F4110 Fyzika atomárních soustav letní semestr 2005 - 2006

IV. Elektronová optika

KOTLÁŘSKÁ 9. BŘEZNA 2006

Úvodem

 S elektrony lze pracovat v přiblížení geometrické optiky, pokud se pohybují v dostatečně plavných polích

- Na příkladu elektrostatických polí prozkoumáme konstrukci centrovaných soustav v paraxiální aproximaci
- Magnetické čočky jsou ale mnohem zajímavější
- l elektronové optické soustavy trpí vadami zobrazení ... ale na to nedojde

Několik reklamních obrázků

V dnešní době je elektronová mikroskopie standardní a rozšířenou laboratorní technikou. Variant konstrukce je velký počet. Celý obor se stále rozvíjí. Elektronové svazky se využívají i v technologii, například pro elektronovou litografii.

9.3.2006

IV. Elektronová optika

Řádkovací elektronový mikroskop: typy zobrazení

9.3.2006

6

Řádkovací elektronový mikroskop: náš dnešní úhel pohledu

Částicová paprsková optika

Využití elektronů pro geometrickou optiku s vysokým rozlišením napadlo lidstvo teprve potom, co vlnové vlastnosti elektronu byly již dobře známy.

Paprsková (geometrická) optika částic

Podrobnosti Hamiltonovy analogie

Relativistická kinematika a vlnové délky částic

IV. Elektronová optika

Trajektorie ve vnějších polích

trajektorie (probíhána v čase) paprsek (křivka parametrisovaná délkou dráhy)

Newtonovy rovnice (Lorentzova síla)

 $\ddot{\boldsymbol{r}} = \dot{\boldsymbol{v}} = \frac{e}{m} \left(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} \right)$

Trajektorie ve vnějších polích

Trajektorie ve vnějších polích

IV. Elektronová optika

Teoretický návrh dílů pro elektronovou optiku

Omezíme se na osově symetrickou paraxiální oblast. Tam je všechno plně zvládnuto.

Dva kroky ve studiu optického dílu

- ve vakuu •
- geometrie kovových) elektrod
- potenciály elektrod •
- řešení Laplaceovy rovnice ٠ při okrajových podmínkách daných elektrodami

 $\Delta \Phi(\mathbf{r}) = 0$

Dva kroky ve studiu optického dílu

- 2. KROK: TRAJEKTORIE
- blízko osy systému paraxiální oblast
- vstupní energie E
- výstupní energie $E + 4000 \ {
 m eV}$
- zlepšená kolimace
- hledání trajektorií
 - buď přímo
 - z paraxiální rovnice + korekce na sférickou vadu

1

٠

Paraxiální elektronová optika

• OSOVĚ SYMETRICKÁ SOUSTAVA ... centrovaná

to byla již r. 1931 idea Rusky a Knolla, od té doby rozpracovávaná

• PARAXIÁLNÍ OBLAST

elektronové svazky jen z úzké oblasti kolem optické osy (*nitkový Gaussův prostor*) … tam dochází k **ideálnímu zobrazování**:

body na body, úsečky na úsečky, roviny na roviny

Ukázky skutečných výpočtů

Kvalita současného zpracování je plně profesionální. Výpočty tohoto typu zrychlují o řády konstrukční práce.

Ukázka výpočtu elektrostatické čočky

TFE zdroj

TFE (thermofield emission) *kombinuje* termickou emisi ... *T*=1800 K

se studenou emisi vyvolanou polem řádu 10 keV

Magnetická čočka

- má širší použití, než elektrostatická
- přesnější konstrukce, lepší korekce optických vad
- musí se ovšem chladit, atd.
- hlavní výhoda je možnost pólových nástavců z měkkých magnetických materiálů
- to právě vymysleli již praotcové ... Ruska

Magnetická čočka: jak funguje

Prof. Armin Delong

hlavní spolutvůrce několika generací čs. elektronových mikroskopů zakladatel a první mnohaletý ředitel Ústavu přístrojové techniky letošní laureát ceny Česká hlava

