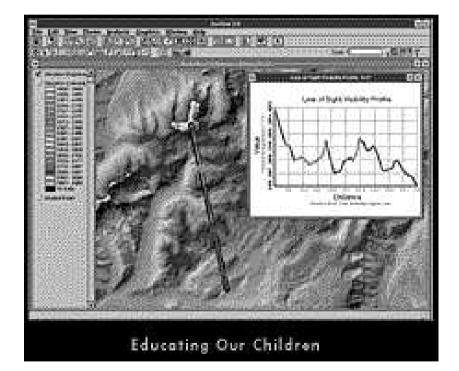

Department of Photogrammetry and Cartography University of ACEG – Sofia

bandrova_fgs@uacg.bg

IN BRIEF

Users of 3D maps

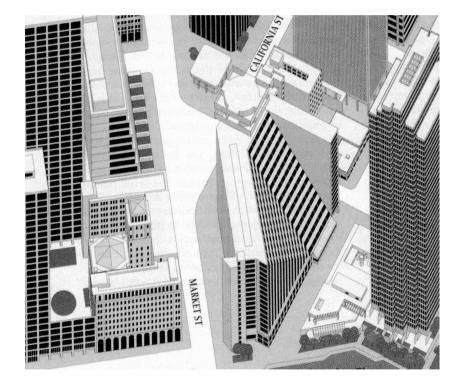

- 3D map definition and content (main, secondary and additional cont.)
- "From Paper to Virtual Map" a cheap technology for easy creation of 3D maps
- 3D cartographic symbol system
- Animation of 3D maps

3D maps – USERS

City planning and architecture

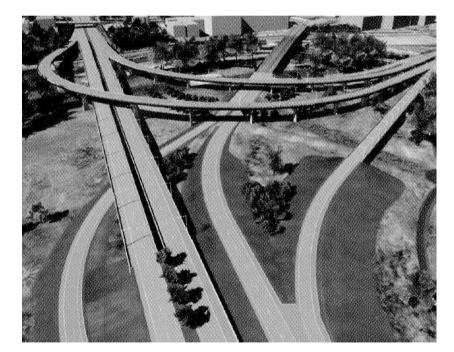
3D modelling of a part of Varna city in Bulgaria by DavGeo Ltd.

Education in schools and universities



3D modelling of a part of Varna city in Bulgaria by DavGeo Ltd.

Land management and cadastre



- Telecommunications
- Design and advertisement

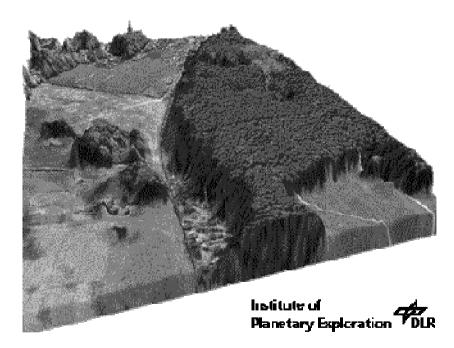


- Tourist offices
- Archives of City Architecture

Transport services

9-11 Damage Report - Lower Manhattan

3D model of New York (<u>http://www.metroblocks.com</u>)


Crises management

- Police
- Military
- fire management

Meteorology

- Environment pollution
- Water resources
- Flood mapping
- Crises management
- Risks Prevention Plans
- Long-term MonitoringFlood early warning

3D model created by Institute of Planetary Exploration, DLR

map - definition

- Maps cartographic products represent the spatial variety of the natural and socio-economic phenomena.
- 2 aspects:
- mathematical scale, map projections, coordinate system
- geographical visualize geo-information

3D map - definition

Digital, mathematical defined, threedimensional virtual representation of the Earth surface, objects and phenomena in nature and society.

Represented objects and phenomena are classified, designed and visualised according to a particular purpose.

Disadvantages of 3D maps

- Higher hardware and software requirements
- Difficulties in 3rd coordinate collection
- Large amounts of data and complex visualization
- Lack of standardized symbol system
- High 3D production price

Advantages of 3D maps

- Multiple geometric representation
- High realistic representation of the real world
- Photo-realistic buildings and objects representation
- User friendly and easy for understanding models
- Attractive and more informatively products
- More applications and users

Contents of 3D maps

Main content

Secondary content

Additional content

Main content

Iarge topographic or landscape objects – relief bodies

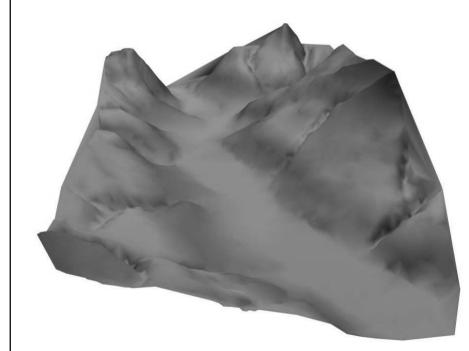
roads

buildings

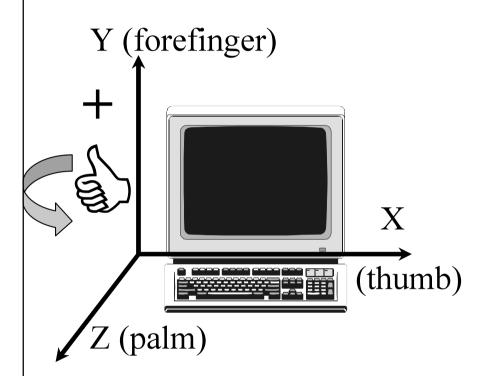
Secondary content

- traffic signs
- facilities
- transport elements

- information signs
- trees
- geodetic points


3D map "a street in Vienna", created by ICG, TUGraz and 3D symbols created by T. Bandrova

Additional content


 quality and quantity information about objects - fence, roof, street, parcel
created as a textural database

Sources for 3D map

- paper topographic or cadastral maps
- photogrammetric or surveying data
- digital 2D map
- topographic information, measurements, architecture drawings etc.
- digital or paper photos
- 3D symbol system

Mathematical basis

- Scale source 2D paper or digital map
- 2D view in "top", "front", "left", ….
- Perspective projection
- Spatial orthogonal 3D coordinate system XYZ (local)

💥 osnova11.max - 3D Studio MAX R3.1	_ 8 ×
<u>File E</u> dit T <u>o</u> ols <u>G</u> roup <u>V</u> iews <u>R</u> endering <u>T</u> rack View <u>S</u> chematic View <u>C</u> ustomize <u>M</u> AXScript <u>H</u> elp	
	lendering Main Toolbar
אי ר פ א א א א א א א א א א א א א א א א א א	🖺 🕵 🐼 🍫 View 💽 🗞
Top p Top p Front	
	# ≈ □ ≈ 1 1 0
	Standard Primitives
	AutoGrid
	Box Cone
	Sphere GeoSphere
	Torus Pyramid Teapot Plane
$z \rightarrow 1$	- Name and Color
Left Camera03	
z	
< 0:8:16 / 1:30:0 >	-
None Selected Grid = 10,0cm	
Click and drag to pan a non-camera view Animate	(1 ▶ ▶ ₩ Q 母 ⑦ 母 0.8:16
🕼 Start 📔 📧 Microsoft PowerPoint - [prez] 💯 Microsoft Word - 5glavac 🛛 💥 osnova11.max - 3D S	23√ ■ 18:50

Code	Name of type object object	Classif mappir
1000	Situation	
1100	Geodetic base	The bas
1110 1120	Astronomic point Triangulation point	kinds a
1130 1131 1132 1133	Polygon point (PP) PP, stabilized by a wooden picket PP, stabilized by a concrete block PP, stabilized by an iron tube	kinds ol hierarch present
1140	Axis point	
 1500 1510 1520 1521 1527 2000 3000 4000 	Transport objects Railway Roads Highway Shaped pathway Hydrographic objects Relief Pipelines	Europea standar exchang informa

fication of ng objects

sic types, nd subbjects hy-code tation

an rds for ige of ation

Generalization

Automatic – formal selection, smooth and filtration, according formal criteria

Dynamic – for animation presentation and track out the development of the phenomena in the space and time

Interactive – complex of the traditional, automatic and time generalization

Accuracy in objects representation

Accuracy in reference (location)

Thematic accuracy

Semantic accuracy

Accuracy in object location

- accuracy of measurements and data capture
- scale of 2D map
- method of sources processing

Keyboard 🛛	Files	Gamma	
General	Rend	lering	1
- System Unit Sc	ale		
1 Unit = 1.0	Mil	limeters	+
🔽 Au	itomatic Unit Co	nversion	
Origin		1677721,5cm	
<u></u>	.		<u>••</u> •
Distance from c	origin: 0,001562	24999cm	
Posulting Apou	racy: 0,000000	10001 om	

Thematic accuracy

 data base – quality of statistical data, methods of capture and processing

data transformation – selection,
classification and data references

Semantic accuracy

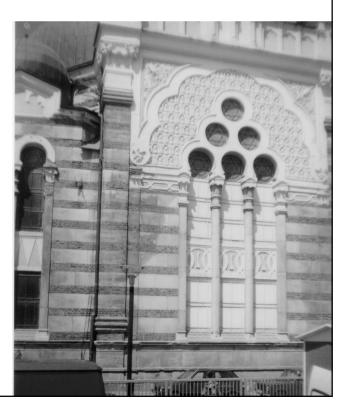

- symbols define the objects
- realistic and informatively representations

Photo-texturing

Photos from street level – for buildings facades

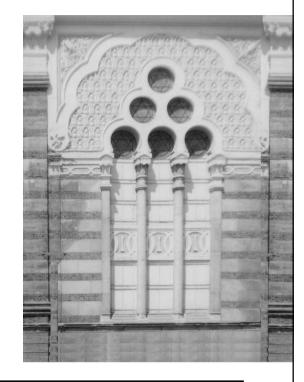
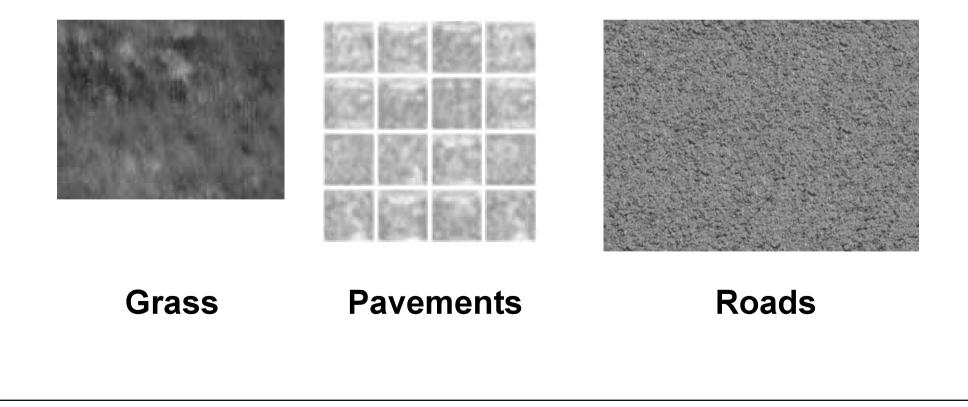


Photo-texturing

textures after image processing



Texturing

Software library texturing - areas symbols

A technology for designing of 3D maps

Preparation of Sources for Map Creation

Converting of Sources in Digital Form

Including Third Coordinates

Reconstruction of Digital Terrain Model (DTM)

Designing of Main Content (buildings, streets etc.)

3D Symbolization of the 3D Map

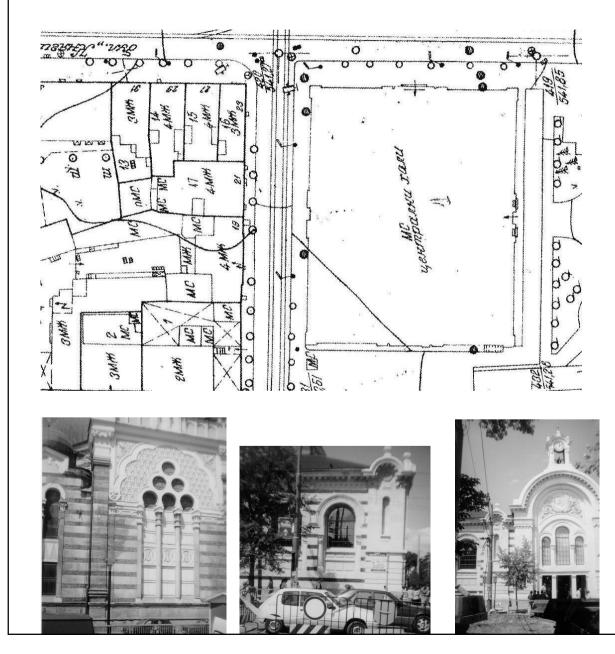
Preparation of Photo textures

Photo-Realistic Visualization of 3D Map

3D maps on 2D monitor?

This disadvantage is overtaken by applying of various "tricks" just in order to leave the user with no doubt that it is rally a 3D model. This can be enriched by assigning to the objects of properties of the real objects and materials, such as luminosity, roughness, transparency, lighting, shadow. 3D maps become more realistic like in the real world.

Quality of visualizing of 3D maps


- 1. Real color tone of screen points
- 2. Good contrast and focus
- 3. Maximum possibility for brightness usage and keeping of good contrast
- 4. Grey linear scale (proportional brightness levels)
- 5. Quality of the white color
- 6. Monitor's flicker and twinkle

Steps for symbol creation

- 1. gathering information for an object;
- 2. analyzing information and collecting data for each object;
- 3. designing symbols by visual and metric analysis applying computer graphics techniques;
- 4. visualizing symbols in virtual environment;
- 5. obtaining synthesized information for an object.

3D map Central Sofia

43 buildings, streets, pavements, grass areas, symbol system;

24 photos, scanning with 300 dpi, в RGB (Туре: Sharp Millions of Color, Brightness: 125, Contrast: 132)

5 photo-textured buildings

3D map - Vienna

3D model of 28 buildings

GIS data

Aero-photos and photos of buildings' facades, made from street level

Scanning of 200 traffic signs for texture processing

Conclusions

- Creation of a symbol system will facilitate the compilers as well as users of 3D maps.
- Their existing will legalize the 3D maps and this is the task of cartography in nowadays.
- The next step researches of the qualitative and quantitative features of the map by 3D GIS, extraction of the data for it and solving of different kind of tasks.

Thank you very much for your attention!

Temenoujka Bandrova

bandrova_fgs@uacg.bg

University of Architecture, Civil Engineering and Geodesy

Sofia - Bulgaria