about actions is intimately associated with

the nature of auditory representations, which is not

necessarily the case for static visual scenes [7�]. In this

review, the cortical basis of audition in primates is con-

sidered with reference to auditory objects, scene segrega-

tion and actions. This also encompasses implications for

speech perception.

In a preceding review, Nelken [8] identified auditory

cortex as having a role in the representation of auditory

objects, rather than a role in the representation of invar-

iant acoustic cues and features. This is an especially

important suggestion because it has not been simple to

establish the role of auditory cortex in hearing — ablating

auditory cortex does not result in cortical deafness [9].

Rather, auditory cortex seems to be necessary for com-

puting and representing complex acoustic properties of

stimuli [10��,11]. Simplistic comparisons of the auditory

cortex in humans with that in non-human primates

remain controversial. However, in this review I assume

that the general properties of non-human primate cortical

processing are sufficiently similar [12�] to those in

humans, and integrate findings from the two fields in

an attempt to find commonalities.

From sounds to speech and space
Using positron emission tomography (PET) with mon-

keys, Poremba and co-workers [13] have demonstrated

that extensive regions of primate cortex are responsive to

acoustic stimulation (Figure 1). Importantly, these areas

are located in frontal and temporal lobe regions adjacent

to visually responsive cortex, with some areas of overlap.

Within this widespread auditory system, there are now

well-established patterns of connectivity from primary

auditory cortex (PAC) (Figure 1). There are both hier-

archically organized and parallel connections from PAC to

belt and parabelt cortex, and projections from anterior and

posterior auditory fields to premotor and prefrontal cor-

tex. These connections have been expressly compared

with those of the visual system, with respect to both the

distinctive primate pattern of hierarchical organization of

sensory cortex [14] and the partially distinct (although

interacting) routes to anterior brain regions [15–17]. Simi-

lar to the situation in the visual system, there is a corre-

sponding hierarchy of functional responses to acoustic

stimulation; responses to pure tones can be observed in

PAC, and responses to sounds with progressively greater

signal bandwidths can be seen in lateral belt and parabelt.

The response in the parabelt is organized cochleotopi-

cally in a rostral–caudal direction [18��], with center

frequency reversals that resemble those seen in core

primary auditory cortical fields. There is also a functional

specialization along the rostral–caudal dimension, with

rostral parabelt regions showing an enhanced response to
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conspecific vocalizations, and caudal parabelt regions

showing greater sensitivity to the location in space of

the calls [19]. The rostral–caudal distinction can also be

seen in the response to more general properties of sounds:

rostral lateral belt regions also respond preferentially to

slower frequency modulated (FM) sweeps, whereas caudal

lateral belt regions respond best to fast FM rates [20��].

This rostral–caudal distinction in function and anatomy

has led to the proposal that the relatively distinct streams

of processing can be fractionated along functional lines —

an anterior or rostral ‘what’ pathway and a posterior or

caudal ‘where’ pathway — and that this framework can be

used to understand both lesion [21] and functional ima-

ging studies [22��] in humans. Although aspects of the

what–where distinction remain controversial [23,24], this

is a framework that has generally gained support from

human functional imaging studies. For example, posterior

auditory or inferior parietal cortical responses are consis-

tently seen across studies to sounds with spatial charac-

teristics (e.g. moving sounds) [22��], and the planum

temporale responds to speech that has a distinct free

field ‘outside the head’ location (relative to ‘inside the

head’) [25]. By contrast, the processing of linguistically

relevant acoustic information is associated, in humans,

with more anterior temporal lobe responses [22��]. This

pattern of hierarchical processing within an anterior–

posterior dimension has also been important in under-

standing the neural processing of speech (Figure 2; [26�]).
In this model, the ‘what’ stream of processing, running

lateral and anterior to PAC, is progressively more respon-

sive to intelligible speech along its length (running from

posterior to anterior regions), regardless of whether or not

the speech itself sounds human in origin. This general

model has been elaborated on in more recent functional

imaging studies; whereas speech-specific responses are

not seen in PAC, a region of left superior temporal gyrus

(STG) that is lateral to PAC (and possibly corresponding

to the ‘parabelt’ in humans) has recently been shown to

be sensitive to language-specific phonological structure

(Figure 2; [27��]). This response is left lateralized, and

might represent the start of the processing of speech

information in the anterior ‘what’ pathway (Figure 2).

The anterior direction of the processing of intelligible

speech has also been observed using rapid event-related

functional magnetic resonance imaging (fMRI) [28]. In

more anterior fields, rostral to PAC, responses to both

syntactic and semantic violations in sentences can be

seen, implicating this anterior stream in the integration

of lexical information in spoken language [29]. This study

by Friederici et al. [29] also indicated that basal ganglia

regions could be specifically associated with syntactic

processing, evidence that the ‘language system’ as a

whole is associated with regions beyond the temporal
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Figure 1
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Auditory regions and streams in the primate brain. (a) The lateral

surface of a macaque brain showing regions of visual (pink) and

auditory (blue) responsivity (adapted from Poremba et al. [13]).

Multimodal responsivity is shown in purple. (b) Two broad ‘steams’

of processing within the auditory system (adapted from

Romanski et al. [17]).

Figure 2

What

How
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(a)

(b)

Functional responses to speech and candidate stream of processing in

the human brain. (a) The lateral surface of the human brain, the coloured

regions indicate broadly to which type of acoustic signal each temporal

region (and associated parietal and frontal region) responds. Regions in

blue show a specific response to language-specific phonological

structure (Jacquemot et al. [27��]). Regions in lilac respond to stimuli with

the phonetic cues and features of speech, whereas those in purple

respond to intelligible speech (Scott et al. [31], Narain et al. [32]). Regions

in pink respond to verbal short term memory and articulatory

representations of speech (Wise et al. [39], Hickok et al. [38], Jacquemot

et al. [27��]). Regions in green respond to auditory spatial tasks (Arnott

et al. [22��]). (b) The putative directions of the ‘what’ ‘where’ and ‘how’

streams of processing in the human brain.
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lobes [30]. Further along the anterior stream, in the left

anterior superior temporal sulcus (STS), responses are

seen to intelligible speech [31,32], and this response is

seen for both single words and sentences [33]. Thus, the

anterior ‘what’ system in humans is important in the early

stages of acoustic processing of speech. Responses to

speech can be observed extending into frontal regions;

‘top down’ modulation of heard speech is associated with

ventral prefrontal [34] and posterior premotor cortex

activation [35�,36]. This suggests a role for frontal audi-

tory connections, and possibly motor representations, in

spoken language processing. Indeed, some research has

suggested that the pattern of responses in auditory cortex

can be highly modulated by task related top-down pro-

cessing [37].

In addition to a clear role for spatial processing of sound in

posterior auditory fields in humans, there is evidence for

at least two further kinds of speech-related auditory

processing in posterior auditory fields, which might or

might not form subsets of the same process. First, it has

been suggested that aspects of verbal working memory

are associated with left posterior STS [38,39] and supra-

marginal gyrus [27��]. This might relate to some of the

issues of the nature of auditory memory — specifically,

the need for transient representations that encode the

temporal dimension [3]. In addition, medial posterior

fields are activated during speech production [40]

whether or not articulation is overt [39] or even specific

to speech [38]. This implicates posterior auditory cortex

in the guidance of the motor act of speech (and perhaps

other motor acts), and might represent a sensory motor

interface, involved in speech, that links perception and

production. As mentioned in the Introduction, sounds

convey information about the events that cause them, and

a role for motor information has long been posited as a

route for speech perception [41]. These posterior

auditory–motor fields might, therefore, form part of the

same system in which motor cortex [35�] and left anterior

insula [42] responses have been described in functional

imaging studies, and contribute to a ‘how’ system in

speech perception [24,26�,33]. It is also striking that

recordings from caudal medial auditory fields in primates

have shown that they are responsive to touch — another

potential link for sensory–motor integration [43,44]. The

relationship among this putative ‘how’ pathway, transient

auditory memory systems and the auditory ‘where’

pathways in humans requires further elaboration; they

might all fall within a system that encodes spatial–motoric

information generically, or they might form distinctly

different subsystems.

Auditory objects, scenes and attention
How do the streams of auditory processing interact with

auditory object processing and auditory scene analysis? It

has been suggested that central auditory mechanisms are

important for paying attention to auditory objects [45].

Single cell recordings from cat PAC have enabled inves-

tigators to identify the plasticity of response in PAC that is

associated with the frequency of auditory objects [46]. In

humans, fMRI has shown that primary auditory cortical

fields are sensitive to the amplitude envelopes of sounds,

and non primary auditory fields also show enhanced

sensitivity to the onsets and offsets of sounds — phenom-

ena associated with the structure of auditory events [47�].
Evidence also shows that anterior auditory fields are

important for the tracking of auditory streams of informa-

tion [48�]. Moving further from PAC in terms of synaptic

distance, in a PET study Zatorre et al. [49] manipulated

the acoustic cues of auditory objects to create the impres-

sion of multiple events. This revealed activation in right

superior sulcus, anterior to primary auditory cortex, impli-

cating the anterior ‘what’ stream in the representation of

multiple auditory objects. We have also recently shown

that there is extensive processing of an unattended

speaker in lateral and anterior STG, suggesting that

multiple complex auditory objects can be represented

cortically, and thus providing a route for the semantic

processing of ‘unattended’ speech [34]. Therefore, the

‘what’ stream of processing is apparently also implicated

in the representation of, and perhaps the allocation of

attention to, distinct auditory objects. How this interacts

with posterior ‘where’ stream(s), which has also been

associated with aspects of attention control of the auditory

scene [6] and subcortical nuclei essential for the encoding

of spatial cues, will be developed in further studies.

Returning to our discussion of non-human primates we

look to the work of Poremba et al. [50��], who have been

investigating hemispheric lateralization for the processing

of conspecific vocalizations using PET. They revealed an

anterior superior temporal lobe response to meaningful

vocalizations that was left lateralized. This response is

strikingly similar to that seen to intelligible speech in

human functional imaging studies [31]. Intriguingly, the

asymmetric response was abolished following commissur-

otomy, suggesting that the diminished response to voca-

lizations in the right temporal pole was a result of activity

on the left — perhaps an active suppression of the right by

the left. Such suppression of the right hemisphere

response has been noted in the right operculum in human

studies of speech production [51]. It has proven difficult

to account for hemispheric asymmetries in linguistic

processing as a result of acoustic properties of the speech

signal [33], although a recent study has suggested that

such asymmetry derives from even simpler differences in

auditory processing [52]. The nature of hemispheric

differences in auditory and linguistic processing will be

illuminated further by the characterization of such hemi-

spheric interactions.

Conclusions
It is not fanciful to suggest that, as the most articulate

primates, we have evolved a neural system optimized for
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aspects of speech perception and production, in contrast

to other specializations (e.g. humans do not use hearing

for hunting). Situating our understanding of speech, space

and auditory objects in the context of the basic neuroa-

natomy of the primate auditory system is a strong position

from which to elaborate on these early perceptual sys-

tems. I am optimistic that future work will develop the

cortical and subcortical basis of the functional organiza-

tion of human and non human hearing. I am also hopeful

that the challenges of hemispheric asymmetries, interac-

tions with attention and perception–production links will

be addressed within a neuroanatomical framework.
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