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Abstract 
 
Point Pattern Analysis is a class of techniques that endeavor to identify patterns in spatial 
data. We utilize the Quadrant Count Method as an introductory algorithm of point pattern 
analysis. While this algorithm is very simplistic we do uncover a few mathematical and 
statistical subtleties. We will apply this method to the tree data that is taken from a survey 
carried out by D.J. Gerrard on a 19.6 acre square plot in Lansing Woods, Michigan. We 
attempt to classify clustering, or lack of clustering, of hickory tress in the survey area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3

 
 
 
Introduction  

The solutions to many mathematical questions, both pure and applied, rely on the 
ability of the investigator to uncover a pattern. In basic terms, Point Pattern Analysis is an 
investigation focused on finding patterns in data comprised of points in a spatial region. 
One common application of Point Pattern Analysis is epidemiology. The medical 
community is often interested in the spread of infectious disease such as: SARS, chicken 
pox, and West Nile virus among others. It is possible to identify pattern to the spread of 
infection then this might lead to an understanding of how the spread of an illness is 
related to social behavior, environmental factors, genetic susceptibility, or many other 
health care factors.  

In general, a spatial data set takes the form: X= }|{ , NmRxx m
kk ∈ε . However, it is 

possible for the data to contain spatial location plus additional information. For example, 
earthquake data typically gives the location of earthquakes along a fault line and will 
often have the size and the time of each earthquake. Data that contains spatial data plus 
additional information is often referred to as marked spatial data. In our analysis, we will 
be concerned with only the spatial information and we will disregard any additional 
information associated with the data. Moreover, the examples we will work with are 
limited to two-dimensional data. 

Our interest will lie in quantifying the dispersion of objects within a confined 
geographical area. We try to understand the interaction of pattern and process and use 
point pattern analysis as a mechanism for detecting patterns associated as compared to 
random processes. The random process that will serve for our comparison will be the 
homogenous Poisson process, which will be described in more detail in section 2. 

D.J Gerrard describes an investigation of a 19 .6 acre square plot in Lansing Woods, 
Michigan [3]. This data includes hickories, maples and oaks grown on a square plot. The 
data for hickories is given in Cartesian coordinates, that is, ii yx ,( ) form, where 

Ryandx ii ∈ . Also, the points are plotted on a unit square region.Our main goal of Point 
Pattern Analysis is to find out whether the distribution of the hickory trees is random, 
clustered or regularly dispersed. The kind of pattern involved would further our 
understanding of the behavior of the hickory trees and thus can be of great use to 
ecologists and biologists. For example, if the pattern is clustered, the biologists may 
conclude that natural factors encourage the hickories to cohabitate and promote tree 
growth. 

There are several methods and algorithms that endeavor to describe pattern for a 
collection of points. The most common methods discovered for spatial pattern analysis 
are as follows: [1] 

1. Quadrant Count Method 
2. Kernel Density Estimation (K means) 
3. Nearest Neighbor Distance                                       

a. G function 
b. F function                  
c. K function 
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The above list of techniques for Point Pattern Analysis is among the most popular 
and best established mathematical and statistical methods used in the literature [1,2,4,5]. 
Since Point Pattern Analysis can take several forms and can be applied in a variety of 
settings we will present a list of criteria in order to determine if a data set is suitable for 
our Point Pattern Analysis. 
 
 The criteria we will use to determine if a data set is appropriate for our type of 
point patter analysis is given by the following:  

• Spatial data must be mapped on a plane; both latitude and longitude coordinates 
are needed. 

• The study area must be selected and determined prior to the analysis. 
• Point data should not be a selected sample, but rather the entire set of data to be 

analyzed. 
• There should be 1-1 correspondence between objects in study area and events in 

pattern. 
• Points must be true incidents with real spatial coordinates. 

 
 

Since this is an introductory venture into the subject of Point Pattern Analysis we 
have selected the Quadrant Count Method for our analysis. While the other techniques 
listed in this section can be more descriptive and more accurate it is also true that many 
of these other methods are more complicated and difficult to implement. We have found 
that Quadrant Count Analysis is relatively easy method to implement and it has provided 
several opportunities to apply basic mathematical and statistical concepts. 
 
Quadrant Count Method  
 The Quadrant Count Method can be described simply as partitioning the data set 
into n equal sized sub regions; we will call these sub regions quadrants. In each quadrant 
we will be counting the number of events that occur and it is the distribution of quadrant 
counts that will serve as our indicator of pattern. The choice of the quadrant size can 
greatly affect our analysis, where large quadrants produce a coarse description of the 
pattern. If the quadrant size is too small then many quadrants may contain only one event 
or they might not contain any events at all. We will use the rule of thumb for the area of a 

square is twice the expected frequency of points in a random distribution (i.e.,
n

Area2 ), 

where n is the number of points in the sample size. After partitioning the data set into 
quadrants, the frequency distribution of the number of points per quadrant has been 
constructed. The Mean and Variance of the sample are then computed to calculate the 
Variance-to-Mean Ratio (VTMR). The following is the way we will interpret the VTMR 
of a sample: 

• If VTMR>1, the pattern is clustered. This implies that the data set has one or 
more groups of points in clusters and large areas of maps without points. 
The region might look like Figure 1: 
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Figure 1 A Clustered pattern   

  
 

• If VTMR<1, the pattern is regularly dispersed implying the events are distributed 
more or less regularly over the region. A regularly dispersed area might look like 
Figure 2:  

 
Figure 2 Regularly Dispersed Pattern  
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• If VTMR=1, the pattern is random. This implies the data set has no dominant 
trend towards clustering or dispersion. A random pattern may look like Figure 3: 

 
 
 
 
 
Figure 3 Random Pattern  

 
       
The random model that will serve as our standard of comparison is the Complete 

Spatial Randomness (CSR) model [1,3]. The CSR model has two basic characteristics: 
(1) The number of events in any planar region A is with area |A| follows a Poisson 

distribution with mean λ |A|. 
(2) Given there are n events in A, those events are independent and form a random 

sample from a uniform distribution on A.  
The constant λ is the intensity, or the mean number of events per unit area. Also, by 
(1), the intensity of events does not vary over the plane. According to (2), CSR also 
implies, the events are independent of each other and there is no interaction between 
them.  
 
The mathematical construct that we will use to simulate a CSR model is the 

homogenous Poisson process. The Poisson process is suitably defined by the following 
postulates: 

(a) If λ>0, and any finite planar region A, N (A), follows a Poisson distribution 
with mean λ |A|.  

(b) Given N (A)=n, the n events in A form an independent random sample from 
the uniform distribution on A. (In our case, n is the number of trees in the 
region) 

As stated above, the CSR corresponds to the homogenous Poisson Distribution. 
Please recall that the Poisson distribution can be used in place of the Binomial 
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distribution in the case of very large samples. In a binomial distribution, all eligible 
phenomena are studied, whereas in the Poisson distribution only the cases with a 
particular outcome are studied. The Poisson distribution can also be used to study how 
“events” are distributed on the level of a population. If having one “event” has no 
influence on the chance of having another accident, the “event” is put back into the 
population immediately after an “event”; people may have one, two, three, or more 
events during a certain period of time. One assumption in this application of the Poisson 
distribution is that the chance of having an event is randomly distributed: every 
individual has an equal chance. Mathematically, this is expressed in the fact that for a 
Poisson distribution, the variance of the sample is equal to its mean. Hence, in the QCM, 
the VTMR of a random sample is equal to 1, since the variance is equal to its mean.  

 
How to apply Quadrant Count Analysis 
 To explain the application of QCA in detail, a small data set is plotted on a square       

region. The region is then divided into equally sized quadrants (squares). This is 
demonstrated in the following figure. For the sake of simplicity, we have chosen to divide 
the region into only four quadrants as illustrated in Figure 4. 

 
Figure 4 Dividing a region into quadrants 

 
The Mean of the sample can then be calculated as: 
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The Variance to Mean Ratio or VTMR is calculated as  

9.0
5
5.4
===

Mean
VarianceVTMR . 

 
According to QCM, since VTMR for this example is less than 1, our simple data set 

is classified as regularly dispersed. Thus the points tend to repel each other and are 
thought to spread evenly throughout the region. 

  
Using QCM to analyze the hickories 

To apply Quadrant Count Analysis to our data, we used a code written in C++. 
We experimented with different quadrant sizes, using m4 , Nm∈  as our number of 
quadrants. This choice of number of quadrants made it easier to experiment with 
different number of quadrants. Table 1 displays the results generated with different 
quadrant sizes.  

 
   Table 1 VTMR for different quadrant sizes 
 
N Grid Size Mean Variance VTMR 
1 2*2 175.75 3808.33 21.669 
2 4*4 43.9375 529 12.0398 
3 8*8 10.9844 55.6032 5.06202 
4 16*16 2.74609 6.52941 2.37771 
5 18*18 2.16975 4.29721 1.98051 
6 19*19 1.94837 3.57778 1.83724 
7 32*32 0.686523 0.939394 1.36833 
8 64*64 0.171631 0.188767 1.09884 
9 128*128 0.0429077 0.0443753 1.0342 
10 256*256 0.0107269 0.0109865 1.0242 
 
 
 As we test different quadrant sizes, we notice the smaller number of quadrants 
corresponds to larger variance. But as we divide the region into smaller quadrants, the 
variance starts decreasing to one.  
  We chose to divide the hickories into 256 quadrants (16*16 grid) as our 
experimenting size. We select this number since it is the power of 4 that is to the rule of 

thumb: number of quadrants=
n

Area2 . For 256 quadrants the VTMR was found to be 

approximately 2.37771. According to the QCM, a VTMR that is greater than 1 implies 
that the hickories must be clustered. However, it is possible of a data set that is randomly 
generated would also have a VTMR that is greater than one when counting over 256 
quadrants. How confident can we be that our 2.38 VTMR does indeed correspond to the 
clustering pattern of our hickories? The answer lies in using the homogeneous Poisson 
process to simulate random data for the purpose of comparison. 
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Simulations 
To be more confident about our hickories being clustered, we generate 500 data 

sets of 703 random points each. Their VTMR is then calculated and a histogram of the 
500 VTMR is built. This histogram is illustrated in Figure 5. 

 
 
 
Figure 5 Histogram variance to mean ratios of the 500 random simulations 

 
We will use the empirical p-value of our observed value of VTMR (2.37771) in 

correspondence with our random simulations. Please recall the empirical p-value is the 
percentage of the VTMR from the random samples that are greater than or equal to our 
observed VTMR. Hence, a small the empirical p-value implies that we can be more 
confident that our data set is clustered. It turns out that none of the VTMR of the random 
samples are equal to or greater than our calculated VTMR. Therefore, our Empirical p-
value is 0 and we can be highly confident that our data set of hickories is clustered.  

To illustrate the utility of the empirical p-value consider the hypothetical case that 
we had a set of tree data that had a VTMR is very close to 1, say 1.01. The Quadrant 
Count Method would classify this data set as clustered, but Figure 5 shows that random 
data could also generate a VTMR that is larger than one. If we utilize the same collection 
of 500 random data sets and calculate the empirical p-value that corresponds to an 
observed VTMR of 1.01 then our empirical p-value is approximately .58. This value 
implies more than half the random simulations have a VTMR greater than or equal to  
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1.01. Thus, we cannot be confident that data set with a VTMR of 1.01 is in reality 
clustered. 
 
Conclusion  
 We have introduced and applied the Quadrant Count Method to analyze the data 
set of hickories for a pattern. Our analysis showed that the hickories were classified as 
clustered. By using the empirical p-value and the random model we were able to provide 
strong support that the hickories are certainly clustered. There are a few things that could 
be done to improve our methods and our analysis. The empirical p-value is a very simple 
tool, but it is not necessarily a rigorous test. Another statistical method for validating the 
correct classification of clustered and would be the Goodness of Fit Test. Moreover, it 
has been mentioned that the Quadrant Count Method is not the most accurate method for 
identifying clustering. The Nearest Neighbor Analysis would have been a better choice of 
method, but we did not have time to complete this type of analysis. 
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