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Abstract

In conventional gauge theory, a charged point particle is described by a representation of

the gauge group. If we propagate the particle along some path, the parallel transport of the

gauge connection acts on this representation. The Lagrangian density of the gauge field de-

pends on the curvature of the connection which can be calculated from the holonomy around

(infinitesimal) loops. For Abelian symmetry groups, say G ¼ Uð1Þ, there exists a generaliza-

tion, known as p-form electrodynamics, in which ðp � 1Þ-dimensional charged objects can

be propagated along p-surfaces and in which the Lagrangian depends on a generalized curva-

ture associated with (infinitesimal) closed p-surfaces. In this article, we use Lie 2-groups and

ideas from higher category theory in order to formulate a discrete gauge theory which gener-

alizes these models at the level p ¼ 2 to possibly non-Abelian symmetry groups. An important

feature of our model is that it involves both parallel transports along paths and generalized

transports along surfaces with a non-trivial interplay of these two types of variables. Our main

result is the geometric picture, namely the assignment of non-Abelian quantities to geometrical

objects in a coordinate free way. We construct the precise assignment of variables to the curves

and surfaces, the generalized local symmetries and gauge invariant actions and we clarify

which structures can be non-Abelian and which others are always Abelian. A discrete version

of connections on non-Abelian gerbes is a special case of our construction. Even though the

motivation sketched so far suggests applications mainly in string theory, the model presented

here is also related to spin foam models of quantum gravity and may in addition provide some

insight into the role of centre monopoles and vortices in lattice QCD.
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1. Introduction

In the present article, we are concerned with gauge theories in a discretized formu-

lation on some sort of lattice, triangulation or cellular decomposition. This includes

the standard formulation of lattice gauge theory, see, for example [1,2], but we can

also think of a smooth manifold with a large collection of embedded curves and sur-

faces on which we place the variables of the theory. The main point is that we keep
group elements for the parallel transports along the curves, but that we do not pass

to the differential picture and do not replace the group by its Lie algebra. The dis-

crete structure is represented by an abstract simplicial complex, i.e., a collection of

vertices, edges, triangles, etc. which we call lattice. We do not discuss here how these

simplices are mapped to or embedded in some given manifold.

The theory can be classical, in this case we have to define some action and the vari-

ables in the Lagrangian picture, or it can be a quantum theory in the path integral for-

mulation whose path integral is the sum or integral over all classical configurations.
Let us consider a gauge theory whose gauge group is any Lie group G. We con-

centrate on pure gauge fields. There are no dynamical matter fields. The fundamental

variables are taken to be the parallel transports of the gauge connection along the

edges (links) of the lattice, i.e., one associates a group element ge 2 G with each edge

e. We call the source and target vertices of the edge sðeÞ and tðeÞ, respectively.
The gauge connection encodes what happens to charged point particles if we

propagate them on the lattice. A charged particle is a vector w 2 W in some repre-

sentation q of G. If we propagate such a particle from sðeÞ along the edge e to
tðeÞ, then the parallel transport ge acts on the vector, w 7!qðgeÞw. Observe that com-

position and orientation reversal of the edges correspond precisely to the group

structure of G. Since the choice of internal reference frame, essentially the choice

of basis of W , is arbitrary, all physically meaningful quantities are required to be in-

variant under local gauge transformations
ge 7!h�1
sðeÞ � ge � htðeÞ ð1:1Þ
for each edge e. The generating function h assigns a group element hv 2 G to each

vertex v and thus parameterizes the local changes of basis. The action of the theory is

a physical quantity and therefore gauge invariant. It turns out that the easiest way to

obtain a gauge invariant expression is to calculate the product of group elements

around a closed loop and then to evaluate a character of G. The action originally

proposed by Wilson makes use of the loop around an elementary square (plaquette)

and calculates the real part of the character of the fundamental representation of G.
Now let us try to generalize the setting. The charged particles are replaced by line-

like objects which are to be propagated along surfaces. We therefore need additional

variables associated with the faces (plaquettes) of the lattice. As the faces are two-di-

mensional objects, we have to deal with various ways of composing individual faces
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to larger surfaces, for example putting them below each other (vertical composition)

or next to each other (horizontal composition). The algebraic structure we use has to

reflect these geometrical conditions.

It is known that one possible solution is to label the faces with elements of an

Abelian group G and to consider these as the fundamental variables. The edges
are not labeled. For G ¼ Uð1Þ, such a model is called 2-form electrodynamics, or

more generally p-form electrodynamics if the fundamental variables are associated

with the p-cells of the lattice (vertices, edges, faces, etc.). The continuum formulation

of the theory for p ¼ 2 involves so-called Kalb–Ramond fields [3]. The higher level

models were originally introduced in the language of lattice models in statistical me-

chanics [4,5] where they correspond to the xy-model (p ¼ 0), Uð1Þ-lattice gauge the-
ory (p ¼ 1), a theory for an antisymmetric rank-2 tensor field (p ¼ 2), and so on.

Their continuum counterparts have been studied in [6].
Consider the case p ¼ 2. Can we do any better than just using an Abelian symme-

try group? As long as we insist on colouring only faces, this is not possible as a classic

argument from algebraic topology shows. But a generalization is possible if we col-

our both edges and faces with suitable algebraic structures. The main result of the

present article is the construction of such a generalized 2-form gauge theory with

its local gauge transformations and gauge invariant expressions.

We emphasize the geometrical properties of our model, namely that we have an

assignment of non-Abelian quantities to geometrical objects in a coordinate free
way. There exists a considerable literature on the interplay of Lie algebra valued

1- and 2-forms and their extended �gauge� symmetries, but there is usually [7] no geo-

metrical interpretation for the non-Abelian 2-form comparable to the parallel trans-

port along curves which can be constructed from a connection 1-form. In this article,

we pursue a complementary approach. We require a consistent geometrical picture

and then deduce how much freedom we have in choosing the structure of our model.

At the technical level, the only thing we do is to combine two recent ideas. The

first [8] is the construction of Lie 2-groups which serve as the algebraic structure in
order to label edges and faces in a consistent way with non-Abelian quantities.

The second [9] is the use of ideas from category theory in order to rephrase lattice

gauge theory in a way that does admit the desired generalization.

A related construction was presented in [10] where the discrete framework is

used in order to derive the corresponding continuum expressions. One can say that

the construction presented here is somewhat more general than a discrete version

of a theory of the 1- and 2-connections of non-Abelian gerbes. For mathematical

background on gerbes, see [11]. Although we do not use the most general setting
and restrict ourselves to strict Lie 2-groups, we still have plenty of examples

and our construction includes a discrete version of non-Abelian gerbes as a special

case.

The motivation sketched so far, namely to replace a theory for charged point par-

ticles by a theory for both charged point and charged line-like particles, seems to be

mainly related to string theory. In fact, the simplest case, Abelian 2-form electrody-

namics or Kalb–Ramond fields [3] play an important role in string theory so that it is

interesting to understand possible generalizations.
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In the context of quantum field theory, one might naively claim that in four di-

mensions any theory with a local non-Abelian symmetry is a gauge theory. Of

course, this is not the full truth, and it is of general interest to understand in concep-

tual terms which other theories can have local symmetries.

Beyond these general ideas, we sketch how the model constructed here might pro-
vide further insight into the refined state sum models of quantum gravity and into

the role of centre monopoles and vortices in lattice QCD. We also comment on the hi-

erarchy of models that generalize p-form electrodynamics to non-Abelian symmetries.

We try to keep the present article self-contained and to make it readable by phys-

icists who are not yet familiar with category theory. Therefore, we carefully review

the required background material. The article is organized as follows. In Section

2, we rephrase conventional lattice gauge theory in the language of category theory

in order to prepare for the generalization. In Section 3, we recall the argument which
forces the symmetry group to be Abelian if we colour only the faces, and we present

the relevant algebraic structures in order to circumvent it. The construction of our

non-Abelian 2-form lattice gauge theory is presented in Section 4. Section 5 contains

some examples and comments on their physical relevance. Finally, in Section 6, we

discuss open questions and the relationship with other approaches.
2. Conventional lattice gauge theory

In this section, we review the basic structures of lattice gauge theory for pure

gauge fields and rephrase everything in the language of category theory. This might

seem to be much too complicated at first sight, but it turns out that the category the-

oretic language is the key to the generalization to higher level, including dynamical

variables both at the edges and at the faces of the lattice.

The idea torephrase latticegauge theory in the languageof category theorywas, toour

knowledge, first proposed by Baez [12] and then generalized by Grosse and Schlesinger
[9]. Here we review this construction in a language adapted to the examples we are going

to present. For a mathematical introduction to category theory, see, for example [13].

Informally speaking, a category is a collection of points (objects) and arrows be-

tween these points (morphisms) with enough structure so that we can compose ar-

rows and that we have identities, i.e., arrows that behave like neutral elements

under composition. The precise definition is as follows. We restrict ourselves to small

categories, i.e., the collections of objects and morphisms form proper sets.

Definition 2.1. A small category C ¼ ðC0; C1; s; t; id; �Þ consists of a set C0 of objects, a
set C1 of morphisms and maps s : C1 ! C0 (source), t : C1 ! C0 (target), id : C0 ! C1

(identity), and � : C1 �C0 C1 ! C1 (composition) such that the following axioms hold:
sðidgÞ ¼ g ¼ tðidgÞ; ð2:1Þ

sðg � g0Þ ¼ sðgÞ; tðg � g0Þ ¼ tðg0Þ; ð2:2Þ

idsðf Þ � f ¼ f ¼ f � idtðf Þ; ð2:3Þ
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ðf1 � f2Þ � f3 ¼ f1 � ðf2 � f3Þ ð2:4Þ
for all objects g; g0 2 C0 and morphisms f 2 C1 and f1; f2; f3 2 C1 where composable.
We have denoted by
C1 �C0 C1 :¼ fðf1; f2Þ 2 C1 � C1 : sðf2Þ ¼ tðf1Þg ð2:5Þ
the set of all pairs of composable morphisms. We write f : g1 ! g2 for a morphism

f 2 C1 from the source g1 ¼ sðf Þ to the target g2 ¼ tðf Þ. Notice that we read the

composition (�) from left to right. A morphism f : g1 ! g2 is called isomorphism if it

has a two-sided inverse, i.e., if there exists a morphism f �1 : g2 ! g1 such that
f � f �1 ¼ idg1 ; f �1 � f ¼ idg2 : ð2:6Þ
A category in which every morphism is an isomorphism, is called groupoid.

It is instructive to visualize all this using diagrams. For a morphism f : g1 ! g2 we
draw an arrow
ð2:7Þ
Composition of morphisms and the identity morphisms are shown in the following

diagram:
ð2:8Þ
We will make use of categories for two purposes. First, the gauge group gives rise to

a category and second, the lattice forms a category as well. This is stated in the

following two examples.

Example 2.2. Let G be a Lie group. Then there is a groupoid GG associated with G
which has only one object, GG

0 ¼ f�g, and whose morphisms are the group elements,

GG
1 ¼ G. Composition is the multiplication in G. Obviously, the source and target

maps s; t : G ! f�g are trivial and the identity map associated with the object � is the
unit in G, id� ¼ 1 2 G.

Example 2.3. Let ðV ;EÞ be a directed graph, given by a set V of vertices and a set E
of edges together with maps s : E ! V and t : E ! V indicating the source and target

of each edge. Then there is a category CV ;E whose objects CV ;E
0 ¼ V are the vertices.

The set of morphisms CV ;E
1 comprises

• all edges e 2 E,
• for each edge e 2 E its orientation reversed counterpart e� 2 E (such that

sðe�Þ ¼ tðeÞ and tðe�Þ ¼ sðeÞ),
• for each vertex v 2 V one morphism idv such that sðidvÞ ¼ v ¼ tðidvÞ and
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• all formal compositions of these edges, subject to the relations
e � e� ¼ idsðeÞ; ð2:9Þ

e� � e ¼ idtðeÞ; ð2:10Þ

idsðeÞ � e ¼ e ¼ e � idtðeÞ ð2:11Þ
for all e 2 E.
The maps s and t are given by the directed graph and extended to compositions such
that (2.2) holds.

This construction looks complicated at first sight, but the only thing we have done

is to take vertices as objects and edges as morphisms and make everything else fit the

picture.

So far we have introduced two categories. One of them, CV ;E, encodes the infor-

mation about the lattice while the other one, GG, is the gauge group. We will see that

configurations of lattice gauge theory are maps from the former to the latter. Struc-
ture preserving maps between categories are known as functors and are defined as

follows.

Definition 2.4. Let C ¼ ðC0; C1; s; t; id; �Þ and C0 ¼ ðC0
0; C

0
1; s

0; t0; id0; �0Þ be small cate-

gories. A functor F : C ! C0 is a pair ðF0; F1Þ of maps, F0 : C0 ! C0
0 and F1 : C1 ! C0

1,

sending objects to objects and morphisms to morphisms such that
F0sðf Þ ¼ s0ðF1f Þ; F0tðf Þ ¼ t0ðF1f Þ; ð2:12Þ

F1idg ¼ id0
F0g

; ð2:13Þ

F1ðf1 � f2Þ ¼ F1f1 �0 F1f2 ð2:14Þ
for all objects g 2 C0 and morphisms f 2 C1 and ðf1; f2Þ 2 C1 �C0 C1. We are going

to omit the indices 0; 1 of F0, F1 if it is obvious from the context which map we

refer to.

Example 2.5. Let ðV ;EÞ be a directed graph and G be a Lie group. A functor

F : CV ;E ! GG is a pair of maps, F0 : V ! f�g and F1 : E ! G. The edges are there-

fore labeled by group elements whereas the vertices are not labeled at all so that a
functor CV ;E ! GG is just a configuration of lattice gauge theory.

Observe that the identity edges idv at each vertex v 2 V (see Example 2.3) are la-

beled by the group unit 1 2 G. This implies that orientation reversed edges are as-

signed the inverse group element, F1ðe�Þ ¼ ðF1eÞ�1
.

So far we have said in the new category theoretic language what a configuration of

lattice gauge theory is, namely a functor F : CV ;E ! GG. From category theory, we

know how to compare two functors, and this concept naturally leads to the familiar
local gauge symmetry.
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Definition 2.6. Let C, C0 be small categories and F ; eFF : C ! C0 be functors. A natural
transformation g : F ) eFF is a map g : C0 ! C0

1 that associates with each object g 2 C0

a morphism gg : Fg ! eFF g in C0 such that
Ff � gg2 ¼ gg1 � eFF f ð2:15Þ
holds for all morphisms f : g1 ! g2 in C. This means that the following diagram
commutes:
ð2:16Þ
A natural transformation is called natural equivalence if gg is an isomorphism for any

g 2 C0.

Natural equivalences can now be used in order to compare two configurations of

lattice gauge theory. Let us specialize the preceding definition to our situation.

Example 2.7.Let F ; eFF : CV ;E ! GG be two functors.Anatural equivalence g : F ) eFF is
a map g : V ! G such that for each edge e : v ! w, the following diagram commutes:
ð2:17Þ
In the category GG in which composition is the group product, this means that
eFF e ¼ g�1
v � Fe � gw; ð2:18Þ
so that the configuration of lattice gauge theory given by eFF is locally gauge equiv-

alent to the configuration given by F , cf. (1.1). The map V ! G; v 7!gv in the defi-

nition of the natural equivalence plays the role of the generating function.

Which expressions are gauge invariant and can therefore correspond to physically

meaningful quantities? We know that the simplest such expressions are Wilson loops,
group characters evaluated at the holonomy around loops.

Consider Fig. 1. It shows a triangle ð1; 2; 3Þ labeled in two ways. The inner triangle

is labeled by a functor F : CV ;E ! GG, the outer one by eFF . We have set gij :¼ Feij
where eij are the edges such that sðeijÞ ¼ i and tðeijÞ ¼ j and similarly eggij :¼ eFF eij.
The figure contains three commutative squares of the form (2.17). Commutativity

implies that



Fig. 1. The holonomy g12g23g�1
13 around some triangle ð1; 2; 3Þ. The inner triangle is labeled by a functor

F : CV ;E ! GG, the outer triangle by eFF . The functors F and eFF are related by a natural equivalence g.
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egg12egg23egg�1
13 ¼ g�1

1 g12g23g�1
13 g1; ð2:19Þ
so that any group character of the holonomy, vðg12g23g�1
13 Þ, is a gauge invariant

quantity.

Of course, in standard lattice gauge theory, the properties mentioned so far are

much easier to verify in direct computations. The category theoretic language pre-

sented here, however, provides a structural framework which would have allowed
us to derive all these properties in a systematic fashion even if we had not known

them in advance. We will exploit this conceptual advantage when we generalize lat-

tice gauge theory to the next level, colouring both edges and faces with dynamical

variables. In Section 4, we will encounter the higher level analogues of all the dia-

grams used here. Without any help from category theory it would hardly be possible

to guess the appropriate assignment of variables and the relevant symmetries.

Our plan for the following section is to review suitable generalizations for the

notions of category, functor and natural transformation in order to pass on to the
next level, including interesting examples for which we can perform explicit compu-

tations. The higher level generalizations are known as 2-categories, 2-functors, etc.
3. Mathematical background

3.1. The Eckmann–Hilton argument

Let us first review the argument of Eckmann and Hilton [14] which explains why

we are forced to use Abelian groups as long as we colour only the faces.

We assume that the plaquettes of the lattice are labeled by the elements f 2 G of

some algebraic structure G. We further assume that there are two composition laws

as illustrated in Fig. 2. Horizontal composition is denoted by a dot (�), vertical com-
position by a circle (�). Finally, we assume that both compositions have two-sided

units, denoted by 1� and 1�. On larger lattices, there will occur mixed compositions

such as that shown in Fig. 2c. We require that this composition is well defined with-
out parentheses, i.e., it does not depend on the ordering by which horizontal and ver-

tical compositions are performed. This means that the exchange law,



Fig. 2. (a) Horizontal composition of faces is denoted by a dot (�). (b) Vertical composition is indicated by

a little circle (�) which is read from left to right in our equations. (c) Parentheses are not necessary pro-

vided the exchange law (3.1) holds.
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ðf1 � f2Þ � ðf 0
1 � f 0

2Þ ¼ ðf1 � f 0
1Þ � ðf2 � f 0

2Þ; ð3:1Þ

is satisfied.

This implies first that the units actually agree because
1� ¼ 1� � 1� ¼ ð1� � 1�Þ � ð1� � 1�Þ ¼ ð1� � 1�Þ � ð1� � 1�Þ ¼ 1� � 1� ¼ 1� ð3:2Þ

Therefore, we can write 1 ¼ 1� ¼ 1�. The exchange law further implies that both

compositions agree because for any f ; g 2 G,
f � g ¼ ðf � 1Þ � ð1 � gÞ ¼ ðf � 1Þ � ð1 � gÞ ¼ f � g; ð3:3Þ

and finally that this composition is Abelian,
f � g ¼ ð1 � f Þ � ðg � 1Þ ¼ ð1 � gÞ � ðf � 1Þ ¼ g � f ¼ g � f : ð3:4Þ

Drawing the diagrams corresponding to (3.4), it becomes obvious that the two-di-
mensionality of the situation allows f and g to move around in the plane and thereby

to change places.

If we wish to escape this Abelianness, we have to change some of the initial assump-

tions. There are a priori various conceivable approaches. Since we aim for a setting

similar to lattice gauge theory, we have to require that Fig. 2c is well-defined without

parentheses so that the exchange law (3.1) is not in question. It turns out that it is a

viable strategy to colour both edges and faces with different algebraic structures in

such a way that there is a non-trivial interplay and that the identities no longer agree.
An observation related to the Eckmann–Hilton argument was made indepen-

dently by Teitelboim [7] in a physical context. The idea is as follows. In conventional

gauge theory, there is the notion of a �path ordered product� by which one defines the

parallel transport along some curve and which is independent of the parameteriza-

tion and thus a geometrical quantity. At higher level, however, one is forced to

use Abelian labels because it seems to be impossible to define a �surface ordered

product� for generic non-Abelian quantities in a way that is independent of the

choice of coordinates.

3.2. Lie 2-groups

In order to sidestep the Eckmann–Hilton argument, we follow ideas from higher

category theory as explained in [8]. The picture is as follows. The edges, going from

one vertex to another, are labeled with elements g1; g2 from one algebraic structure.

Composition of edges has to be reflected in this algebraic structure
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ð3:5Þ
We therefore require an associative product g1 � g2. In addition to this, there

are faces, going from one edge to another, which are labeled with elements f
from another algebraic structure. Here we use bi-gons as the fundamental faces, i.e.,

their boundary consists of only two edges that have the same source and target

vertex
ð3:6Þ
These bi-gons can then be composed horizontally,
ð3:7Þ
and vertically,
ð3:8Þ
The mixed composition,
ð3:9Þ
is required to be independent of the ordering of the horizontal and vertical com-

positions which is precisely stated by the exchange law
ðf1 � f 0
1Þ � ðf2 � f 0

2Þ ¼ ðf1 � f2Þ � ðf 0
1 � f 0

2Þ: ð3:10Þ

Lie 2-groups as introduced by Baez [8] form a suitable structure with these prop-

erties. Note that the Eckmann–Hilton argument can be avoided here because we

have labeled the edges by g1; g2 and we perform some sort of computation g1 � g2
whenever edges are composed. The units for the vertical composition (�) will in gen-

eral depend on the gi and therefore need not agree. When we list examples below, we

mention in which cases the Eckmann–Hilton argument applies and in which it

does not.

Strict Lie 2-groups can be obtained by a standard construction in category theory.

A strict Lie 2-group is an internal category in the category of Lie groups. This means
that we take the definition of a small category (Definition 2.1) and systematically re-

place the word �set� by �Lie group� and �map� by �Lie group homomorphism.�

Definition 3.1. A strict Lie 2-group C ¼ ðC0; C1; s; t; id; �Þ consists of two Lie groups C0

and C1 with Lie group homomorphisms s : C1 ! C0, t : C1 ! C0, id : C0 ! C1 and

� : C1 �C0 C1 ! C1 such that the axioms (2.1)–(2.4) hold.
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Remark 3.2.

1. For elements g1; g2 2 C0 we write single arrows while elements f 2 C1, f : g1 ) g2
are visualized by double arrows, cf. (3.6).

2. In a strict Lie 2-group, we have two composition laws for the set C1. One of them

is the group product as C1 is now a Lie group. We call it horizontal composition
(see (3.7)) and write a dot (�) which we sometimes even omit. Observe that the

source of a horizontal composition is the product of the sources because

s : C1 ! C0 is a group homomorphism, etc. The other composition law is denoted

by a circle (�). It originates from the definition of a category and is explicitly listed

in Definition 3.1. This is called vertical composition (see (3.8)).

3. Notice that the exchange law (3.10) holds because the composition map

� : C1 �C0 C1 ! C1 is a Lie group homomorphism.

4. A generalization of strict 2-groups is is provided by weak and coherent 2-groups
[15]. We restrict ourselves to the strict case.

Concerning the structure of strict Lie 2-groups, we quote the following results

from [8,16].

Lemma 3.3. Let C be a strict Lie 2-group. In particular we have Lie group homo-
morphisms s : C1 ! C0 and id : C0 ! C1 such that sðidðgÞÞ ¼ g for all g 2 C0,
1 T
ð3:11Þ
1. Each element f 2 C1 has a unique decomposition of the form f ¼ h � idg where
g ¼ sðf Þ 2 C0 and h 2 ker sEC1.

1

2. There is an isomorphism of Lie groups ker so C0 ffi C1, given by ðh; gÞ7!h � idg. The
semi-direct product ker so C0 is defined so that
ðh1; g1Þ � ðh2; g2Þ :¼ ðh1aðg1Þ½h2�; g1g2Þ; ð3:12Þ

for h1; h2 2 ker s and g1; g2 2 C0, where we set aðgÞ½h� :¼ idghidg�1 .

3. The vertical composition of elements of C1 is already fixed by the structure described
so far. In the notation of the semi-direct product, it reads
ðh1; g1Þ � ðh2; g2Þ ¼ ðh2h1; g1Þ; ð3:13Þ

for h1; h2 2 ker t and g1; g2 2 C0, whenever composable.
3.3. Lie crossed modules

For an introduction to internal categories in the category of groups, see [16]. One

can prove [8,16] (also see [13, Chapter XII.8]) that strict Lie 2-groups are in one-to-

one correspondence (up to isomorphism) with Lie crossed modules. The language of
he notation AEB indicates that A is a normal subgroup of B.
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Lie crossed modules is most convenient in order to construct interesting examples of

Lie 2-groups. They are defined as follows.

Definition 3.4. A Lie crossed module ðG;H ; t; aÞ consists of two Lie groups G and H
with Lie group homomorphisms t : H ! G and a : G ! AutðHÞ (i.e., a is an action
of G on H that is compatible with the group structure of H ; we write it as aðgÞ½h� for
g 2 G, h 2 H ), such that
tðaðgÞ½h�Þ ¼ gtðhÞg�1; ð3:14Þ

aðtðhÞÞ½h0� ¼ hh0h�1 ð3:15Þ

for all g 2 G and h; h0 2 H .

Theorem 3.5 (see [8,16]).

1. Let C be a strict Lie 2-group. Then there is a Lie crossed module ðG;H ; t; aÞ defined
as follows. Define G :¼ C0 and H :¼ ker s to be the kernel of the source homomor-
phism. The map t : H ! G is defined to be the restriction tjH of the target homomor-
phism. Finally, aðgÞ½h� :¼ idghidg�1 .

2. Let ðG;H ; t; aÞ be a Lie crossed module. Then there is a strict Lie 2-group C defined
as follows. Set C0 :¼ G and C1 :¼ HoG, the semi-direct product given by (3.12) us-
ing the map a provided by the Lie crossed module. The source, target, identity, and
composition maps are defined as follows:
s : HoG ! G; ðh; gÞ7!g; ð3:16Þ

t : HoG ! G; ðh; gÞ7!tðhÞg; ð3:17Þ

id : G ! HoG; g 7!ð1; gÞ; ð3:18Þ

ðh; gÞ � ðh0; g0Þ :¼ ðh0h; gÞ; ð3:19Þ

for g; g0 2 G and h; h0 2 H , whenever composable.
Remark 3.6. Let us now assume that we have constructed a strict Lie 2-group from a

Lie crossed module ðG;H ; t; aÞ as in the preceding theorem.

1. Horizontal composition is given by the product in HoG. In particular, horizon-

tal composition has the identity ð1; 1Þ and inverses
ðh; gÞ�1 ¼ ðaðg�1Þ½h�1�; g�1Þ: ð3:20Þ

2. Any pair of elements of HoG can be composed horizontally.
3. Elements ðh2; g2Þ; ðh1; g1Þ 2 HoG are vertically composable to ðh1; g1Þ � ðh2; g2Þ if

and only if g2 ¼ tðh1Þg1.
4. Vertical composition has the units idg ¼ ð1; gÞ, g 2 G, and is always invertible
ðh; gÞ� ¼ ðh�1; tðhÞgÞ; ð3:21Þ

where we write a star (�) for the inverse with respect to �.
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5. The group HEHoG parameterizes all morphisms that have the unit 1 2 G as

their source. All morphisms whose source and target agree are parameterized

by ker tEH .

For proofs and more technical details, see [8,16,13]. A list of examples can be
found in [8] some of which we mention here.

Example 3.7.

1. The trivial 2-group. G is any Lie group and H is trivial. This example is uninter-

esting except for the fact that it confirms that ordinary Lie groups form a special

case of strict Lie 2-groups.

2. The purely Abelian 2-group. G is trivial. In this case H is Abelian by the Eckmann–

Hilton argument. This example gives rise to Abelian 2-form electrodynamics.
3. H is an Abelian Lie group on which G acts by some action a : G ! AutH . The

map t is trivial,2 t : H ! G; h 7!1.

4. The Euclidean 2-groups. As a special case of (3.) we can choose H ¼ V to be some

R-vector space (translations) equipped with a non-degenerate symmetric bilinear

form g. The group G ¼ SOðV ; gÞ (rotations) acts on V . From this we obtain the

Poincar�ee 2-group [8] which is employed in the refined state sum model of [17] if

we choose V ¼ R3þ1 with the scalar product of Minkowski space.

5. The automorphism 2-group. This is finally an example with non-trivial t. Choose
any Lie group H and G :¼ AutH to be its group of automorphisms. The action

of G on H is the action by the particular automorphism, and t : H ! G assigns

the inner automorphism, conjugation by h, to each element h 2 H . This example

gives rise to the lattice version of a theory involving the connections on non-Abe-

lian gerbes. This Lie 2-group is related to the bi-torsors that are usually employed

in the study of non-Abelian gerbes, see [8] for details.

6. Many examples of finite and discrete crossed modules are known in algebraic to-

pology where crossed modules are a standard tool. For a recent survey, see, for
example [18].

Summarizing this section, we can say that the notion of a strict Lie 2-group is use-

ful in order make the categorical structure transparent while the notion of a Lie

crossed module provides us with particular examples and allows us to perform cal-

culations.

3.4. Suitable 2-categories

We have already seen that Lie 2-groups provide two compositions with the re-

quired identities such that the relevant diagrams (cf. (3.9)) can be drawn and such
2 Triviality of t already implies that H is Abelian by the Eckmann–Hilton argument. This example

nevertheless provides a non-trivial generalization of 2-form electrodynamics because it involves an

interplay of G and H via the action a.
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that the Eckmann–Hilton argument can be avoided. Before we can generalize the

constructions of Section 2, however, we need higher level analogues of category,

functor and natural equivalence. We therefore have to climb up by one level and in-

troduce the notion of 2-categories.

A 2-category C is a category �enriched in Cat�, i.e., for each pair of objects ðx; yÞ,
we have now a category Cðx; yÞ rather than just the set of all morphisms x ! y. The
objects in Cðx; yÞ are the morphisms of C and the morphisms of Cðx; yÞ are new data.

They are called 2-morphisms. The definition of MacLane [13] is of this type. We re-

strict ourselves to the strict case, i.e., equalities of morphisms are satisfied exactly

and are not weakened to hold only up to 2-isomorphism. For more details on 2-cat-

egories, see [13, Chapter XII.3;19]. In the following, we remove one level of abstrac-

tion from this definition and write down the conditions in detail.

Definition 3.8. A small strict 2-category consists of sets C0 (objects), C1 (morphisms),
and C2 (2-morphisms) together with various maps satisfying axioms as follows.

1. Maps sð1Þ : C1 ! C0, tð1Þ : C1 ! C0, id
ð1Þ : C0 ! C1, and � : C1 �C0 C1 ! C1 such that

ðC0; C1; sð1Þ; tð1Þ; id
ð1Þ; �Þ forms a small category (Definition 2.1). We have denoted

by
3 In

and th
C1 �C0 C1 :¼ fðg1; g2Þ 2 C1 � C1 : sð1Þðg2Þ ¼ tð1Þðg1Þg ð3:22Þ

the pairs of horizontally composable morphisms. Compositions in this category

are visualized by diagrams such as (3.5).

2. Maps sð2Þ : C2 ! C1, tð2Þ : C2 ! C1, id
ð2Þ : C2 ! C1, and � : C2 �C1 C2 ! C2 such that

ðC1; C2; sð2Þ; tð2Þ; id
ð2Þ; �Þ forms a small category. We have denoted by
C2 �C1 C2 :¼ fðf1; f2Þ 2 C1 � C2 : sð2Þðf2Þ ¼ tð2Þðf1Þg ð3:23Þ

the pairs of vertically composable 2-morphisms.

3. Axioms
tð1Þðsð2Þðf ÞÞ ¼ tð1Þðtð2Þðf ÞÞ; sð1Þðsð2Þðf ÞÞ ¼ sð1Þðtð2Þðf ÞÞ ð3:24Þ

stating that source sð2Þðf Þ and target tð2Þðf Þ of any 2-morphism f 2 C2 are parallel

morphisms, i.e., that 2-morphisms are bi-gons as in (3.6). The composition (�)
listed under item (2.) is therefore visualized by diagrams such as (3.8).

4. A map � : C2 �C0 C2 ! C2 (horizontal composition of 2-morphisms), where
C2 �C0 C2 :¼ fðf1; f2Þ 2 C2 � C2 : tð1Þðsð2Þðf1ÞÞ ¼ sð1Þðsð2Þðf2ÞÞg ð3:25Þ

denotes the set of all pairs of horizontally composable 2-morphisms. This com-
position is shown in diagram (3.7).

5. Further axioms,3
sð2Þðf1 � f2Þ ¼ sð2Þðf1Þ � sð2Þðf2Þ; ð3:26Þ
more abstract terms they state that ðC0; C2; sð2Þ � sð1Þ; tð2Þ � tð1Þ; idð1Þ � idð2Þ; �Þ forms a small category

at sð2Þ, tð2Þ, and idð2Þ give rise to functors between this category and the one formed by C0 and C1.
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tð2Þðf1 � f2Þ ¼ tð2Þðf1Þ � tð2Þðf2Þ; ð3:27Þ

idð2Þðidð1Þðsð1Þðsð2Þðf ÞÞÞÞ � f ¼ f ¼ f � idð2Þðidð1Þðtð1Þðtð2Þðf ÞÞÞÞ; ð3:28Þ

ðf1 � f2Þ � f3 ¼ f1 � ðf2 � f3Þ ð3:29Þ

for any f 2 C2 and horizontally composable f1; f2; f3 2 C2, as well as,
idð2Þðg1Þ � idð2Þðg2Þ ¼ idð2Þðg1 � g2Þ; ð3:30Þ

ðf1 � f 0
1Þ � ðf2 � f 0

2Þ ¼ ðf1 � f2Þ � ðf 0
1 � f 0

2Þ ð3:31Þ

for any g1; g2 2 C1 and f1; f 0

1; f2; f
0
2 2 C2 whenever they are composable.

A 2-morphism f : g1 ) g2 is called 2-isomorphism if it has a two-sided inverse, i.e.,

if there exists a 2-morphism f � : g2 ) g1 such that
f � f � ¼ idð2Þ
g1
; f � � f ¼ idð2Þ

g2
: ð3:32Þ
A strict 2-category, in which all morphisms and all 2-morphisms are isomor-

phisms, is called a strict 2-groupoid.

Recall that a group gives rise to a groupoid with one object (Example 2.2). In a

similar way, a strict Lie 2-group provides us with a strict 2-groupoid with one object.

In the following, we use the language of Lie crossed modules in order to explicitly

describe this strict Lie 2-group.

Example 3.9. Let ðG;H ; t; aÞ be a Lie crossed module with the definitions used in

Theorem 3.5, item (2.). Then there is a small strict 2-groupoid GG;H defined as fol-

lows.4 Set GG;H
0 :¼ f�g, GG;H

1 :¼ G, and GG;H
2 :¼ HoG, the semi-direct product given

by (3.12).

The maps sð1Þ and tð1Þ are trivial, idð1Þ
� ¼ 1 2 G and the composition of morphisms

ð�Þ is the multiplication in G. This agrees precisely with Example 2.2.

The other maps are defined as follows:
sð2Þ : HoG ! G; ðh; gÞ7!g; ð3:33Þ

tð2Þ : HoG ! G; ðh; gÞ7!tðhÞg; ð3:34Þ

idð2Þ : G ! HoG; g 7!ð1; gÞ; ð3:35Þ

and, whenever composable,
ðh; gÞ � ðh0; g0Þ :¼ ðh0h; gÞ ð3:36Þ

for all g; g0 2 G and h; h0 2 H . The horizontal composition of 2-morphisms (�) is the
product in HoG, cf. (3.12).
trictly speaking, we should call it GG;H ;t;a.
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This 2-groupoid with one object, obtained from a strict Lie 2-group, is our gen-

eralized notion of gauge group. In order to specify configurations and local gauge

transformations, we have to introduce structure preserving maps between 2-catego-

ries, called 2-functors, and suitable natural equivalences.

Definition 3.10. Let C and C0 be small strict 2-categories. A strict 2-functor F : C ! C0

is a triple of maps F0 : C0 ! C0
0, F1 : C1 ! C0

1, and F2 : C2 ! C0
2, sending objects to

objects, morphisms to morphisms, and 2-morphisms to 2-morphisms, such that the

following conditions hold:

1. ðF0; F1Þ is a functor ðC0; C1; sð1Þ; tð1Þ; id
ð1Þ; �Þ ! ðC0

0; C
0
1; s

0ð1Þ ; t0
ð1Þ
; id0ð1Þ ; �0Þ,

2. ðF1; F2Þ is a functor ðC1; C2; sð2Þ; tð2Þ; id
ð2Þ; �Þ ! ðC0

1; C
0
2; s

0ð2Þ ; t0
ð2Þ
; id0ð2Þ ; �0Þ,

3. F2ðf1 � f2Þ ¼ F2f1 �0 F2f2 for any ðf1; f2Þ 2 C2 �C0 C2.

Given any two parallel 2-functors between 2-categories, we seek the notion of a

natural transformation in order to compare these 2-functors. There are various fla-

vours of these defined in the literature. We need what is usually called pseudo-natural
transformation. It is a quasi-natural transformation in the terminology of [19] in

which all 2-morphisms are isomorphisms.

Definition 3.11. Let C, C0 be small strict 2-categories and F ; eFF : C ! C0 be parallel

strict 2-functors. A pseudo-natural transformation g : F ) eFF is a pair of maps
g : C0 ! C0

1 and g : C1 ! C0
2 associating a morphism gx : Fx ! eFF x to each object

x 2 C0 and a 2-isomorphism gg : Fg � gtðgÞ ) gsðgÞ � eFF g to each morphism g 2 C1, such

that the following three conditions hold:

1. For any 2-morphism f : g ) g0 in C between morphisms g; g0 : x ! y, the

diagram
ð3:37Þ
2-commutes (this means it commutes for 2-morphisms), i.e., we have the following

equality of 2-morphisms:
ðFf � idð2Þ
gy
Þ � gg0 ¼ gg � ðidð2Þ

gx
� eFF f Þ: ð3:38Þ
In (3.37), the 2-morphism gg0 : Fg
0 � gy ) gx � eFF g0 is located at the front face of the

diagram while gg : Fg � gy ) gx � eFF g is at the back.
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2. For any two composable morphisms g1 : x ! y and g2 : y ! z in C, the diagram
5 T

constru
ð3:39Þ
which has the equalities F ðg1 � g2Þ ¼ Fg1 � Fg2 at the top and eFF ðg1 � g2Þ ¼ eFF g1 � eFF g2
at the bottom, 2-commutes, i.e.,
gg1�g2 ¼ id
ð2Þ
Fg1

� gg2
� �

� gg1 � id
ð2ÞeFF g2

� �
: ð3:40Þ
3. For each object x 2 C0, we have g
id

ð1Þ
x

¼ idð2Þ
gx
.

4. 2-Form lattice gauge theory

In the previous section, we have generalized the notions of category, functor, and

natural transformation to the next level and we have seen how one can construct ex-

plicit examples using Lie crossed modules. Let us now generalize the ideas of Section 2

step by step in order to obtain a higher level lattice gauge theory, lattice 2-gauge the-
ory, to be precise. Some key ideas of this section are taken from [9] which deals with

2-categories constructed from monoidal categories rather than from Lie 2-groups.

4.1. Lattice

First we have to define a small strict 2-category which represents the lattice. It is

most convenient to do this for a triangulation rather than for a cubic lattice.5

Definition 4.1. A simplicial 2-complex ðV ;E; F Þ consists of sets V (vertices), E
(edges), and F (faces) together with maps s : E ! V , t : E ! V and o1; o2; o3 : F ! E
such that ðV ;EÞ with s and t forms a directed graph (Example 2.3). The maps

o1; o2; o3 indicate the three edges in the boundary of each triangular face,
he material presented here can be seen as a simplified version of a special case of Street�s
ction [20].



464 H. Pfeiffer / Annals of Physics 308 (2003) 447–477
ð4:1Þ
and are required to satisfy for each f 2 F ,
sðo1ðf ÞÞ ¼ tðo3ðf ÞÞ; sðo2ðf ÞÞ ¼ tðo1ðf ÞÞ; sðo3ðf ÞÞ ¼ tðo2ðf ÞÞ: ð4:2Þ
Example 4.2. Let ðV ;E; F Þ be a simplicial 2-complex. Then there is a small strict 2-

category CV ;E;F defined as follows. The sets CV ;E;F
0 of objects and CV ;E;F

1 of morphisms

are defined as in Example 2.3. The maps sð1Þ, tð1Þ, idð1Þ, and � are the same as s; t; id,
and � in Example 2.3. This defines a small category which describes the edges and

their compositions. The set CV ;E;F
2 of 2-morphisms consists of

1. All faces f 2 F . We set sð2Þðf Þ ¼ ðo1f Þ � ðo2f Þ and tð2Þðf Þ ¼ ðo3f Þ�,
2. For each face f 2 F another face f � with the double arrow reversed,
ð4:3Þ
such that sð2Þðf �Þ ¼ ðo3f Þ� and tð2Þðf �Þ ¼ ðo1f Þ � ðo2f Þ,
3. For each face f 2 F another face f with all single arrows reversed,
ð4:4Þ
such that sð2Þðf Þ ¼ ðo2f Þ� � ðo1f Þ� and tð2Þðf Þ ¼ o3f .
4. For each edge e 2 E a 2-morphism idð2Þ

e with sð2Þðidð2Þ
e Þ ¼ e ¼ tð2Þðidð2Þ

e Þ.
5. All formal horizontal ð�Þ and vertical ð�Þ compositions of faces, subject to the fol-

lowing relations:

5.1. f � f � ¼ id
ð2Þ
sð2Þðf Þ and f � � f ¼ id

ð2Þ
tð2Þðf Þ,

5.2. id
ð2Þ
sð2Þðf Þ � f ¼ f ¼ f � idð2Þ

tð2Þðf Þ,

5.3. f � f ¼ idð2Þðidð1Þðsð1Þðsð2Þðf ÞÞÞÞ and f � f ¼ idð2Þðidð1Þðtð1Þðsð2Þðf ÞÞÞÞ,
5.4. idð2Þðidð1Þðsð1Þðsð2Þðf ÞÞÞÞ � f ¼ f ¼ f � idð2Þðidð1Þðtð1Þðtð2Þðf ÞÞÞÞ,
5.5. idð2Þ

e1�e2 ¼ idð2Þ
e1

� idð2Þ
e2

for all composable edges e1; e2 2 E,
5.6. the exchange law, ðf1 � f2Þ � ðf 0

1 � f 0
2Þ ¼ ðf1 � f 0

1Þ � ðf2 � f 0
2Þ, whenever faces

f1; f 0
1; f2; f

0
2 are composable.
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4.2. Configurations

Let us now study the configurations of our generalized lattice gauge theory. By

analogy with Section 2, these are the 2-functors from the generalized lattice CV ;E;F

to the generalized gauge group GG;H .

Example 4.3. A strict 2-functor F : CV ;E;F ! GG;H is a triple of maps
F0 : V ! f�g; ð4:5Þ

F1 : E ! G; ð4:6Þ

F2 : F ! HoG; ð4:7Þ

i.e., the edges are coloured by group elements of G while the triangular faces are

coloured by elements of HoG.

Let us assume there is such a strict 2-functor which is used to label the triangle

ð1; 2; 3Þ,
ð4:8Þ
We denote by f123 :¼ F2ðf Þ 2 HoG the group element associated with the triangle

and by g12 :¼ o1f , g23 :¼ o2f and g13 :¼ ðo3f Þ�1
the elements of G associated with the

edges. Then we can derive a number of useful properties of such a labeled triangle.

1. Write f123 ¼ ðh; gÞ 2 HoG. We know that sð2Þðf Þ ¼ g12 � g23 and tð2Þðf Þ ¼ g13 so

that tðhÞ ¼ g13g�1
23 g

�1
12 which is just the holonomy around the triangle.

2. We can horizontally compose the 2-morphism f123 with identities
bff123 :¼ id
ð2Þ
g�1
12

� f123 � idð2Þ
g�1
13

: g23 � g�1
13 ) g�1

12 ; ð4:9Þ
which can be visualized as follows:
ð4:10Þ
We have thus obtained another triangle on which the arrow for the 2-morphism

has been �rotated.� On our generalized lattice CV ;E;F (Example 4.2), this new �ro-
tated� triangle is considered different from the original one. At first sight, it seems
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that triangles proliferate if we �rotate� them in this way. In our generalized gauge

group GG;H , one can show, however, that �triple rotation� does not change the

associated 2-morphism because
idð2Þ
g13

� idð2Þ
g�1
23

� idð2Þ
g�1
12

� f123 � idð2Þ
g�1
13

� idð2Þ
g12

� idð2Þ
g23

¼ f123: ð4:11Þ
3. From the conditions on the identities in Example 4.2 and the properties of the
strict 2-functor, we know that for each vertex v 2 V , the identity edge idð1Þ

v is

mapped to the unit in G
F1id
ð1Þ
v ¼ idð1Þ

� ¼ 1 2 G; ð4:12Þ

while for any edge e, labeled by g :¼ F1e, the unit idð2Þ

e is mapped to
F2id
ð2Þ
e ¼ idð2Þ

g ¼ ð1; gÞ 2 HoG: ð4:13Þ
These conditions imply that for each 2-morphism f123, the 2-morphism f �
123 (Ex-

ample 4.2) is given by its inverse with respect to vertical composition,
f �
123 ¼ ðh; gÞ� ¼ ðh�1; tðhÞgÞ; ð4:14Þ
while the other 2-morphism f 123 is the inverse with respect to horizontal com-

position,
f 123 ¼ ðh; gÞ�1 ¼ ðaðg�1Þ½h�1�; g�1Þ: ð4:15Þ

4. Finally, these two ways of reversing the orientation of triangles are related in the

following way:
idð2Þ
g23

� f �
123 � idð2Þ

g13
¼ id

ð2Þ
g�1
12

� f : ð4:16Þ
A careful analysis shows that this is exactly what one expects from the geometry

of the triangle if these operations are combined.

Starting from the labeled triangle (4.8), we can obtain other 2-morphisms for the

same triangle by �rotating� or reversing the orientation using either f 7!f � or f 7!f .
The relations listed above make sure that one obtains only six distinct 2-morphisms

by combining these operations. The 2-groupoid GG;H has therefore all the properties
which one expects from the combinatorics of the triangle (4.8). While edges come in

two different orientations, there are six different versions of each triangle.

4.3. Local gauge transformations

Given two configurations of our generalized lattice gauge theory, represented by

strict 2-functors from CV ;E;F to GG;H , the analogy with Section 2 suggests that the local

gauge transformations are given by pseudo-natural transformations. In our situa-
tion, this reads as follows.

Example 4.4. Let F ; eFF : CV ;E;F ! GG;H be parallel strict 2-functors. A pseudo-natural

transformation g : F ) eFF is a pair of maps
g : V ! G; v 7!gv; ð4:17Þ
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g : E ! HoG; e 7!ge : F1e � gtðeÞ ) gsðeÞ � eFF1e; ð4:18Þ
visualized for an edge e : v ! w by
ð4:19Þ
The special case in which ge ¼ idð2Þ
e ¼ ð1; 1Þ corresponds to an ordinary local gauge

transformation because source and target of ge agree and therefore the diagram

commutes for morphisms. Compare this with Example 2.7. The appearance of a

non-trivial 2-morphism ge can be viewed as a way of parameterizing how �non-
commuting� the diagram is. This is the way in which the local gauge symmetry is

generalized here. We call the pseudo-natural transformations of the above example

the local 2-gauge transformations.
Let us now visualize how a generic local 2-gauge transformation acts on the

labeled triangle (4.8),
ð4:20Þ
Here we have denoted by f123, g12, etc. the face and edges labeled by the strict 2-

functor F and by eff123, egg12, etc. the face and edges labeled by eFF . The three squares in
(4.20) are labeled by the 2-morphisms gij :¼ geij : gij � gj ) gi � eggij. By conditions (1)–

(3) of Definition 3.11, the diagram (4.20) 2-commutes. Therefore, we can calculateeff123 from
eff123 ¼ id
ð2Þ
g�1
1

� g�12 � id
ð2Þegg23� �

� idð2Þ
g12

� g�23
� �

� f123 � g13
� �

: ð4:21Þ
Observe that the right-hand side involves both gij and eggij.
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4.4. Gauge invariant expressions

In standard lattice gauge theory, gauge invariant quantities can be con-

structed from the holonomy around closed loops, namely by evaluating a group

character. In order to find expressions that are invariant under local 2-gauge
transformations, we consider the vertical composition of 2-morphisms over a

closed surface, in the simplest case a tetrahedron. While the holonomy around

the loop was based at a point, our vertical composition is now based at an edge

of the tetrahedron.

Fig. 3 shows a tetrahedron ð1; 2; 3; 4Þ. We label its triangles ði; j; kÞ, i < j < k, as in
(4.8). A 2-morphism around the surface of the tetrahedron can be calculated as fol-

lows.

Definition 4.5. Let F : CV ;E;F ! GG;H be a strict 2-functor. For each tetrahedron

ð1; 2; 3; 4Þ, the 2-holonomy is the 2-morphism U1234 : g14 ) g14 in GG;H , given by
Fig. 3
U1234 :¼ f �
124 � ðid

ð2Þ
g12

� f �
234Þ � ðf123 � id

ð2Þ
g34
Þ � f134: ð4:22Þ
Since any 2-morphism associated with a closed surface has the same source and

target, U1234 ¼ ðh1234; g14Þ is characterized by an element h1234 2 ker tEH . It is there-

fore sufficient to define our gauge invariant actions as functions on ker t.
Notice that we have labeled the 1- and 2-cells (edges and faces) of the lattice with

data from the 2-groupoid GG;H , but that the 2-action is defined one level higher,

namely for the 3-cells (tetrahedra). So far we have not formally defined the notion

of a tetrahedron. For our purposes it is sufficient that the preceding definition can

be used whenever we have a collection of four triangles whose edges match as shown

in Fig. 3.

In standard lattice gauge theory, the action is a character of the holonomy

around a loop. In our generalized setting, it turns out that, for our 2-holonomy,

we need the following two invariances in order to obtain a locally 2-gauge invari-
ant action.

Definition 4.6. Let ðG;H ; t; aÞ be a Lie crossed module. A 2-action is a function

S : HoG ! R which is the composition SðUÞ ¼ s0ðpðUÞÞ of a function s0 : ker t ! R

with the projection p : HoG ! H . We define the function s0 only on ker tEH . It is

required to be a class function of H , i.e.,
. A tetrahedron with vertices labeled 1; 2; 3; 4. Each triangle ði; j; kÞ, i < j < k, is coloured as in (4.8).
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s0ðh0hh0
�1Þ ¼ s0ðhÞ ð4:23Þ
for all h 2 ker t, h0 2 H , and to be constant on the orbits of G, i.e.,
s0ðaðgÞ½h�Þ ¼ s0ðhÞ ð4:24Þ

for all h 2 ker t and g 2 G.

We present examples and discuss possible physical applications in Section 5. We

have required the two invariances for the following purpose.

Lemma 4.7. Let ðG;H ; t; aÞ be a Lie crossed module and S : HoG ! R be a 2-action.
Let f ¼ ðh; gÞ 2 HoG be any 2-morphism f : g ) g, i.e., h 2 ker t. Then Sðf Þ is
invariant under horizontal composition with identities because for any id

ð2Þegg ¼ ð1; eggÞ,egg 2 G,
ðh; gÞ � ð1; eggÞ ¼ ðh; geggÞ and ð1; eggÞ � ðh; gÞ ¼ ðaðeggÞ½h�; egggÞ; ð4:25Þ

and we have s0ðaðeggÞ½h�Þ ¼ s0ðhÞ. Furthermore, Sðf Þ is invariant under vertical conju-
gation because for any ðehh; eggÞ 2 HoG,
ðehh; eggÞ� � ðh; gÞ � ðehh; eggÞ ¼ ðehh�1hehh; eggÞ; ð4:26Þ

em and s0ðehh�1hehhÞ ¼ s0ðhÞ.

Theorem 4.8. Let ðV ;E; F Þ be a simplicial 2-complex and ðG;H ; t; aÞ be a Lie crossed
module. Let F ; eFF : CV ;E;F ! GG;H be parallel strict 2-functors and S : HoG ! R

be some 2-action. If there exists a pseudo-natural transformation g : F ) eFF , then
the 2-action, evaluated on any tetrahedron ð1; 2; 3; 4Þ in ðV ;E; F Þ agrees for F and eFF ,
i.e.,
SðU1234Þ ¼ SðeUU1234Þ; ð4:27Þ

where U1234 is the 2-holonomy of Definition 4.5 using the strict 2-functor F and eUU1234

using eFF .
Proof. According to Definition 4.5,
eUU1234 ¼ eff �

124 � ðid
ð2Þegg12 � eff �

234Þ � ðeff123 � idð2Þegg34Þ � eff134; ð4:28Þ
and
U1234 ¼ f �
124 � ðid

ð2Þ
g12

� f �
234Þ � ðf123 � id

ð2Þ
g34
Þ � f134: ð4:29Þ
The two coloured tetrahedra corresponding to U1234 and eUU1234 with the pseudo-
natural transformation g are shown in Fig. 4. On the faces of this diagram, there

are 2-morphisms from the strict 2-functors F and eFF and also from the pseudo-

natural transformation g which we have suppressed in order to keep the drawing

transparent. The four prisms attached to the triangular faces of the inner tetra-

hedron are of the form (4.20) and therefore 2-commute. We read off from the

picture that



Fig. 4. The inner tetrahedron is labeled by a strict 2-functor F : CV ;E;F ! GG;H , the outer one by some strict

2-functor eFF (notation as in (4.8)). Both 2-functors are related by a pseudo-natural transformation

g : F ) eFF . For simplicity, we have not drawn the double arrows on the faces.
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eUU1234 ¼ id
ð2Þ
g�1
1

� g�14 � ðU1234 � idð2Þ
g4
Þ � g14

� �
; ð4:30Þ
so that U1234 and eUU1234 are related by horizontal composition with identities and by

vertical conjugation. Therefore, the value of S agrees according to Lemma 4.7. �

Remark 4.9. It can be shown that the edge, here e14, on which the 2-morphism U1234

is based, does not matter. By horizontal composition with identity 2-morphisms we

can obtain an analogous 2-morphism based on any other edge which yields the same

value of the action.

Of course, we can calculate locally 2-gauge invariant expressions for any closed

surface by calculating appropriate compositions of the 2-morphisms. Pasting theo-

rems, see, for example [21], guarantee that the 2-holonomy is well defined and inde-
pendent of choices.

The gauge invariant expressions of the standard formulation of lattice gauge the-

ory are in general not invariant under local 2-gauge symmetry transformations un-

less all 2-morphisms ge associated with the edges have the same source and target.

Remark 4.10. As ker t corresponds to the set of all 2-morphisms whose source and

target coincide, the Eckmann–Hilton argument implies that ker t is always Abelian

(in fact, it is always contained in the centre of H ). Even though both G and H can be
non-Abelian and there is a non-trivial interplay between the two via t and a, the
quantities on which the 2-actions depend, are therefore always Abelian.

This completes the construction of our generalization of lattice gauge theory. The

generalized lattice and the generalized gauge group are both described by 2-catego-

ries. The configurations are given by strict 2-functors, the local 2-gauge symmetries

by pseudo-natural transformations. In the last step, we have found actions that are

invariant under this generalized local gauge symmetry.
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4.5. Partition function

It is now straightforward to write down a path integral for a quantum version of

our lattice 2-gauge theory. Integrate over G for each edge and over HoG for each

triangle, subject to the condition (d-functions on G) that source and target of the 2-
morphisms associated to the faces match. The integrand is the product over

wðUjk‘mÞ :¼ expð�SðUjk‘mÞÞ or expðiSðUjk‘mÞÞ for all tetrahedra ðjk‘mÞ depending

on whether Euclidean or real time is used. Here S denotes some 2-action. The par-

tition function therefore reads
Z ¼
Y
e2E

Z
G
dge

 ! Y
t2F

Z
H o G

dft

 !

�
Y
t2F

dG sð2ÞðftÞ � ðgo1tgo2tÞ
�1

� �
dG tð2ÞðftÞ � go3t
� � ! Y

r2T
wðUrÞ

 !
: ð4:31Þ
Here we have denoted the triangles by t 2 F and the tetrahedra by r 2 T . We already

know some observables of this theory, namely the expectation values of the 2-gauge

invariant expressions constructed in Theorem 4.8.

For any configuration given by ge 2 G for each edge e 2 E and ft 2 HoG for

each triangle t 2 F , we obtain a locally 2-gauge equivalent configuration by applying

the pseudo-natural transformation (4.21).
5. Examples and physical applications

In this section, we come back to some examples of strict Lie 2-groups (Example

3.7), illustrate what the admissible gauge invariant 2-actions are and sketch possible

applications.
Example 5.1. The trivial 2-group (see Example 3.7(1)). In this case the assignment of

variables reduces to conventional lattice gauge theory. There are no labels at the

faces, and the local gauge transformations (Example 4.4) reduce to the ordinary ones

(Example 2.7). As there are no variables associated with the faces, 2-actions are
useless in this case.
Example 5.2. The purely Abelian 2-group (see Example 3.7(2)). In this case, the

edges are not labeled while the faces are labeled with elements of some Abelian

group H . We have ker t ¼ H . If we choose H ¼ Uð1Þ, we recover 2-form electro-

dynamics. Possible 2-actions are real characters of H , i.e., for G ¼ Uð1Þ they are of

the form s0ðeiuÞ ¼ cosðkuÞ for some k 2 Z, and our model agrees with that of [4,5]

for p ¼ 2 except that it is defined on triangulations rather than on hyper-cubic
lattices.
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Example 5.3. The Euclidean 2-groups (see Example 3.7(4)). Again we have

ker t ¼ H . The allowed 2-actions are functions of the SOðV ; gÞ-invariant norm, i.e.,

of the form s0ðhÞ ¼ f ðgðh; hÞÞ for some function f : R ! R. This resembles the ex-

pansors used in [17] in the case of the Poincar�ee 2-group.

Observe that this example is a non-trivial generalization of 2-form electrodynam-
ics even though H is Abelian. There is a non-trivial interplay with G which requires

the 2-action to be constant on the orbits of G on H . For the Poincar�ee 2-group, this

example suggests the following more ambitious conjecture.

Conjecture 5.4. Lattice 2-gauge theory using the Poincar�ee 2-group in four dimensions
with a suitable action is equivalent to the refined Barrett–Crane–Yetter state sum
proposed in [17] in the same fashion as standard lattice gauge theory with d-function
Boltzmann weight is related to the Ooguri model, see, for example [22,23].

Lattice 2-gauge theory should therefore be formulated on the 2-complex dual to the
triangulation used in the state sum model so that we can apply a suitable harmonic anal-
ysis and obtain sums over representations of H for the edges and sums over represen-
tations of G for the faces of the triangulation. This way it might be possible to
obtain further conditions on the measure used in the state sum model and to relate it
to a classical action with constraints at the classical level.

Example 5.5. The automorphism 2-group of a simple compact Lie group H (see
Example 3.7(5)). In this case ker t ¼ ZðHÞ is the centre of H and any function

s0 : ZðHÞ ! R gives rise to a 2-action. This example can be understood as a lattice

model of the connections on non-Abelian gerbes. We notice some coincidences

which suggest the following conjecture.

Conjecture 5.6. Lattice 2-gauge theory with the automorphism 2-group for
H ¼ SUð3Þ, i.e., G ¼ SUð3Þ=Z3 and ker t ¼ Z3, describes some aspects of the collective
phenomena of strongly coupled pure QCD. In fact, the 2-gauge invariant expressions of
Theorem 4.8 resemble the observables that detect centre monopoles and vortices which
seem to play a key role in the understanding of the confinement of static quarks in pure
lattice QCD.
6. Discussion and outlook

6.1. Technical questions

At the technical level, there are a number of natural questions to ask. What is the

most general gauge invariant expression? In standard lattice gauge theory, these are

spin networks [24], generalizations of Wilson loops that include branchings of the

lines with intertwiners of the gauge group at the branching points. In order to fully

understand the possible spin networks, one has to study the representation category

of the gauge group. In our lattice 2-gauge theory, the expressions SðU1234Þ of Theo-
rem 4.8 are the analogues of Wilson loops. The most general gauge invariant expres-
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sions will be given by coloured branched surfaces, i.e., by some sort of spin foams
[25]. In order to understand these spin foams, we have to study the representation

2-category of a Lie 2-group. Work on the representation theory of 2-groups is in pro-

gress [26,27]. It is desirable to find a gauge invariant expression which combines both

holonomies of morphisms around loops and 2-holonomies around closed surfaces so
that this expression reduces to the Wilson action if we choose the trivial 2-group. At

the moment we have either the old observables (characters of holonomies) which are

not 2-gauge invariant or very special new ones (2-actions of 2-holonomies) which

disappear for the trivial 2-group.

A related question is that of a maximal gauge fixing. In standard lattice gauge the-

ory, one can gauge fix all edges of a spanning tree to be labeled by the group unit. In

lattice 2-gauge theory, the gauge fixing will make use of suitable surfaces.

A further technical observation is that for 2-categories, there is one more natural
type of maps besides functors and pseudo-natural transformations. These are called

modifications and relate two natural transformations.

Definition 6.1. Let C, C0 be small strict 2-categories, F ; eFF : C ! C0 be strict 2-functors

and g; # : F ) eFF be pseudo-natural transformations. A quasi-modification l : gV#
is a map C0 ! C0

2 assigning to each object x 2 C0 a 2-morphism lx : gx ) #x in C0 such

that
ðFf � lyÞ � #g0 ¼ gg � ðlx � eFF f Þ ð6:1Þ
holds for each 2-morphism f : g ) g0 in C where g; g0 : x ! y are morphisms in C.
This is illustrated by the following diagram:
ð6:2Þ
We have suppressed the double arrows for the following 2-morphisms in order to

keep the diagram simple:
gg : Fg � gy ) gx � eFFg; ð6:3Þ

gg0 : Fg0 � gy ) gx � eFFg0 ; ð6:4Þ

#g : Fg � #y ) #x � eFFg; ð6:5Þ
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#g0 : Fg0 � #y ) #x � eFFg0 : ð6:6Þ
It is open what modifications mean physically. Are some gauge equivalent config-

urations �more equal� than others? An explanation why we are not forced to use this
additional structural level may be the fact that our action is a map into the real num-

bers as opposed to a map into some 2-category. The requirement to use real numbers

is, of course, imposed by the physical framework, but the 2-categorical treatment

might indicate that one should try to categorify the action or the path integral.

Given a path integral formulation of lattice 2-gauge theory as sketched in Section

4.5, we have the connection picture of this theory which is given in terms of contin-

uous variables. It is known that for lattice BF -theory (see, for example [22,23]) and

also for standard lattice Yang–Mills theory [28,29], there is an equivalent dual for-
mulation provided by the representation picture which is, in the case of Yang–Mills

theory, the corresponding strong-weak dual theory. The dual formulation of stan-

dard lattice gauge theory is a spin foam model. How does the dual formulation of

lattice 2-gauge theory look like?

It is already obvious that we have to understand the representation 2-category of

the gauge 2-group in order to formulate such a model. If our lattice 2-gauge theory

lives on the two-complex dual to some triangulation of a given four-manifold, the

dual theory will involve sums over suitable vector spaces for all edges and for all
faces of the original triangulation. As already mentioned, this is precisely the struc-

ture of the refined Barrett–Crane–Yetter state sum model of quantum gravity as pro-

posed in [17]. An interesting project is therefore to perform the harmonic expansion

(better: 2-harmonic expansion) of the Lie 2-group valued variables and, for generic

2-action, to generalize the transformation of [28,29] to lattice 2-gauge theory. We

emphasize that the dual theory will involve one higher level of the given simplicial

complex because the 2-action is associated with the 3-simplices.

Thinking about the representation picture of lattice 2-gauge theory, the entire
program of the lattice gauge and state sum models is worth reconsidering: topolog-

ical models, diagrammatic techniques generalizing the chain mail [30], and general-

izing the ribbon diagrammatics of [31–33]. What is a suitable �non-commutative�
structure which generalizes the ribbon diagrams of [31–33] and maybe weakens

the axioms of the 2-category used? For weak versions of 2-groups, see [15]. A general

framework for state sum invariants of four-manifolds is provided by Mackaay�s con-
struction [34].
6.2. A hierarchy of theories

One of the key ideas of higher category theory is that there is a hierarchy of struc-

tures (sets, categories, 2-categories, etc.). In this hierarchy, we call standard lattice

gauge theory a 1-gauge theory and the model constructed in the present article a

2-gauge theory. Lattice 3-gauge theory is beyond the scope of this study, but we

can still consider lattice 0-gauge theory in order to learn more about the hierarchy

of models.
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Consider the construction of Section 2. How does it collapse in the case of a 0-

gauge theory? The lattice is a 0-category, i.e., just a set, a collection of points without

structure. Similarly the set of labels (�0-gauge group�). A configuration is then a

0-functor which is just a map from the set of points to the 0-gauge group. There

is no notion of natural equivalence and therefore no local symmetry. Such a model
resembles a lattice spin model. These models include the lattice versions of non-linear

sigma models. In total, we have the following information on the hierarchy of lattice

n-gauge theories.

n ¼ 0. No local symmetry. The variables are associated with the vertices and the

action terms with the edges. Gauge �invariant� quantities are arbitrary functions. For

models with a certain global symmetry, the strong coupling expansion [35] is an ex-

pansion in terms of spin networks (coloured graphs) and the dual formulation is a

spin network model.
n ¼ 1. Standard lattice gauge theory. The variables are associated with the edges

and the action terms with the faces. Gauge invariant quantities are spin networks.

The strong coupling expansion [28,29] is an expansion in terms of spin foams (col-

oured 2-complexes) and the dual model is a spin foam model.

n ¼ 2. The model constructed in the present article. The generic gauge invariant

quantities are certain spin foams. From the assignment of variables one can already

see that the strong coupling expansion will lead to coloured 3-complexes.

It seems that we can minimally couple the model at level n with the model at nþ 1.
The classic example at n ¼ 0 is the Abelian Higgs model with frozen radial mode

[36], but this construction can be extended to non-Abelian symmetry groups as well

[35]. The next more general step would therefore be to couple a 2-gauge theory to

standard lattice gauge theory.

6.3. General comments

It is an interesting question whether one can construct a Topological Quantum
Field Theory (TQFT) from our 2-gauge theory. We should therefore require the

higher level analogue of the flatness condition in order to obtain topological invar-

iants. This means we should restrict the partition function of our quantum theory to

those configurations for which the 2-holonomy Ur vanishes at every tetrahedron r.
This is the zero 2-curvature condition.

For certain finite crossed modules this TQFT was constructed by Yetter [37] using

the language of categorical groups, i.e., group objects in the category of groupoids.

In the topological case one can choose an arbitrary triangulation as the lattice and
then construct the infinite refinement limit. This means in physical terms that the

TQFT has a trivial renormalization.

The continuum counterpart of the higher lattice gauge theory was developed in [8]

and, for non-Abelian gerbes, in [10]. In the continuum, it has turned out to be dif-

ficult to find fully gauge invariant actions. In the discrete approach, however, see also

[9], invariant actions arise naturally from the tetrahedron diagram, Fig. 4. Our result

is that the admissible 2-actions are sensitive only to ker tEH , an observation which

may help to better understand the continuum situation. In particular for the
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automorphism 2-group, ker t is often a discrete group. In this case, it will be impos-

sible to write down a naive continuum expression for the 2-action which just uses Lie

algebras instead of Lie groups. Continuum 2-actions will rather involve some kind of

topological defect or singularity and will be given by non-local expressions similar to

topological charges.
It should generally be possible to consider �infinitesimal� simplices as in [10] in or-

der to infer the continuum formulas corresponding to the given discrete expressions.

It is open whether the converse is possible, i.e., to integrate the differential continuum

expressions in order to recover the non-infinitesimal formulas. The problem is that

there is no �surface ordered product� available yet. Because of this obstacle, we fa-

vour the discrete approach, at least for now.

Finally, the model constructed here together with the continuum counterparts de-

veloped in [8,10] demonstrates that there exist theories with local symmetries beyond
conventional gauge theory. Are the corresponding quantum field theories relevant in

nature? We have indicated two possible areas of physics in which they might turn out

to be useful, state sum models of quantum gravity and the low energy behaviour of

QCD.
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