{VERSION 3 0 "IBM INTEL LINUX" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 }1 0 0 0 8 4 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Title" 0 18 1 {CSTYLE "" -1 -1 " " 1 18 0 0 0 0 0 1 1 0 0 0 0 0 0 }3 0 0 -1 12 12 0 0 0 0 0 0 19 0 } {PSTYLE "Author" 0 19 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 8 8 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 18 "" 0 "" {TEXT -1 29 "Diferencial, Tayloruv pol ynom" }}}{EXCHG {PARA 19 "" 0 "" {TEXT -1 21 "Roman Plch, KM PrF MU" } }}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 9 "Priklad 1" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 131 "Pomoci diferencialu vypoctete priblizne sin 29 stup nu. Namalujte graf, na kterem bude puvodni funkce a funkce pouzita k a proximaci." }}{PARA 0 "" 0 "" {TEXT -1 25 "Priklad 7.4., strana 155." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "f:=x->sin(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fG%$sinG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "x0:=Pi/6;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#x0G,$% #PiG#\"\"\"\"\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "xx:=29* Pi/180;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#xxG,$%#PiG#\"#H\"$!=" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "evalf(xx);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+J[Xh]!#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "h:=xx-x0;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"hG,$% #PiG#!\"\"\"$!=" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "dx:=D(f); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#dxG%$cosG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "f(x0)+dx(x0)*h;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&#\"\"\"\"\"#F%*&-%%sqrtG6#\"\"$\"\"\"%#PiGF%#!\"\"\"$g$" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "evalf(%);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#$\"+`+&)[[!#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "evalf(sin(29*Pi/180));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+ .i4[[!#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "df:=f(x0)+dx(x0 )*(x-x0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#dfG,&#\"\"\"\"\"#F'*&- %%sqrtG6#\"\"$\"\"\",&%\"xGF'%#PiG#!\"\"\"\"'F'F&" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 28 "plot([f(x), df], x=0..Pi/2);" }}{PARA 13 "" 1 "" {INLPLOT "6&-%'CURVESG6$7S7$\"\"!F(7$$\"1GK5j*))QU$!#<$\"1sLeI+AB MF,7$$\"1XXYUk*HS'F,$\"1DS+L@i)R'F,7$$\"1N68yVJ`(*F,$\"1c&ehJeyt*F,7$$ \"16YeRSe78!#;$\"1&Q%f]#=)38F<7$$\"1,,hQPB[;F<$\"1-yj65yS;F<7$$\"1B*ed (RUf>F<$\"1**)ys&)4p%>F<7$$\"1IX[TMk\"G#F<$\"13RBS#)*=E#F<7$$\"1hw(QF$ )[h#F<$\"1M*4Ir&=&e#F<7$$\"1G?!>Saq%HF<$\"18dd?+e/HF<7$$\"12n4OKt)G$F< $\"11jx$Rp(HKF<7$$\"1Y]BRTo*e$F<$\"1L>uye38NF<7$$\"1t79wN[GRF<$\"13zj5 M@GQF<7$$\"1VrOc6q%F<7$$\"1\\,oR/A[_F<$\"1MGBr+f5]F<7$$\"1w W/X(*RG,:eF<7$$\"1n3p46^WlF<$\"1g0zi&Qs3'F<7$$\"1IyF.C6noF<$\"1 ,)=j,t*RjF<7$$\"1!yP+,8P?(F<$\"1z3MFxj'f'F<7$$\"1(z!QUu\"G^(F<$\"1N,Py .wDoF<7$$\"1\"3@7LGi%yF<$\"1n47uKelqF<7$$\"16HIT&[D>)F<$\"1(RvZssjI(F< 7$$\"1w)\\AI@S\\)F<$\"1>#p\"po&)3vF<7$$\"1o()=V,i>))F<$\"1\"zeG%\\()>x F<7$$\"1`\"[dg&*f:*F<$\"1()\\)y]!GHzF<7$$\"1Tt6rL2&[*F<$\"1'H%*=Uja7)F <7$$\"1la(*HIZ.)*F<$\"1\"R7+w2pI)F<7$$\"1m\"[l:+d,\"!#:$\"1?Zs+w\\)\\) F<7$$\"1\"3XyEmu/\"F^u$\"1h!)R3tfh')F<7$$\"1K_*>P$Q\"3\"F^u$\"1ZPF_)*3 E))F<7$$\"1M\"G%4t676F^u$\"1X#3Hj\"Qm*)F<7$$\"1p*Q4iq'*z.@\"F^u$\"1'Q,up+vN *F<7$$\"1Q$[)>&*oU7F^u$\"1Z!)zP7am%*F<7$$\"1^lOFY^w7F^u$\"1w%)pSt5q&*F <7$$\"1\")f6EA448F^u$\"1KPDS[]f'*F<7$$\"1;T7EvSU8F^u$\"1\"='y#[C.u*F<7 $$\"1`wiepWv8F^u$\"1nM>Q\"*z4)*F<7$$\"1$obdw1eS\"F^u$\"1TC;*p+U')*F<7$ $\"1%)o#3`-1W\"F^u$\"1[!3__n`\"**F<7$$\"1#*)4zFC?wF,7$F0$\"1CgOZt,?5F<7$F5$\"1:-n\"Rj,J \"F<7$F:$\"1GnH7FB-;F<7$F@$\"1.aUyQ\"H*=F<7$FE$\"1()f?HDTi@F<7$FJ$\"17 #=@xi9W#F<7$FO$\"1KN_Kp0IFF<7$FT$\"1njznbsM`C n>YWF<7$F\\p$\"107*4j=Sq%F<7$Fap$\"1,#Q[\"Qf5]F<7$Ffp$\"1v'*34KIq_F<7$ F[q$\"1_g2vpSsbF<7$F`q$\"1rr[(**>)ReF<7$Feq$\"1MivlW@LhF<7$Fjq$\"1liH \"Q&f7kF<7$F_r$\"1Q'zw0+Tq'F<7$Fdr$\"1f5^[BzrpF<7$Fir$\"1&4X\"[Y`gsF<7 $F^s$\"1C*>zuc/c(F<7$Fcs$\"1G!\\u\")R:#yF<7$Fhs$\"1x[9&o;N5)F<7$F]t$\" 1Y5$4QE[R)F<7$Fbt$\"1x8c&3;)z')F<7$Fgt$\"16))oy#eb&*)F<7$F\\u$\"1)))*R rHsh#*F<7$Fbu$\"1/c-lb#o`*F<7$Fgu$\"1RR>.jbI)*F<7$F\\v$\"14Y*3+s'45F^u 7$Fav$\"1i!QUsq(Q5F^u7$Ffv$\"19x=b.:m5F^u7$F[w$\"1f@he*pZ4\"F^u7$F`w$ \"1$zY@&3vA6F^u7$Few$\"10LaaU/_6F^u7$Fjw$\"12Yl#Gd-=\"F^u7$F_x$\"1`jzy \"4\"47F^u7$Fdx$\"1O5nm@sP7F^u7$Fix$\"12z*3`9SE\"F^u7$F^y$\"1#o$RZ&[TH \"F^u7$Fcy$\"1@x(4x+6K\"F^u7$Fhy$\"1gG!GYP)\\8F^u7$F]z$\"1t()fV@Mx8F^u 7$Fbz$\"1[NRz'**oS\"F^u-Fgz6&FizF(FjzF(-%+AXESLABELSG6$Q\"x6\"%!G-%%VI EWG6$;F($\"+Fjzq:!\"*%(DEFAULTG" 2 486 486 486 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 14632 0 0 0 0 0 0 }}}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 9 "Prikla d 2" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 127 "Vypoctete priblizne arccotg 1,02. Stejne jako v predchazejicim priklade namalujte grafy obou funkci. (Priklad \+ 7.4, strana 155)." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "f:=x-> arccot(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fG%'arccotG" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "df:=D(f);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#>%#dfGR6#%\"aG6\"6$%)operatorG%&arrowGF(,$*&\"\"\"F., &\"\"\"F0*$)9$\"\"#F.F0!\"\"!\"\"F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "x0:=1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#x0G\"\"\" " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "h:=0.02;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"hG$\"\"#!\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "f(x0)+df(x0)*h;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,& %#PiG#\"\"\"\"\"%$!+++++5!#6F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "evalf(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+N;)Rv(!#5" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "evalf(arccot(1.02));" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+o\\(\\v(!#5" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 46 "plot([f(x), f(x0)+df(x0)*(x-x0)], x=0.5..1.5); " }}{PARA 13 "" 1 "" {INLPLOT "6&-%'CURVESG6$7S7$$\"1+++++++]!#;$\"1!4 %z<([r5\"!#:7$$\"1mmmT:(z@&F*$\"1K[8RM')*3\"F-7$$\"1MLe9ui2aF*$\"1rwl6 F2v5F-7$$\"1nm;z_\"4i&F*$\"1\"evR@<(e5F-7$$\"1nm;aphNeF*$\"1L!e6^^D/\" F-7$$\"1LLe*=)H\\gF*$\"1aH5U)fn-\"F-7$$\"1nm\"z/3uC'F*$\"1^*H2U$Q75F-7 $$\"1++DJ$RDX'F*$\"1S/Fj)fv)F*7$$\"1LLLLY.K&)F* $\"1\"3nZCaWk)F*7$$\"1***\\7o7Tv)F*$\"1&GH-WMt^)F*7$$\"1KLL$Q*o]*)F*$ \"1/(>%zD72%)F*7$$\"1++D\"=lj;*F*$\"1)y(Q;Wl)G)F*7$$\"1++vV&R]k&yF*7$$\"1n;zRQb@5F-$\"15\"H=^ltu (F*7$$\"1+](=>Y2/\"F-$\"1vZ*z&\\MawF*7$$\"1nm\"zXu91\"F-$\"1chZEP'eb(F *7$$\"1+++&y))G3\"F-$\"12uMA/CcuF*7$$\"1++DE&QQ5\"F-$\"1Hb(G%[\"3O(F*7 $$\"1+]7y%3T7\"F-$\"1H!eC9g.F(F*7$$\"1++v.[hY6F-$\"1z!zc,O?<(F*7$$\"1L LLQx$o;\"F-$\"1*=%pV#Qb3(F*7$$\"1++]P+V)=\"F-$\"11bCQ;2&*pF*7$$\"1n;zp e*z?\"F-$\"1[5Rz7u9pF*7$$\"1++]#\\'QH7F-$\"1njq*on'GoF*7$$\"1L$e9S8&\\ 7F-$\"1*f&>%z3$\\nF*7$$\"1+]i?=bq7F-$\"1)=AJ$\\+omF*7$$\"1LL$3s?6H\"F- $\"1@Q%o'o5!f'F*7$$\"1+]7`Wl78F-$\"1f=Io**>5lF*7$$\"1nmm'*RRL8F-$\"1-= H1FzMkF*7$$\"1nmTvJga8F-$\"1xX9l\\@fjF*7$$\"1L$e9tOcP\"F-$\"1>S[%ygdG' F*7$$\"1+++&Qk\\R\"F-$\"1JJ-rwa>iF*7$$\"1LL3dg6<9F-$\"1l6/F`8XhF*7$$\" 1nmmw(GpV\"F-$\"1'*H1.L))zgF*7$$\"1+]7oK0e9F-$\"1K;/tLj6gF*7$$\"1+](=5 s#y9F-$\"1'3k:Jdv%fF*7$$\"1+++++++:F-$\"1vcZNg-!)eF*-%'COLOURG6&%$RGBG $\"#5!\"\"\"\"!F_[l-F$6$7S7$F($\"1[uRj\")RN5F-7$F/$\"1:TJ'e*\\C5F-7$F4 $\"1#GoEz;],\"F-7$F9$\"1:\"R%*R_V+\"F-7$F>$\"1\\6*o:th$**F*7$FC$\"1;G= RDLH)*F*7$FH$\"1\\h,5wFI(*F*7$FM$\"1$[\\$o>rF'*F*7$FR$\"1]h,N%Q;_*F*7$ FW$\"1$[\\330fT*F*7$Ffn$\"1;y!)H`92$*F*7$F[o$\"1]6*=o\\8@*F*7$F`o$\"1$ [u9Z1N5*F*7$Feo$\"1$[ukW?_**)F*7$Fjo$\"1$[ukzm3*))F*7$F_p$\"1]h,&o.hz) F*7$Fdp$\"1;y!)z6U$o)F*7$Fip$\"1qF*7$ Fiu$\"1$[ukWJ=\"pF*7$F^v$\"1]h,&G-S\"oF*7$Fcv$\"1$[u9<\\qq'F*7$Fhv$\"1 " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 115 "Urcete Taylor uv polynom stupne 4 pro funkci f(x)=1/(1+x) a x0=0. Namalujte graf zad ane funkce a Taylorova polynomu." }}{PARA 0 "" 0 "" {TEXT -1 132 "Dale vypoctete chybu, ktere se dopustite, pokud pouzijte T4(x) pro vypocet funkcni hodnoty f(0.5). Namalujte graf chyby pro x=-1..1." }}{PARA 0 "" 0 "" {TEXT -1 27 "(Priklad 7.10, strana 159)." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "f:=x->1/(1+x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fGR6#%\"xG6\"6$%)operatorG%&arrowGF(*&\"\"\"F-,&\"\"\"F/9$F/ !\"\"F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "x0:=0;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#x0G\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "c0:=f(x0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#c 0G\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "c1:=D(f)(x0)*(x -x0)/1!;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#c1G,$%\"xG!\"\"" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "c2:=D[1,1](f)(x0)*(x-x0)^2/2 !;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#c2G*$)%\"xG\"\"#\"\"\"" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "c3:=D[1,1,1](f)(x0)*(x-x0)^3 /3!;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#c3G,$*$)%\"xG\"\"$\"\"\"!\" \"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "c4:=D[1,1,1,1](f)(x0) *(x-x0)^4/4!;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#c4G*$)%\"xG\"\"%\" \"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "c4:=(D@@4)(f)(x0)*( x-x0)^4/4!;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#c4G*$)%\"xG\"\"%\"\" \"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "tn:=(n, x0)->(D@@n)(f )(x0)*(x-x0)^n/n!;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#tnGR6$%\"nG%# x0G6\"6$%)operatorG%&arrowGF)*&*&---%#@@G6$%\"DG9$6#%\"fG6#9%\"\"\"),& %\"xGF:F9!\"\"F5F:\"\"\"-%*factorialG6#F5!\"\"F)F)F)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "tn(4,0);" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#*$)%\"xG\"\"%\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "T4 :=c0+c1+c2+c3+c4;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#T4G,,\"\"\"F&% \"xG!\"\"*$)F'\"\"#\"\"\"F&*$)F'\"\"$F,F(*$)F'\"\"%F,F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 45 "plot([f(x), T4], x=-1..1, color=[re d, blue]);" }}{PARA 13 "" 1 "" {INLPLOT "6&-%'CURVESG6$7gn7$$!1+++2v8s>F-7$$!1+++#)*G#p%*F*$\"1x% [pi^S)=F-7$$!1+++9]\"=U*F*$\"1&QTBF]&HO/VQ\\A(*!#:7$$!1+ ++vL\"['))F*$\"1)=+mAC\"4))Fjn7$$!1+++U%p\"e()F*$\"11tU%QGE0)Fjn7$$!1+ ++nxYV&)F*$\"1(GDnQsoN+$Fjn7$$!1+++(y$pZiF*$\"1Qb# 4qF]m#Fjn7$$!1+++$yaE\"eF*$\"1Sc&[(z9)Q#Fjn7$$!1+++\">s%HaF*$\"1CR%Q6J z=#Fjn7$$!1+++]$*4)*\\F*$\"1>y))G+C**>Fjn7$$!1+++]_&\\c%F*$\"1)e?PD6*R =Fjn7$$!1+++]1aZTF*$\"1<'*)fP$o3gl7Fjn7$$!1+++P'ps m\"F*$\"1+5,Mo3+7Fjn7$$!1+++74_c7F*$\"1R2-*[4P9\"Fjn7$$!1+++!3x%z#)!#< $\"1&GFL`o-4\"Fjn7$$!1++++s$QM%Fgu$\"1?rs\\4TX5Fjn7$$!1++++5zr)*!#>$\" 1abea\"))4+\"Fjn7$$\"1++++!o2J%Fgu$\"1&4bu'zt'e*F*7$$\"1++++%Q#\\\")Fg u$\"1uFzF@[Y#*F*7$$\"1+++g\"*[H7F*$\"1)H#Q&eC^!*)F*7$$\"1++++dxd;F*$\" 1G;.#plzd)F*7$$\"1+++I0xw?F*$\"1;rbo$f.G)F*7$$\"1+++g&p@[#F*$\"1Y8f#yF 9,)F*7$$\"1+++!3'HKHF*$\"1Qcr:*yDt(F*7$$\"1+++qZvOLF*$\"1N[gNf2)\\(F*7 $$\"1+++]2goPF*$\"1/0v]@!HE(F*7$$\"1++++u\"*fTF*$\"1_Dv)3)=iqF*7$$\"1+ ++])Hxe%F*$\"18:5?i2boF*7$$\"1+++I!o-*\\F*$\"14vu%z%*4n'F*7$$\"1+++5k. 6aF*$\"1$erYDc))['F*7$$\"1******>WTAeF*$\"1T\"ph%z9?jF*7$$\"1+++g!*3`i F*$\"1AQkaln_hF*7$$\"1+++I*zym'F*$\"1dI*pDj&**fF*7$$\"1+++5N1#4(F*$\"1 VdqT'o1&eF*7$$\"1+++IYt7vF*$\"1WA[\"\\I,r&F*7$$\"1,+++xG**yF*$\"12W`' \\9oe&F*7$$\"1+++S6KU$)F*$\"1]Am1F(=X&F*7$$\"1+++IbdQ()F*$\"1LpdT\\eO` F*7$$\"1+++g`1h\"*F*$\"1B\\R\"\\;*=_F*7$$\"1+++S?Wl&*F*$\"1,+yDC06^F*7 $$\"\"\"\"\"!$\"1+++++++]F*-%'COLOURG6&%$RGBG$\"*++++\"!\")F[^lF[^l-F$ 6$7S7$$!\"\"F[^l$\"\"&F[^l7$$!1nmm;p0k&*F*$\"11Hh=4l#e%Fjn7$$!1LL$3q\"3B0M#GFjn7$$!1nm;/siqmF*$\"1p$=[vg og#Fjn7$$!1++](y$pZiF*$\"1`I**>%R8T#Fjn7$$!1LLL$yaE\"eF*$\"1u$p4y#oHAF jn7$$!1nmm\">s%HaF*$\"1&=EEO(p%3#Fjn7$Fcr$\"1?#GKV#)o$>Fjn7$Fhr$\"1%eq 3ePM!=Fjn7$F]s$\"1*=RJe7xo\"Fjn7$$!1nm;/#)[oPF*$\"1'fG9K]Df\"Fjn7$$!1M LL$=exJ$F*$\"1x>mZy[!\\\"Fjn7$$!1MLLL2$f$HF*$\"1(p(*4oEDT\"Fjn7$$!1++] PYx\"\\#F*$\"1eC:[KfI8Fjn7$$!1MLLL7i)4#F*$\"1q&eDr'3l7Fjn7$$!1++]P'psm \"F*$\"1%)HbAA$**>\"Fjn7$$!1++]74_c7F*$\"1@,*emtO9\"Fjn7$$!1JLL$3x%z#) Fgu$\"1\"3)e\"Hk-4\"Fjn7$$!1MLL3s$QM%Fgu$\"1r(Q\")y5a/\"Fjn7$$!1^omm;z r)*Fbv$\"1_Bla\"))4+\"Fjn7$$\"1QRw*=!)F*7$$\"1)****\\2'HKHF*$\"1x%\\2PU$\\xF*7$ $\"1lmmmZvOLF*$\"1O]`,44HvF*7$F^y$\"12^At76=tF*7$$\"1KL$eR<*fTF*$\"1D_ r2Q;]rF*7$Fhy$\"1gn&>P#R%*pF*7$$\"1lm;H!o-*\\F*$\"1iciaCWxoF*7$$\"1*** *\\7k.6aF*$\"1tSQ%)*e)*y'F*7$$\"1mmm;WTAeF*$\"1Zt^SH0VnF*7$$\"1****\\i !*3`iF*$\"1qSK\"*H*3u'F*7$$\"1MLLL*zym'F*$\"1R#o6Q[.z'F*7$$\"1LLL3N1#4 (F*$\"1\\^mBoP+pF*7$$\"1mm;HYt7vF*$\"1!3/sJ9n2(F*7$$\"1*******p(G**yF* $\"1zP/fR80tF*7$$\"1mmmT6KU$)F*$\"1F#\\,)))pawF*7$$\"1LLLLbdQ()F*$\"1w ]+)eWf0)F*7$$\"1++]i`1h\"*F*$\"1*=#zaqV'e)F*7$$\"1++]P?Wl&*F*$\"1(f,!> T*R?*F*7$Fi]lFi]l-F_^l6&Fa^lF[^lF[^lFb^l-%+AXESLABELSG6$Q\"x6\"%!G-%%V IEWG6$;Fi^lFi]l%(DEFAULTG" 2 486 486 486 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "taylor(f(x), x= x0, 5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#+/%\"xG\"\"\"\"\"!!\"\"\"\" \"F%\"\"#F'\"\"$F%\"\"%-%\"OG6#F%\"\"&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "whattype(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%'ser iesG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "convert(%%, polynom );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,,\"\"\"F$%\"xG!\"\"*$)F%\"\"#\" \"\"F$*$)F%\"\"$F*F&*$)F%\"\"%F*F$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "readlib(mtaylor);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# R6\"6*%\"fG%\"kG%\"vG%\"mG%\"nG%\"sG%\"tG%\"wG6#%aoCopyright~(c)~1991~ by~the~University~of~Waterloo.~All~rights~reserved.GF$C2>8$&9\"6#\"\" \">8&&F46#\"\"#@&-%%typeG6$F8%$setG>F87#-%#opG6#F84-F>6$F8%%listG>F87# F8@$4-F>6$F8-FI6#<$/%%nameG%*algebraicGFT-%&ERRORG6#%Ginvalid~2nd~argu ment~(expansion~point)G>8)-%$mapG6$R6#%\"xGF$F$F$@%-F>6$9$%\"=G-%$rhsG 6#F_o\"\"!F$F$F$F8>F8-Fgn6$RFjnF$F$F$@%F]o-%$lhsGFcoF_oF$F$F$F8>8'-%%n opsGFE@$0F]p-F_p6#<#FC-FW6#%Hvariables~(2nd~argument)~must~be~uniqueG@ %/9#F;>8(\"\"'>F\\q&F46#\"\"$@%/Fjp\"\"%>8+&F46#Fdq>Ffq7#-%\"$G6$F6F]p @$4-F>6$F8<$-FI6#FT-F@Fdr-FW6#%O2nd~argument~(the~variable(s))~must~be ~a~namesG@$34-F>6$F\\q%*nonnegintG0F\\q%)infinityG-FW6#%X3rd~argument~ (the~order)~must~be~a~non-negative~integerG@$54-F>6$Ffq-FI6#%'posintG0 -F_p6#FfqF]p-FW6#%en4th~argument~(weights)~must~be~a~list~of~positive~ integersG>F2-%%subsG6$7#-%$seqG6$/&F86#8%,&*&F[uF6)8*&FfqF\\uF6F6&FenF \\uF6/F]u;F6F]pF2>F2-Fgn6&%(collectG-Fdt6$/-%\"OGF5Fdo-%'taylorG6%F2Fa uF\\qF8.%,distributedG>F2-Fdt6$7#-Fht6$/F[u,&F[uF6Fcu!\"\"Fdu-Fdt6$/Fa uF6F2F$F$F$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "T:=unapply(m taylor(f(x), x=x0, 5),x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"TGR6# %\"xG6\"6$%)operatorG%&arrowGF(,,\"\"\"F-9$!\"\"*$)F.\"\"#\"\"\"F-*$)F .\"\"$F3F/*$)F.\"\"%F3F-F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "evalf(abs(f(0.5)-T(0.5)));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# $\"*LLL3#!#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "plot(abs(f( x)-T(x)), x=-1..1);" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$7in7$$ !1+++\\h\"F-7$$!1+++mf$H\\*F*$\"1Ufy'HP._\"F-7$$!1+++#)*G# p%*F*$\"1`Y??bQM9F-7$$!1+++9]\"=U*F*$\"1!Gl%e\"F*7$$!1+++\">s%HaF*$\"1\"Q%e9vLK5F*7$ $!1+++]$*4)*\\F*$\"1\"*)ffcfdB'!#<7$$!1+++]_&\\c%F*$\"1N/+&Gntk$Fas7$$ !1+++]1aZTF*$\"10G/&Gzq4#Fas7$$!1+++/#)[oPF*$\"1N;C1,n>7Fas7$$!1+++$=e xJ$F*$\"1+#>av6f,'!#=7$$!1+++L2$f$HF*$\"1cQ/Rr(z3$Fft7$$!1+++PYx\"\\#F *$\"1TKnn/Sz7Fft7$$!1+++L7i)4#F*$\"1y'p_3+>:&!#>7$$!1+++P'psm\"F*$\"1Y R%yH:ha\"Ffu7$$!1+++74_c7F*$\"14z#\\f>Be$!#?7$$!1+++!3x%z#)Fas$\"19u*z \")y-u 5Ffu7$$\"1+++I0xw?F*$\"1n*3`KM))>$Ffu7$$\"1+++g&p@[#F*$\"1m@k'z7'[vFfu 7$$\"1+++!3'HKHF*$\"1LR1=_Mw;Fft7$$\"1+++qZvOLF*$\"1aDL?k\\,JFft7$$\"1 +++]2goPF*$\"1L.YZA\"4_&Fft7$$\"1++++u\"*fTF*$\"1os#*Ho'fwW1#Fas7$$\"1+++ 5k.6aF*$\"1^g=,t-5IFas7$$\"1******>WTAeF*$\"15?QT*\\!HUFas7$$\"1+++g!* 3`iF*$\"1/ETlV;#)eFas7$$\"1+++I*zym'F*$\"1'[lbB^y!zFas7$$\"1+++5N1#4(F *$\"1t*>D=3(\\5F*7$$\"1+++IYt7vF*$\"1@I9EQem8F*7$$\"1,+++xG**yF*$\"1u$ 4DY>$=FF*7$$\"1+++g`1h\"*F*$\"1\"oA*f0_nLF*7$$\"1+++S?Wl&*F*$\"1[TR(pTH4%F* 7$$\"\"\"\"\"!$\"1+++++++]F*-%'COLOURG6&%$RGBG$\"#5!\"\"Fj^lFj^l-%+AXE SLABELSG6$Q\"x6\"%!G-%%VIEWG6$;$Fc_lFj^lFh^l%(DEFAULTG" 2 486 486 486 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 9 "Priklad 4" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 95 "Napiste T ayloruv polynom 3. stupne v bode x0=0 funkce f(x)=tg(x). (Priklad 7.14 ., strana 163). " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "f:=x->t an(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fG%$tanG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "derivace1:=D(f);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#>%*derivace1G,&\"\"\"F&*$)%$tanG\"\"#\"\"\"F&" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "derivace2:=(D@@2)(f);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%*derivace2G,$*&,&\"\"\"F(*$)%$tanG\" \"#\"\"\"F(F(F+F(F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "deri vace3:=(D@@3)(f);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%*derivace3G,&*& ,&\"\"\"F(*$)%$tanG\"\"#\"\"\"F(F(F*F-\"\"%*$)F'F,F-F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 84 "TayloruvPolynom[3]:=f(0)+derivace1( 0)*x+derivace2(0)*x^2/(2!)+derivace3(0)*x^3/(3!);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%0TayloruvPolynomG6#\"\"$,&%\"xG\"\"\"*$)F)F'\"\"\"#F *F'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "TaylorPol:=(f,x0,n)- >sum((D@@i)(f)(x0)/i!*(x-x0)^i,i=0..n);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%*TaylorPolGR6%%\"fG%#x0G%\"nG6\"6$%)operatorG%&arrowGF*-%$sumG 6$*&*&---%#@@G6$%\"DG%\"iG6#9$6#9%\"\"\"),&%\"xGF>F=!\"\"F9F>\"\"\"-%* factorialG6#F9!\"\"/F9;\"\"!9&F*F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "TaylorPol(f,0,3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# ,&%\"xG\"\"\"*$)F$\"\"$\"\"\"#F%F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "taylor(f(x), x=0, 4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#+)%\"xG\"\"\"\"\"\"#F%\"\"$\"\"$-%\"OG6#F%\"\"%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "convert(%, polynom);" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#,&%\"xG\"\"\"*$)F$\"\"$\"\"\"#F%F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "plot([f(x), TayloruvPolynom[3]], x= -Pi/3..Pi/3);" }}{PARA 13 "" 1 "" {INLPLOT "6&-%'CURVESG6$7S7$$!1++5\\ v>Z5!#:$!1([#=*z]?t\"F*7$$!1C'eipX:+\"F*$!1N]O<`ri:F*7$$!1GZ+KEC='*!#; $!1,5v?\"=RV\"F*7$$!1\\e\"RdL:<*F5$!1'Qu$Gk`08F*7$$!1?0AQM'=s)F5$!1\\G xwmf!>\"F*7$$!1Ml=10Lu#)F5$!1qF.(p7y3\"F*7$$!1.\"))**=5%fyF5$!1AS,,j3, 5F*7$$!1&H(oNUyHuF5$!1T\"zPvgc=*F57$$!1>J;fWY&)pF5$!1$3W_Rm!)R)F57$$!1 'H(z@'pDa'F5$!14'>[aL%pwF57$$!1e5(G%y*p3'F5$!1\"4=Sj_)ppF57$$!1R*>?(*H do&F5$!1c+Hl6d*Q'F57$$!1.$y%*Q(*RB&F5$!1u3yu\"\\3x&F57$$!1y6b\\*4/y%F5 $!10UOETB\"=&F57$$!1@EZ.WHVVF5$!1eLirarQYF57$$!1%f:7h^j%RF5$!1nDQQk$[; %F57$$!1NJ4Q#[VZ$F5$!1\">DvKU7i$F57$$!1KSFo%*\\uIF5$!1#)R#[!3=vJF57$$! 1T&*H$H!Q4EF5$!1\"4S+/i-n#F57$$!1()e.75n(>#F5$!1*)[PB#F57$$!1X)y!y 1'fu\"F5$!13h@s3#Rw\"F57$$!1&*G'*>c#eJ\"F5$!1F#>)REZB8F57$$!1qi\\4\"[- n)!#<$!1>:f8$R?p)Fdr7$$!1ZgDyc&)[XFdr$!1.\"H!)y&*>b%Fdr7$$!1#)f&QgrP. \"!#=$!1PW6s>xL5F_s7$$\"1raqScA9XFdr$\"1IUOSXH# [lF5$\"1\"R*e[1TywF57$$\"1S(zQ_(e#)pF5$\"1a3x8;;$R)F57$$\"1<#))R_\"zEu F5$\"17q0Z6s#)F5$\" 1JfsK!Ht3\"F*7$$\"1]%eLDegt)F5$\"1`p.9T.%>\"F*7$$\"1%*=8\")[,^\"*F5$\" 14\"Q&=@++8F*7$$\"11\\v%>XMf*F5$\"1F6UflOE9F*7$$\"16GxX2p,5F*$\"1:^Z-Z @j:F*7$$\"1++5\\v>Z5F*$\"1([#=*z]?t\"F*-%'COLOURG6&%$RGBG$\"#5!\"\"\" \"!Fa[l-F$6$7S7$F($!1%yjg3\"**H9F*7$F.$!1&[ei6FkL\"F*7$F3$!1\"[35q?%e7 F*7$F9$!1h&pJ29V<\"F*7$F>$!135j\\jM$4\"F*7$FC$!18'y#4eE;5F*7$FH$!1^V1b 8nx%*F57$FM$!1U)RL[1pz)F57$FR$!13d)p:!p@\")F57$FW$!1RQ/-+4wuF57$Ffn$!1 B7jyLxQoF57$F[o$!1SQOP_T)H'F57$F`o$!1x#z1&Q%>r&F57$Feo$!1&>JyzaX9&F57$ Fjo$!1[K%>u.kh%F57$F_p$!1cXj8e@^TF57$Fdp$!1cL6Qb99OF57$Fip$!1gW#QIs8<$ F57$F^q$!1c>GeLgoEF57$Fcq$!1;MK\"F57$Fbr$!1L9m'yt>p)Fdr7$Fhr$!1$Q')*)=$*>b%Fdr7$F]s$!1zU6s>xL5F_s 7$Fcs$\"1X)*yQ?H9LoD*e,\"F*7$Fby$\"1\"fz=SZe4 \"F*7$Fgy$\"1aM#44S0<\"F*7$F\\z$\"1b()*4%Gl`7F*7$Faz$\"1\"H6^oZ5!\"*$\"+^v>Z5Ffel%(DEFAULTG" 2 479 479 479 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "plot(abs(f(x)-TaylorPol(f,0,3)), x=-1..1);" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$7[o7$$!\"\"\"\"!$\"1)o:K\"RuSA!#;7$$!1nm;HU,\" *)*F-$\"1\"zq3*eT!4#F-7$$!1MLLe%G?y*F-$\"1s\\$p**3(\\>F-7$$!1++](oUIn* F-$\"1'z%)pj#*z\"=F-7$$!1nmm;p0k&*F-$\"1)y_Dg#o%p\"F-7$$!1++vV5Su$*F-$ \"1pG9dIb)\\\"F-7$$!1LL$3]\")4g5IFV7$$!1nm;/siqmF-$\"121Bkn+[@FV7$$!1++] (y$pZiF-$\"1c(zQmHu]\"FV7$$!1LLL$yaE\"eF-$\"1P/t#>=\\-\"FV7$$!1nmm\">s %HaF-$\"1#R)[y$*fVr!#=7$$!1+++]$*4)*\\F-$\"14\\HpFiEYFcq7$$!1+++]_&\\c %F-$\"1eHx?Ml')GFcq7$$!1+++]1aZTF-$\"1H@g0j))ev5Fcq7$$!1MLL$=exJ$F-$\"1;5Vc$H*4c!#>7$$!1MLLL2$f$HF-$\"1')[r7!R O,$F]s7$$!1++]PYx\"\\#F-$\"1Rps3G#QJ\"F]s7$$!1MLLL7i)4#F-$\"1$4qo9Hh_& !#?7$$!1++]P'psm\"F-$\"1sLwV%Htt\"F]t7$$!1++]74_c7F-$\"1.hh$p=J?%!#@7$ $!1JLL$3x%z#)FV$\"1P3KLc(=?&!#A7$$!1MLL3s$QM%FV$\"1tKAI0mj?!#B7$$!1^om m;zr)*F]s$\"1.ZEM9$)\\7!#J7$$\"1Fdu7$$\"1!**** \\PQ#\\\")FV$\"1oGpAO*\\![F^u7$$\"1KLLe\"*[H7F-$\"1F]z$[8!pPFht7$$\"1* ******pvxl\"F-$\"1\\_g4q?)o\"F]t7$$\"1)****\\_qn2#F-$\"1U%y'G#)RU_F]t7 $$\"1)***\\i&p@[#F-$\"1(G*3R'R%)G\"F]s7$$\"1)****\\2'HKHF-$\"1!H/#HHw% *HF]s7$$\"1lmmmZvOLF-$\"1\\W![-xax&F]s7$$\"1+++]2goPF-$\"1-)z\"[$e`2\" Fcq7$$\"1KL$eR<*fTF-$\"1k$e\")4'3'y\"Fcq7$$\"1+++])Hxe%F-$\"1EIx\"=8@' HFcq7$$\"1lm;H!o-*\\F-$\"1O8O'4t))e%Fcq7$$\"1****\\7k.6aF-$\"1^6YUFp;q Fcq7$$\"1mmm;WTAeF-$\"1?M[uA5M5FV7$$\"1****\\i!*3`iF-$\"1mTLA4W9:FV7$$ \"1MLLL*zym'F-$\"1M%ziE*>V@FV7$$\"1LLL3N1#4(F-$\"1BXP!3BR+$FV7$$\"1mm; HYt7vF-$\"1\"f9E%\\>OTFV7$$\"1*******p(G**yF-$\"1zNPqi=([&FV7$$\"1LL$3 U/37)F-$\"1C2*)RA\\CkFV7$$\"1mmmT6KU$)F-$\"1Qn&Gx+5](FV7$$\"1++]P$[/a) F-$\"1'HGKcOsf)FV7$$\"1LLLLbdQ()F-$\"1vD/$yh`$)*FV7$$\"1nm\"zW?)\\*)F- $\"1Rpg,88L6F-7$$\"1++]i`1h\"*F-$\"1A)[kR:KI\"F-7$$\"1++++PDj$*F-$\"1e D'405x[\"F-7$$\"1++]P?Wl&*F-$\"1IWYF$*>'p\"F-7$$\"1+]7G:3u'*F-$\"1d]fn v?>=F-7$$\"1++v=5s#y*F-$\"1\")Hr0Td]>F-7$$\"1+]P40O\"*)*F-$\"1DqvWz(34 #F-7$$\"\"\"F*F+-%'COLOURG6&%$RGBG$\"#5F)F*F*-%+AXESLABELSG6$Q\"x6\"%! G-%%VIEWG6$;F(Fb_l%(DEFAULTG" 2 479 479 479 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2337 22052 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}}{MARK "5 13 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 }