Color systems in cartography. Prepublishing process and publishing maps and cartographic products.

T. Bandrova

Department of photogrammetry and cartography, UACG - Sofia <u>bandrova_fgs@uacg.bg</u>

INTRODUCTION

- COLORS possibility for right choice in the process of map compiling
- COLORS guarantee in design of cartographic products
- Successful reproduction of colors it is possible when there are enough knowledge about them

- Ancient, astronomy based
- consists 7 base colors corresponding of planets from Solar system
- System of fire, water, air and earth
- Aristotle 4 base colors
- Signs of the zodiac connection with colors

Ancient, astronomy based

	Old color	New color	
Sun	Yellow/ gold Orange		
Moon	White/ silver Violet		
Mars	Red Red		
Mercury	Neutral Yellow		
Jupiter	Blue Indigo blue		
Venus	Green Blue		
Saturn	Black Green		

Signs of the zodiac

	Old color	New color	
Aries	Red	Red	
Taurus	Dark green	Red-orange	
Gemini Maroon Orange		Orange	
Cancer	Silver	Orange - yellow	
Leo	Gold	Yellow	
Virgo	Parti colored	Yellow - green	
Libra	Green	Green	
Scorpio	Scarlet red	Green-blue	
Sagittarius	Sky blue	Blue	
Capricorn	Black	Blue-violet	
Aquarius	quarius Grey Violet		
Fishes	es Sea blue Violet-red Jump to first		

model CIE 1931
(updated and changed in 1964 and 1976)

X=0,49R+0,31G+0,20B Y=0,18R+0,81G+0,01B Z=0,00R+0,01G+0,99B

Commission Internationale de l'Eclirage

SUBTRACTIVE COLOR SYSTEMS

Cyan Magenta Yellow Key (Black)

CMYK color system

XIX c.

HVS color scheme (tonality) Hue, Value, Saturation

$$Hue = \frac{500}{\pi} \arctan\left[\sqrt[1]{3} (Green - Blue) / \left(\operatorname{Re} d - \frac{1}{2} Green - \frac{1}{2} Blue\right)\right]$$

 $Saturation = \sqrt{\left(\operatorname{Re} d^{2} + Green^{2} + Blue^{2} - \operatorname{Re} d.Green - \operatorname{Re} d.Blue - Green.Blue\right)}$

$$Intensity = \frac{\text{Re}\,d + Green = Blue}{3}$$

Jump to first page

Multiple enlarge part of screen – RGB color system

<u>Jump to first page</u>

Possible colors in 3 bits	color
system	

Active spotlights	Perceiving colors	
RGB		
1 0 0	Red	
0 1 0	Green	
0 0 1	Blue	
0 1 1	Cyan	
1 0 1	Magenta	
1 1 0	Yellow	
1 1 1	White	
0 0 0	Black	

Number of colors in different color systems

Color System	Quantity of info.	Number of colors
1. B/W		
B - black W - white	1 bit / dot	$2^1 = 2$ colors
2. B and W		
	8 bit / dot	$2^{8} = 256$ colors
3. Indexed Colors		$2^{8} = 256$ colors
4. RGB	8 bit / dot	24 bit / dot
R - red	8 bit / dot	2 ²⁴ > 16,7
G - green	8 bit / dot	Millions colors
B - blue		
5. CMYK		
C - cyan	8 bit / dot	32 bit / dot
M - magenta	8 bit / dot	20
Y - yellow	8 bit / dot	2^{32} > 4 Milliards colors
K - key black	8 bit / dot	
		4

Number of colors necessary for map designing and screen visualizing

3 000 000 colors laid abreast

7 000 – for not abreast colors

Buildings' floors in 3D map

Color definitions in 3D map

Bilding/	color	dimensions - RGB и HSV
floor	Dark brown	R =130 G =52 B =0 H =17 S =255 V
1	Brown	=130
2	Dark red	R =170 G =71 B =5 H =17 S =247 V = 170
3	Red	R =176 G =26 B =26 H =255 S = 217 V =
4	Light red	176
5	Orange	R =220 G =67 B =67 H =255 S = 177 V =
6	Yellow	P = 226 $G = 06$ $R = 06$ $H = 255$ $S = 147$ $V = 100$
7	Light yellow	$\begin{array}{c} 11 - 220 & 0 - 30 \\ 226 \end{array}$
above 7		R =224 G =143 B =87 H =17 S =156 V = 224
		R = 233 G = 222 B = 104 H = 39 S = 141 V =

Colors in map designing and pre-publishing process

- 100% cyan for Hydrology
- 20, 30, 40% C water areas see and oceans
- 1,2,3 colors of CMYK area color
- > 5% for every color
- Clean colors (without black K)

- Dimensions for color defining independent of color monitor and possibilities of print or publishing machines.
- Traditional rules for map coloring could be kept.
- Some limits in publishing process should be take into account in the first steps of map designing
- Unification of the colors could be lead to their standardizations.

Thank you very much for your attention

Temenoujka Bandrova, Assoc. Prof. Dr.

University of Architecture, Civil Engineering and Geodesy – Sofia bandrova_fgs@uacg.bg

