{VERSION 3 0 "IBM INTEL LINUX" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 0 2 1 2 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 3 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 }1 0 0 0 8 4 0 0 0 0 0 0 -1 0 } {PSTYLE "" 2 6 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Warning" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Error" 7 8 1 {CSTYLE "" -1 -1 "" 0 1 255 0 255 1 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Title" 0 18 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 1 0 0 0 0 0 0 }3 0 0 -1 12 12 0 0 0 0 0 0 19 0 }{PSTYLE "R3 Font 0" -1 256 1 {CSTYLE "" -1 -1 "Helvetica" 1 12 0 0 0 0 2 1 2 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "R3 Font 2" -1 257 1 {CSTYLE "" -1 -1 "Courier" 1 12 0 0 0 0 2 1 2 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {PARA 18 "" 0 "" {TEXT -1 21 "Ciselne obory v Maplu" }}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 10 "Cela cisla" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 2 "1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"\"" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "whattype(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%(integerG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "?surface" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 8 "4^(4^4);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#\"f t'4%31!\\OVY*pl%>\"G)Qv`30'['=e=.!pFM!p;)Hu=!o(pat+.k " 0 "" {MPLTEXT 1 0 10 " length(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"$b\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "2^19-9;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #\"'zU_" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "2^32-1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"+&Hn\\H%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "4*(2^17-2)-1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"'z U_" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "velke:=10^%:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "vetsi:=%*10;" }}{PARA 8 "" 1 "" {TEXT -1 23 "Error, object too large" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 91 "Maximalni cele cislo, s kterym je Maple V 5.1 schopen pra covat, ma 524279 platnych cislic " }}{PARA 0 "" 0 "" {TEXT -1 20 "(32 bitove systemy)." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "123456789^9876 54321;" }}{PARA 8 "" 1 "" {TEXT -1 23 "Error, object too large" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "Procedury pro praci s celymi cisly ." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "number:=10^29-10^14-1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'numbe rG\">**************)**************" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "isprime(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%&fals eG" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 40 "Overuje, zda zadane cislo j e prvocislem." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "ifactor(nu mber);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*,-%!G6#\"#h\"\"\"-F%6#\"$B# F(-F%6#\"),n;8F(-F%6#\"/\\DDo2m(*F(-F%6#\"% " 0 "" {MPLTEXT 1 0 18 "nextprime(number);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #\">d,+++++***************" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 33 "Urc uje nejblizsi vetsi prvocislo." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "prevprime(number);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\">\")** **********)**************" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 26 "Nejb lizsi mensi prvocislo." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "i thprime(9);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"#B" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 21 "Vraci i-te prvocislo." }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 0 "" }{MPLTEXT 1 0 15 "a:=1234: b:=56:" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 13 "q:=iquo(a,b);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"qG\"#A" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 19 "Celociselne d eleni." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "r:=irem(a,b);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"rG\"\"#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 30 "Zbytek po celociselnem deleni." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "a=q*b+r;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/\"%M7F$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "testeq(a=q*b+r);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%%trueG" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 20 "Kontrola spravnosti." }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "igcd(a,b);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 39 "Nejvetsi spolecny delitel celych cisel." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "lcm(21,35,99);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"%lM" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 44 "Nejmensi \+ spolecny nasobek cisel 21, 35 a 99." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "abs(-3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"$" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 25 "Urceni absolutni hodnoty." }}} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 17 " Racionalni cisla." }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 59 "Maple automat icky odstranuje nejvetsiho spolecneho delitele" }}{PARA 0 "" 0 "" {TEXT -1 60 "citatele a jmenovatele a garantuje, ze jmenovatel je klad ny." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "4/6;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"\"#\"\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "whattype(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%)fractionG" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "-3/-6;" }}{PARA 8 "" 1 "" {TEXT -1 14 "`-` unexpected" }}}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 56 "Cisla s p ohyblivou desetinou carkou a irracionalni cisla" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 101 "Maple neprovadi automaticky zjednoduseni (pouze u r acionalnich cisel). Zjednoduseni je nutno vyzadat." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "25^(1/6);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*$)\"#D#\"\"\"\"\"'\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "simplify(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*$)\"\"&#\"\"\"\"\"$\"\"\"" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 10 "evalf(%%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+Z f(*4 " 0 "" {MPLTEXT 1 0 22 "convert(%%%, ` float`);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+Zf(*4 " 0 "" {MPLTEXT 1 0 12 "whattype(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%&floatG" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 37 "Zapis \+ cisla 0.000001 ruznymi zpusoby:" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "0.1*10^(-5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+++++5!#:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "1E-6;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"\"\"!\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "Float(1,-6);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"\"\"!\"'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 31 "Cis lo = mantisa * 10^(exponent)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "printf(\"%.6f\", Float(1,-6));" }}{PARA 6 "" 1 "" {TEXT -1 7 ".0 00001" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "evalf(sqrt(2));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$ \"+iN@99!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 49 "Presnost aproxima ce je urcovana promennou Digits." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "Digits;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "Digi ts:=20;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'DigitsG\"#?" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "evalf(sqrt(2));" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#$\"5)[]4tBc8UT\"!#>" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "evalf(Pi, 150);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#$ \"at83%f`sJAe]&4Y%Q4ZmI#G8l3[@)z1<@MD[.G')**3iG1k\"yI#fW\\(4#e5v$*Rpr> %)G]zKQVEYQKz*e`EfTJ!$\\\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "whattype(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%&floatG" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "?constants;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "?inifcns;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "3/2*5;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"#:\"\" #" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "3/2*5.0;" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#$\"+++++v!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 120 "Jakmile zadame nejake \+ cislo v pohyblive desetinne carce, Maple pri vypoctu automaticky pouzi je aproximativni aritmetiku." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "ceil(7.5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\")" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "floor(7.5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 116 "ceil(x) \+ urci nejmensi cele cislo vetsi nebo rovne x, floor(x) nejvetsi cele ci slo mensi nebo rovne x (pro realna x)." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "round(7.4);round(7.6);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\")" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "trunc(7.4);trunc(-7.4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#!\"(" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 90 "round(x) zaokrouhli x na nejblizsi cele cislo, pro x>=0 trunc(x) vraci nejvetsi cele cislo" }}{PARA 0 " " 0 "" {TEXT -1 51 "mensi nebo rovne x, pro x<0 je trunc(x)=-trunc(-x) ." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "frac(7.5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"\"&!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 62 "frac(x) vraci desetinnou cast cisla x, tj. frac(x)=x-trun c(x)." }}}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 23 "Pocitani s odmocninami ." }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{MPLTEXT 1 0 20 "(1/2+1/2*s qrt(5))^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*$),&#\"\"\"\"\"#F'*$-%% sqrtG6#\"\"&\"\"\"F&F(F." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "expand(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&#\"\"$\"\"#\"\"\"*$-% %sqrtG6#\"\"&\"\"\"#F'F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "(4+2*3^(1/2))^(1/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*$-%%sqrtG6#, &\"\"%\"\"\"*$-F%6#\"\"$\"\"\"\"\"#F." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "simplify(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*$- %%sqrtG6#\"\"$\"\"\"\"\"\"F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "sqrt(25+5*sqrt(5))-sqrt(5+sqrt(5))-2*sqrt(5-sqrt(5));" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#,(*$-%%sqrtG6#,&\"#D\"\"\"*$-F&6#\"\"& \"\"\"F.F/F**$-F&6#,&F.F*F+F*F/!\"\"*$-F&6#,&F.F*F+F4F/!\"#" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "simplify(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(*&-%%sqrtG6#\"\"&\"\"\"-F&6#,&F(\"\"\"*$F%F)F-F) F-*$F*F)!\"\"*$-F&6#,&F(F-F.F0F)!\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "radnormal(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\" !" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 18 "Algebraicka cisla." }}{PARA 0 "" 0 "" {TEXT -1 57 "(Koreny polynomu jedne promenne nad racionalnimi cisly). \+ " }}{PARA 0 "" 0 "" {TEXT -1 21 " Vnitrni reprezentace" }}{PARA 0 "" 0 "" {TEXT -1 60 "algebraickych cisel je realizovana pomoci procedury \+ RootOf, " }}{PARA 0 "" 0 "" {TEXT -1 54 "napr. sqrt(2) je reprezentova na nasledujicim zpusobem:" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 " > " 0 "" {MPLTEXT 1 0 23 "alpha:=RootOf(z^2-2,z);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&alphaG-%'RootOfG6#,&*$)%#_ZG\"\"#\"\"\"\"\"\"!\"#F. " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 60 "Prevod na tvar odmocniny prov adime pomoci procedury convert:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 26 " convert(alpha, 'radical');" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*$-%%sqr tG6#\"\"#\"\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 101 "Protoze alpha muze byt bud sqrt(2) nebo -sqrt(2), vsechny hodnoty ziskame pomoci pr ocedury allvalues:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "allvalues(alp ha);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$*$-%%sqrtG6#\"\"#\"\"\",$F#!\" \"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 15 "Zpetny prevod:\n" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "convert(sqrt(2), 'RootOf');" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#-%'RootOfG6#,&*$)%#_ZG\"\"#\"\"\"\"\"\"!\"#F," } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "simplify(alpha^2);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "simplify(1/(1+alpha));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&-%'RootOfG6#,&*$)%#_ZG\"\"#\"\"\"\"\"\"!\"#F-F-!\"\"F-" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "alias(beta=RootOf(z^2-2,z)): " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "1/(1+beta)+1/(beta-1); \+ simplify(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*&\"\"\"F%,&\"\"\"F' %%betaGF'!\"\"F'*&F%F%,&F(F'!\"\"F'F)F'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$%%betaG\"\"#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 112 "Reprezen taci algebraickeho cisla muzeme snadno prevadet mezi tvarem odmocniny \+ a RootOf a naopak pomoci procedury" }}{PARA 0 "" 0 "" {TEXT -1 8 "conv ert:" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "convert((-8)^(1/3), 'RootOf');" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#-%'RootOfG6#,&*$)%#_ZG\"\"$\"\"\"\"\"\"\"\")F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "convert(sqrt(3), 'RootOf');" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'RootOfG6#,&*$)%#_ZG\"\"#\"\"\"\"\"\"!\"$F," }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "convert(%, 'radical');" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#*$-%%sqrtG6#\"\"$\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "root[3](2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*$)\"\"##\"\"\"\"\"$\"\"\"" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 21 "convert(%, 'RootOf');" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'RootOfG6#,&*$)%#_ZG\"\"$\"\"\"\"\"\"!\"#F," }}}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 9 "Nekonecno" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "infinity;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%)infinit yG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "infinity-123;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#%)infinityG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "infinity*5;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%)i nfinityG" }}}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 16 "Komplexni cisla." } }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "complex_number:=(2+3*I)*(4+ 5*I);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%/complex_numberG,&!\"(\"\" \"%\"IG\"#A" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }{TEXT -1 0 "" }{MPLTEXT 1 0 29 "Re(%); Im(%%);conjugate(%%%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#!\"(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"#A" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#,&!\"(\"\"\"%\"IG!#A" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "1/complex_number;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&#!\"(\"$L&\"\"\"%\"IG#!#AF&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "sqrt(-8);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*& %\"IG\"\"\"-%%sqrtG6#\"\"#\"\"\"F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "1/(2+a-b*I);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&\"\"\"F$,(\"\"#\"\" \"%\"aGF'*&%\"IGF'%\"bGF'!\"\"!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "evalc(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*&,&\" \"#\"\"\"%\"aGF'\"\"\",&*$)F%F&F)F'*$)%\"bGF&F)F'!\"\"F'*&*&%\"IGF'F/F 'F)F*F0F'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 47 "Provadi zjednoduseni v oboru komplexnich cisel." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "abs(%%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&\"\"\"F$-%$absG6#,(\" \"#\"\"\"%\"aGF**&%\"IGF*%\"bGF*!\"\"!\"\"" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 9 "evalc(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&\"\" \"F$*$-%%sqrtG6#,*\"\"%\"\"\"%\"aGF**$)F,\"\"#F$F+*$)%\"bGF/F$F+F$!\" \"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}}{MARK "5" 0 } {VIEWOPTS 1 1 0 3 2 1804 }