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1. Basic Principles

In this section we review basic facts about classical cosmology, following mainly [10]. There
are many reviews available on hep-th, see for example [19, 20, 21] 1. Contemporary cosmo-
logical modes are based on the idea that the Universe is pretty much the same everywhere-
the idea known as Copernican principle. It is clear that this principle can be applied
on the large scales only where local variations of density is averaged over. In other words,
the Universe is spatially homogeneous and isotropic on the largest scales.

Isotropy is the claim that the Universe looks the same in all directions. More precisely,
a manifold M is isotropic around a point p if, for any two vectors V and W in T),M there
is an isometry of M such that the push forward of W under the isometry parallel with
V. The evidence comes from the smoothness of the temperature of the cosmic microwave
background. In other words, given any two points p and ¢ there is an isometry which takes
p into g. We must mention that there is no necessary relationship between homogeneity
and isotropy; a manifold can be homogeneous but nowhere isotropic (such as R x S? in the
usual metric) or it can be isotropic around a point without being homogeneous (such as a
cone, which is isotropic around its vertex but certainly not homogeneous). On the other
hand, if a space is isotropic everywhere then it is homogeneous. Since there is observation
evidence for isotropy and the Copernican principle says that we are not the center of the
Universe and therefore observers elsewhere should also observe an isotropy all cosmological
models are based on the existence of homogeneity and isotropy of manifold. However it is
important to stress that this claim is not certainly true. The Universe is apparently not
static, but changing in time. Therefore the cosmological models are based on the idea that
the Universe is homogeneous and isotropic in space but not in time. This means that the
Universe can be foliated into space-like surfaces such that each slice is homogeneous and
isotropic. Then it is natural to consider our space-time to be R x ¥ where R represents the
time direction and ¥ is a homogeneous and isotropic three-manifold. Since we may think
of isotropy as invariance under rotation and homogeneity as invariance under translation
we get that ¥ must be a maximally symmetric space. More precisely, the homogeneity

'Our metric signature is — + ++. We use units i = ¢ = 1 and define the reduced Planck mass by
M, = (87G)~'/? = 10'8GeV.



and isotropy imply that the space has its maximum possible number of Killing vectors.
Therefore we can write the metric in the form

Here ¢ is time-like coordinate and (z', 22, 23) are the coordinates on ¥ where v;; is the

maximally symmetric metric on X. The function a(t) is known as scale factor that tells
us how big the space-like slice ¥ is at the moment ¢. The coordinates used here in which
the metric is free of cross terms dtdz’ and the space-like components are proportional to
a single function of ¢ are known as co-moving coordinates and an observer who stays
at constant 2’ is also called as “co-moving”. Only co-moving observer will think that the
Universe looks isotropic.

As we have shown in introduction the maximally symmetric Euclidean three-metric
7Yij obey

R, = k(v — Yavsn) » (1.2)

where k is some constant and the superscript on the Riemann tensor reminds to us that
it is associated with the three metric 7;; not to the metric of entire space-time. Then the
Ricci tensor is

3 3 3
Rgl) =7 kRZ(.j,)d = 2k . (1.3)

Since the space is maximally symmetric then it will certainly be spherically symmetric as
well. For such a space-time the metric can be put in the form

do? = yijdatda’ = e dr? + r?(d6? + sin? 0dg?) . (1.4)

The Ricci tensor for the metric given above has components

2
Ry = a8,

Rg) = e ProB-1)+1
RY) = [ (rd1f — 1) + 1]sin®0 .

If we compare these expressions to (1.3) we can solve for (r):

2 1
208 = 2ke?’ = dBe 8 = 2krdr = 3 = —3 In(C — kr?) ,
,
e o —1)+1=2kr?= e Pk —1) +1 = 2kr* =
> e P rl1=k?=>C=1
(1.5)

and the third equation is identically solved. Then we obtain following metric on space-time:

dr?

2_ _ 32, 2
ds® = —dt* + a*(t) 52

+ r2(df? + sin® 0d¢?) | . (1.6)




This form of metric is known as Friedman-Robertson-Walker metric (FRW). The
Einstein equations then will determine the behaviour of the scale factor a(t). We can also
easily see that the metric is invariant under the scaling transformations:

k
k— —,
K|
r— VIklr,
a

vl

(1.7)

Therefore it is clear that the only relevant parameter is k/|k| and there are three cases of
interest: k = —1 ,k = 0 and k£ = 1. The case k = —1 corresponds to constant negative
curvature on X and is called open, the case £ = 0 corresponds no curvature on % and is
called flat ; the case k£ = 1 corresponds to positive curvature on ¥ and is called closed.
Now we will examine these possibilities in more details:

e For k£ = 0 the metric on X is
do? = dr;dz' ,i=1,2,3 (1.8)

that is simply the Euclidean space. Globally, it could describe R? or more complicated
manifold, as for example three torus S' x S' x S*.

e For k = 1 we define
r=siné ,dr = cos&d§ (1.9)

and hence the metric on ¥ can be written as
do? = d&? + sin® £d? (1.10)

which is the metric of three sphere. In this case the only possible global structure is
actually three sphere.

e The case kK = —1 we can write
r = sinh ¢ (1.11)

and the metric on X is
do? = dip® + sinh? dQ? (1.12)

which is the metric of three dimensional space of constant negative curvature. Glob-
ally such a space can extend forever but it can also describe a non-simply connected
compact space.

In order to solve the Einstein’s equations of motion we have to calculate the Christoffel’s

symbols for the metric ansatz (1.6). If we denote a = fli—‘tl then these symbols are given by

aa . .
0 = I‘82 = aar? Fg3 = aar

o _ e 2
W= k2

sin?6 |
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a
0
a

Ijo = —r(1—kr?), Tj3=—r(1—kr?)sin’0,
1

P%Z :FgleZ{’g:Fgl:; '

I3, = —sinfcos ,I'5; = T3, =sinf .

(1.13)

After simple calculations we can find following nonzero components of the Ricci tensor

Ry = —32
a
ai + 2a2 + 2k
Ry = — =2 727
" 1—Fkr2 7

Ros = r2(ad + 24° + 2k) ,
Rsz = r2(aii + 24° + 2k)sinf .
(1.14)

Then the Ricci scalar is equal to
y 6, . .
R=g" RWZE(aa—l—a +Ek). (1.15)

Since Universe is not empty we are not interested in the vacuum Einstein equations. Rather
we must study the solutions of the Einstein’s equations that contain the nontrivial right
hand side. The standard model with we begin is the Universe filled by a perfect fluid that
is defined as fluids that are isotropic in their rest frame. The energy momentum tensor for
a perfect fluid can be written

T = (p+ p)UUL + g (1.16)

where p and p are energy density and pressure as measured in the rest frame and U, is the
four-velocity of the fluid. It is clear that if a fluid which is isotropic in some frame leads
to a metric which is isotropic in some frame, the two frames will coincide, that is the fluid
will be in rest frame in co-moving coordinates. The four-velocity is then

U* =(1,0,0,0) , (1.17)
and the energy tensor is
p0 0 0
0
T = 1.18
w 0 gup (1.18)
0
If we raise its index we obtain
ThH = ¢""T,, = diag(—p, p, p, p) (1.19)



and note that the trace is equal to
T = T‘L =-p+3p. (1.20)

For letter purposes it is also instructive to consider the zero component of the conservation
of the stress energy tensor

0 = V,TH = 9,T% + T T — ThoTH =

= —~dp—3=(p+7) .
(1.21)

To proceed it is necessary to choose the equation of state, the relation between p and p. It
appears that all perfect fluids relevant to cosmology obey the simple equation of state

p=uwp, (1.22)

where w is constant independent on time. Then the conservation of energy becomes

P a

- =3(1 - 1.23

P =31 (1.23)
that can be integrated and we obtain

p=a30Fw) (1.24)

The most interesting examples of cosmological fluids are dust and radiation. Dust is
characterized with w = 0. Examples include ordinary stars and galaxies where the pressure
is negligible in comparison with the energy density. Dust is also known as matter and
Universes whose energy is mostly due to dust are known as matter-dominated. The
energy density in matter falls as

pr~ad (1.25)

that can be interpreted as the decrease in the number density of particles as the Universe
expands. (For dust the energy density is dominated by the rest energy that is proportional
to the number density.)

The second form of the fluid, Radiation may be used to describe either actual elec-
tromagnetic radiation, or massive particles moving at relative velocities sufficiently close to
the speed of light so that they become indistinguishable from photons. The stress energy
tensor of the radiation can be expressed in terms of the field strength as

1

1
T — o (FWF; — 49WFMFA(,> . (1.26)

Then the trace of this stress energy tensor is

1 4
T = T‘ul/gl/,u = e |:Fu>\FM>\ — (4)F)\UF>\Uj| =0 (1.27)



Since this should be also equal to (1.20) we get that

1

= 5. 1.28
p=3p (1.28)

An Universe in which most of the energy density is in the form of radiation is known as
radiation-dominated. The energy density in radiation then falls off as

pr~at. (1.29)

This result implies that the energy density of radiation falls of faster than that in matter.
It is believed that today the energy density of the Universe is dominated by matter with
pmat/Prad ~ 105, However in the past the Universe was much smaller and the energy
density in radiation would have dominated at very early times.

There is also one important form of energy density that is sometimes considered,
namely that of the vacuum itself. Introducing energy into the vacuum is equivalent to
introducing a cosmological constant so that Einstein’s equations with cosmological constant
are

Gy = 87GT,, — A (1.30)

that is clearly the same form as the equations with no cosmological constant but an energy-
momentum tensor for the vacuum

A
T;jgc - _Sﬂ_Gg,uu . (1.31)
This has form of the perfect fluid with
A
- —p=—". 1.32
p=-1=g = (1.32)

that implies that w = 1 and from (1.24) we see that the energy density is independent on
a. Since the energy density of matter and the radiation decreases as the Universe expands,
if there is nonzero vacuum energy it tends to wind over the long term. If this happens we
say that the Universe became vacuum-dominated.

Now we turn to the Einstein’s equations. Recall that they can be written in the form

1
R, = 8nG (TW - 2gWT> . (1.33)
The prv = 00 components is )
— 3% = 4xG(p+ 3p) | (1.34)
a
and the puv = ij equations give
i a\> .k
—4+2(- 2— =47G(p—1p) . 1.35
“a2(2) w2l —anGlo-p) (1.35)
Using (1.34) we simplify (1.35) as
-\ 2
a 8rG k
2) =22, 2 1.36
() ",k (1.36)



(1.36) together with (1.34) are known as Friedmann equations.
Now we introduce some terminology considering cosmological parameters. The rate of
expansion is characterised by the Hubble parameter

a
H=-. 1.37
° (137)

The value of the Hubble parameter at present epoch is the Hubble constant, Hy. There is

also the deceleration parameter )
ad
=—— 1.38
¢=-= (1.38)
that measures the rate of change of the rate of expanding. Another useful parameter is the

density parameter

8tG P
=—=p= , 1.39
3H? P Perit ( )
where the critical density is defined by
3H?
Perit = % . (140)

This quantity, that is generally time dependent, is called critical density because the Fried-
man equation (1.36) can be written as

k

O-1= T

(1.41)
where generally H is time dependent. The sign of & is therefore determined by whether €2
is greater than, equal to, or less than one. In other words, we have

P < perit =2 <1=k=-1— open,
P = perit=NV=1=k=0— flat |
P> perit = Q2 >1=k=1-— closed .
(1.42)

It is useful to know the qualitative behaviour of various possibilities of the solutions of
the Friedman equations. Let us for the moment set A = 0 and consider the behaviour of
Universe filled with fluids of positive energy p > 0 and nonnegative pressure p > 0. Then
(1.34) implies that @ < 0 . Since we know from observation that the Universe is expanding
(& > 0) this means that the Universe is decelerating which could be intuitively expected
since the gravitation attraction of the matter in the Universe works against the expanding.
The fact that the Universe is decelerating means that it must have been expanding even
faster in the past; if we trace the evolution backward in time, we reach the singularity at
a = 0. Notice that if a were exactly zero, a(t) would be straight line a(t) = Ct (we have
chosen the integration constant that at ¢ = 0,a(0) = 0 and hence H(t) = ¢ = 1 5o that
Hy ! would determine the age of the Universe.

The singularity at a = 0 is known as Big Bang. It represents the creation of Universe
from a singular space, not explosion of matter into a pre-existing space-time. Since for a —



0 the energy density becomes arbitrary high we do not expect classical general relativity
to give a correct description of nature in this regime.

The future evolution is different for different k. For the open and flat cases k = —1,0
the (1.36) implies
8rG
a® = %pcﬂ + k] . (1.43)

Since the right hand side is strictly positive so @ never passes through zero. Since a > 0
today it follows that @ > 0 for all time. Thus open and flat Universes expand forever-they
are temporally and spatially open. It is however important to keep in mind that this works
on the presumption of nonzero positive energy density. Negative energy density Universes
do not have to expand forever, even if they are open.

The question is how fast these Universes keep expanding? Let us now consider the
quantity pa® (recall that this is constant in matter dominated Universe). Using the con-
servation of energy (1.21) we get

d 3. 3.0 N 2.
g@°p)=a’(=p+p)=3pa’a
(1.44)
that implies that
d
ﬁ(a‘gp) <0. (1.45)

This result implies that a?p must go to zero in an ever-expanding Universe where a — 0o.
Then (1.43) implies that
a2 — |k| (1.46)

(We must stress that it holds for £ = —1,0. Thus for £ = —1 an expanding approaches
the limiting value @ — 1 while for k£ = 0 the Universe keeps expanding but more and more
slowly.
For the closed Universe (k = 1) (1.36) implies
81G

= ”Tpcﬂ —1 (1.47)
It is clear that the argument that pa? — 0 as a — 0 still holds. In this case the right hand
side of the upper equation becomes negative which clearly cannot happen. Therefore the
Universe does not expand indefinitely, a posses an upper bound a,nq:. As a approaches
amaz the equation (1.34) implies

A7 G

a= _T(p + 3p)amax <0 (1'48)

and hence ¢ is finite and negative at this point, so a reaches a4, and starts decreasing.
Since ¢ < 0 it will inevitably continue to contract to zero- the Big Crunch. Thus, the
closed Universe (on presumption of positive p and non negative p) is closed in time as well
as space.



We will now list some of the exact solutions corresponding to only one type of energy
density. For dust-only Universe (p = 0) it is convenient to define a development angle
¢(t), rather than using ¢ as a parameter directly. The solutions are then, for open Universes;

C C
a:§(cosh¢—1) ,tz;(sinhgb—gb) Jk=—-1, (1.49)
for flat Universes
9C 1/3
a= (4) 23 k=0, (1.50)
and for closed Universes
az%(l—cos@,t:%@—sind)) k=41, (1.51)
where we have defined 8
C = 7TTpa?’ = constant . (1.52)

For Universes filled with nothing but radiation, p = % p, we have once again open Universes,

L \2 1/2
a=vVC' <1+ -1 Jk=-1 (1.53)
@\ )
flat Universes,
a=(4CHV4HY? k=0 (1.54)
and closed Universes,
971/2
Vo 1-(1--2 k=41 1.55
a \/@ ) + ( * )
where we have defined I
C'= 7TTpa4 = constant . (1.56)

Let us now consider the case of nonzero cosmological constant. We start with A < 0.
In this case €2 is negative and we get that k = —1. The solution in this case is

e e (. o

There is also an open (k = —1) solution for A > 0 given by

a= \/isinh <\/§t> . (1.58)

A flat vacuum-dominated Universe must have A > 0 and the solution is

a ~ exp (:l: gt) (1.59)

~10 -



while the closed Universe must also have A > 0 and satisfies

3 A
a= \/Icosh < 3t> . (1.60)

These solutions are a little misleading. In fact the three solutions for A > 0 - (1.58),(1.59),(1.60)-
all represent the same space-time, just in different coordinates. This space-time, known
as de Sitter space is maximally symmetric as a space-time. The A < 0 solution is also
maximally symmetric and is known as anti-de Sitter space

Before we conclude this section we spend some time with the discussion of the situation
when the matter sector in Universe constitutes more general form of matter. For example,
we can presume that all components of the matter are present. Then the total density

parameter takes the form

0=>"o (1.61)

and the Friedman equation can be written as

k

O-1= T

(1.62)

As in the particular previous example we obtain that the sign of k is determined whether
Q) is greater than, equal to, or less than one. Explicitly, we have

P < perit = <1 —k=-1,,open,

P=perit=0=1— k=0, flat ,

P> perit =02 >1— k=1, closed .
(1.63)

Since p; ~ a~ "™ we have
pi i i) (1.64)
pi Y

so that relative amount of energy in different components changes as the Universe evolves.

1.1 Motion of the probe in the FRW Universe

In order to understand properties of given background it is common strategy to study the
dynamics of the probe in given background. Let us then consider the motion of particle
in the FRW Universe. There are number of space-like Killing vectors, but no time-like
Killing vector to give us a notion of conserved energy. There is, however, a Killing tensor.
If U* = (1,0,0,0) is the four-velocity of co-moving observers, then the tensor

Kuu = a2(gul/ + U;,LUV) (165)

satisfies V(,K ;) = 0 and is therefore a Killing tensor. This means that if a particle has
four-velocity V¥ = ddz—; then the quantity

K? = K, VIVY = a[V,V* + (U V")?] (1.66)

- 11 —



will be constant along geodetics. For example, let us now consider the massive particle. In
this case we have V,,V# = —1 or alternatively

(V92 =1+ V'V, (1.67)

- K
\/ V' Vig; = P (1.68)

The physical interpretation of this result is that particle slows down with respect to co-

so that

moving coordinates as the Universe expands (since a — o00). In fact this is an actual
slowing down, in the sense that a gas of particles with initially high relative velocities will
cool down as the Universe expands. A similar thing happens to null geodesics. In this case

V,V# =0 and we get
K

U VH == (1.69)
a
But the frequency of the photon as measured by a co-moving observer is w = —U,V#. The
frequency of the photon emitted with frequency w; will therefore be observed with a lower
frequency wp as the Universe expands:

w a
2 (1.70)

w1 aq
It is commonly said about this phenomena as the redshift z between the two events,
defined by fractional change in wavelength:

z= =2 1= (1.71)

The red shift is something that can be measured, we know the rest-frame wavelengths of
various spectral lines in the radiation of distant galaxies, so that we can determine how
much their wavelengths have changed along the path from time ¢; when they were emitted
to time ¢y when they were observed. We therefore know the ratio of the scale factors at
these two times however we do not know the times themselves.

1.2 Horizons

One of the most crucial concepts of the FRW Universe is the existence of horizons.

Suppose a emitter, e sends a light signal to an observer o, who is at 7 = 0. Restricting
to the radial geodetic (that means that d¢ = df = 0 we obtain from the vanishing of the
metric elements the equation for null geodetics in the form

ds®* = 0= a(n)(—dn* + dr®) = n = +r + g (1.72)

where 7 is conformal time. Let us presume that the light hits the observer at time 7y that
is larger that 7. where 7, is time when this signal was emitted. Since for n = 7, we have
r =0 we get 1, = ro and consequently nn — 7, = £r. Since also for 7, this equation implies

No — MNe = F7T¢

- 12 —



and we obtain that we should choose the positive sign in front of r since 1, — e > 0 and r
is positive. Finally we get the relation

To —Te =Te - (173)

Let us now presume that 7, is bounded from below by 7.; for example 7. might represent
the Big Bang singularity. Then there exist a maximum distance to which the observer can
see, known as a particle horizon distance given by

Tph (7o) = Tlo = Tle (1.74)

Similarly, suppose that 7, is bounded from above by 7,. Then there exists a limit to
space-time events which can be influenced by the emitter. This limit is known as the event
horizon distance given by

Teh(no) =1To — Te (175)
These horizon distance may be converted to proper horizon distances at cosmic time ¢. For

example, we have an emitter at time 7. at r. = 0. Then at time 1. Then from the equation
for geodetics we obtain

n—1c= T(T) (176)

n—ﬁz/teacfi:) (1.77)

using also the fact that the proper distance at time ¢ is given by multiplication with a(t)

since dn = % we obtain

we get the proper horizon distance as

dh = a(t)/t a‘(lz/,) . (1.78)

2. Our Universe Today

In this section we will discuss the remarkable properties that have been discovered in past
few years. Most remarkable among them is the fact that the universe is dominated by a
uniformly- distributed and slowly varying source of ”dark energy” which may be a vacuum
energy (cosmological constant), a dynamical field or something completely different.

2.1 Matter

The inventory of constituencies comprising actual Universe is complicated by the fact that
that they are not at all equally visible. In the years before we knew the dart energy was
an important constituent of the Universe and before observations of galaxy and distribu-
tions and CMB anisotropies observational cosmology measured two numbers: The Hubble
constant Hy and the matter density parameter €;;. Measuring the extragalactic distances
is very difficult, but most current measurement of the Hubble constant are consistent with

Hy = (60 — 80)km/sec/Mpc , (2.1)

~13 -



where
1Mpe = 10%parsec = 3 x 10%*em . (2.2)

In particle physics units (A = ¢ = 1) this is equal to
Hy ~ 10733V . (2.3)
It is convenient to express the Hubble constant as
Hy = 100hkm/sec/Mpc , (2.4)

where
06 <h<08. (2.5)

Note that since p; = 3H3);/87G measurement of p; is often expressed as measurement of
Q;h?. The Hubble constant provides the rough measure of the scale of the Universe since
in the matter or radiation dominated Universe is tg ~ H L
For years, determinations of £2;; based on dynamics of galaxies and clusters have leaded
to values of Q7 between 0.1 and 0.4. Alliteratively, the determination of €2, is the same as
the determination of the baryons. Recent measurements suggest that baryons contribute
to Q2 as
Qp =0.05. (2.6)

In other words baryons constitute rather small fraction of the present energy density in the
Universe. It is also important to stress that the most of the baryons in our Universe are
dark: direct measurements of the mass density of stars give an estimate

Qutars ~ 0.005 (2.7)

that is about an order of magnitude smaller than 5. The fact that most of the baryons
are dark follows from the dynamics of individual galaxies implies that there is even matter
there. The implied existence this celebrated dark matter is confirmed by applying the
viral theorem to clusters of galaxies, by looking at the temperature profiles of clusters, by
”weighing” clusters by gravitational lensing and by large-scale motions of clusters between
galaxies. On the other hand there is nothing dramatic about this observation: baryons
may hide in dust and neutral gas clouds, brown dwarfs etc.

The next form of matter are Photons. They however contribute even smaller fraction

Q,~6-107". (2.8)

From electric neutrality the number density of electrons is about the same ? as that of
baryons, but then due to their very small mass their contribution to the total mass fraction
is negligible.

The remaining known stable particles are neutrinos. As we will sketch bellow their
number density is calculable in Hot Big Bang theory and these calculations are confirmed
by Big Bang Nucleosynthesis. The number density of each type of neutrinos is

1
Ny, = 115% s (29)

2There are also neutrons whose number is somewhat smaller than the number of protons.

— 14 —



where v, = Ve, v, ;. Direct limit on the mass of electron neutrino m,, < 2.6eV together
with the observations of neutrino oscillations suggests that every type of neutrino has mass
smaller than 2.6eV. Then the estimation of the energy density of neutrinos is

- GeV
cm3

Pu,total = Z My Ny < 8-10" (210)
@

that implies
Qy totar < 0.16 . (2.11)

However this estimate does not make use any cosmological date. In fact cosmological
observations give stronger bound

Qy totar < 0.01 . (2.12)
In terms of the neutrino masses this bound reads
> my, < 042eV (2.13)

so that every neutrino has to be lighter than 0.14eV. On the other hand atmospheric
neutrino data and further experiments tell that the mass of at least one neutrino must
be larger than 0.02eV. These results suggest that there is window for measuring neutrino
masses by cosmological observations.

We see that most of the energy density in the present Universe is not in the form of
known particles, most energy in the present Universe has to be in something “unknown”. In
fact essentially every known particle in he Standard Model of particle physics has been ruled
out as a candidate for this “unknown” matter. Moreover, there is a strong evidence that this
“something unknown” has two components: clustered dark energy and unclustered
dark energy.

It is believed that Clustered dark matter consists of new stable massive particles.
These make clumps of energy density that encounter for much of the mass of galaxies
and most of the mass of galactic clusters. There are number of ways of estimating the
contribution of non-baryonic dark matter into the total density of the Universe:

e Composition of the Universe affects the angular anisotropy of cosmic microwave back-
ground (CMB). The present measurements of the CMB anisotropy enable to estimate
the total mass density of dark matter.

e The density of non-baryonic dark matter is crucial for structure formation of the
Universe. If we compare the results of numerical simulations of structure formation
with observational data gives reliable estimate of the mass density of non-baryonic
clustered dark matter.

One of the few things we know about the dark matter is that it must be “cold”-not only is
it non-relativistic today, but it must have been that way for a very long time. The other
thing we know about cold dark matter (CDM) is that it should interact very weakly with
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ordinary matter, so as to have escaped detection thus far. In summary the non-baryonic
cold dark matter has
Qepm =~ 0.25 (2.14)

There is a direct evidence that dark matter exists in the largest gravitationally bound
objects-clusters of galaxies. There are various methods to determine the gravitating mass
of a cluster and even mass distribution in a cluster, which give consistent results, for
example:

e We measure velocities of galaxies in galactic clusters and make use of the gravitational
virial theorem

Kinetic energy of a gravity= % Potential energy

In this way we obtain the gravitational potential and thus the distribution of the
total mass in a cluster.

e The second example of the measurement of masses of clusters use the notion of intra-
cluster gas. Its temperature that is determined from X —ray measurements is also
related to the gravitational potential through the virial theorem.

e The third example of measurement is based on observation of gravitational lensing
of background galaxies by clusters.

Finally, dark matter exists also in galaxies. Its distribution is measured by the observations
of rotation velocities of distant stars and gas clouds around a galaxy.

At present there are many hypotheses considering candidates for this form of dark
matter. One such an idea is that the natural candidates are particles which participate in
weak interactions that of course needs more detailed justification.

Unclustered dark energy

Non-baryonic clustered dark matter is not the whole story. If we use the above esti-
mates we obtain an estimate for the energy density of all particles

Q7 -+ QB —+ Qutoml + QCDM ~ 0.3 (215)

Since the observation that Q07 ~ 1 implies that 70 percent of the energy density is unclus-
tered.

In fact this result nicely fits recent observations. Indeed, it can be shown that nei-
ther relativistic nor non-relativistic matter can lead to the accelerated expansion of the
Universe 3. In other words the accelerated expansion requires energy stored in something
dramatically different from conventional particles and it has to have negative pressure.
In fact the analysis of the entire set of cosmological date in terms of dark energy with
phenomenological equation of state

p=wp ,w = const (2.16)

3We will discuss this problem in the next subsection.
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gives
Qx =0.72+£0.02 (2.17)

(here subscript A refers to dark energy) and
-12<w< -08 (2.18)

It is worth noting that the vacuum value, w = —1 is right in the middle of the allowed
region. that corresponds to a vacuum energy density

pa ~ (1073eV)* . (2.19)

Given the significance of these results it is natural to ask what level of confidence we should
have in them. There are potential sources of systematic error and these were discussed in
the original papers [I, 2]. On the other hand the recent measurements of the cosmic
microwave background confirmed the picture outlined above with the matter density and
nonzero cosmological constant.

In summary, the composition of the present Universe is fairly complex. It is challenging
for future physics that most of the energy density comes from species which particle physi-
cists are unfamiliar with: vacuum or vacuum-like dark energy and non-baryonic clumped
dark matter. This poses serious problems for both fundamental physics and cosmology:

e What are the particles of non-baryonic dark matter?

Currently popular option is the lightest supersymmetric particle that is stable in many
supersymmetric extensions of the Standard model. Of course there are many other
options, such as axions, gravitinos and so on. In any case experimental discovery
of the dark matter particle would be great achievement of both particle physics and
cosmology.

e Why there are baryons and no anti-baryons in our Universe?

Alliteratively,what is the origin of matter-antimatter asymmetry of the Universe? We
will discuss this issue later and here we notice only that the solution of this problem
is based on extension of the Standard Model.

¢ Why the mass density of the non-baryonic dark matter is so similar to
the mass density of baryons? Both these densities scale as a=3(t) so their ratio
stays constant during most of the evolution of the Universe. Then it is possible that
mechanism which create baryons and dark matter particles in the early Universe are
related to each other so that the approximate equality of the mass densities is not a
mere coincidence. On the other hand it is difficult to construct corresponding particle
model.

e What is the origin of dark energy? If this is vacuum,why vacuum has
non-zero energy density, which, however, is very small by particle physics
standard?
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This is one of the most fundamental problems of the microscopic physics. In natural
units the vacuum density is about

pe ~ 10740Gev?t (2.20)

On the other hand we would expect on the basis of the dimensional grounds that the
vacuum energy takes value 1GeV* (QCD-scale) or 108GeV* (electroweak scale). It is
great challenge to explain this enormous discrepancy but despite numerous attempts

it remains an open problem.

¢ Why now?

The energy density of non-relativistic dark matter and dark energy scales differently:
The non-relativistic dark matter scales as a~3(¢) while the latter stays approximately
constant. Hence at early times (small a(t)) the energy density of non-relativistic
matter exceeded by far the dark energy density. Conversely, future expansion of the
Universe will be dominated by dark energy. On the other hand these energy densities
are of the same order of magnitude today. The question is why is this the case? What
is special about the present epoch of the evolution of the Universe?

2.2 Supernovae and the Accelerating Universe

The first hint that the matter does not dominate the Universe came from the studies of
the Type Ia supernovae that are commonly recognized as ”standard candles”. The special
property of Supernovae Type Ia is that it has nearly uniform intrinsic luminosity (absolute
magnitude M ~ —19.5). It turns out that they can be detected at high red shifts (z ~ 1)
that allows in principle a good handle on cosmological effects.

The importance of the supernovae measurements began to be clear from the works of
two independent groups that observed distant supernovae in order to measure cosmological
parameters: the High-Z Supernova Team and the Supernova Cosmology Project.These
groups obtained the dependence of the red shift on apparent magnitude. These date are
much better fit by a universe dominated by a cosmological constant than by a flat matter-
dominated model. In fact, the supernova results alone allow huge range of possible values
of Qpr and Qp. On the other hand if we presume that we know something about one of
these parameters the second one will be tightly constrained and in particular they imply
(2.17).

Since these observations are very fundamental one has to ask the question about the
level of confidence of them. In fact there are number of potential sources of systematic
error that have been considered by these two research teams. In summary these results
are commonly accepted with their significant predictions considering the vacuum energy of
the Universe.

2.3 Dark Energy

It appears that the most difficult problem to solve is the origin of the dark energy. The
most disappointing possibility would be that the carrier of dark energy is vacuum: The
difficulties with this option will be discussed below.
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Another option, more promising from the observational viewpoint is that dark energy
is due to some light field. In fact, there are good reasons to consider the this dynamical dark
matter as an alternative to cosmological constant. Firstly, the dynamical energy density
can evolve slowly to zero so that we can solve the cosmological constant problem .

The simplest possibility how to describe dark matter is the same kind of source that
is involved in models of inflation in the very early Universe; a scalar field ¢ rolling slowly
in a potential, something known as quintessence.

As an example, consider a homogeneous scalar field ¢(¢) in an expanding Universe.
The action of the scalar field is

s=- [dtev=g (50" 0000+ V() (2.21)

where V(¢) is potential. The equations of motions that follow from the action above have

the form -
OulvV—99" 0u 9] — V=955 =0 (2.22)
that for homogeneous field in an expanding Universe takes the form
. .dv
¢+3H¢+%:O. (2.23)

In order to take the back-reaction of this scalar field on the Einstein equations into account
we have to determine the components of the stress energy tensor. In field theory the stress
energy tensor is defined as

2 5Smatter
T,=——— 2.24
H /_g 6g,u1/ ( )
that for the action of the form S = — [ d*xz\/—gL takes the form
oL
Tl“’ = _g;wﬁ + 2@, (225)

where we have used

o0y/—g 1
Sg —2\/—ggm, . (2.26)

More precisely, for the action (2.21) the stress energy tensor takes the form

L9 (Va6) (Vo) + V(@) - (2.27)

Ty = 0,00,¢ — guv 5

Let us now restrict to the homogeneous case in which all quantities depend only on cosmo-
logical time ¢ and we also set k = 0. A homogeneous real scalar field behaves as a perfect
fluid with .
¢2
p=Too="75+V(9). (2.28)

The other components of the stress energy tensor take the form

1
Tij = —9ij(59" 09006 + V) + 0:60;¢ (2.29)
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If we define pressure as
1

we get
52
T2

Thus any state which is dominated by the potential energy of a scalar field will have

p (¢) - (2.31)

negative pressure.

If the slope of the potential V is quite flat we will have solutions for which ¢ is
nearly constant and only evolving very gradually with time, the energy density in such a
configuration is

po = V(¢) = const. (2.32)

Thus we see that slowly-rolling scalar field is an appropriate candidate for dark energy with
the vacuum equation of state

Po = —P¢ (2.33)

but the energy density py slowly decreases in time. But this proposal raises several ques-
tions: why the genuine vacuum energy density is zero (constant part of the potential V)
so that it does not contribute to dark energy density? What is the physics behind the field
®»? Where does the small energy scale, V(¢) ~ 10746GeV today, come from? All these
questions remain unanswered 4

In fact, it is important to stress that introducing dynamics opens up the possibility
to bring new problems that depend on form and specific kind of model being considered.
Most quintessence models feature scalar fields ¢ with masses of order the current Hubble
scale

my ~ Ho ~ 10733V . (2.34)

In quantum field theory the light scalar fields are unnatural, renormalization effects
tend to drive scalar masses up to the scale of new physics. It is then very difficult to
understand the origin of masses of such a small value when we know that the scale of new
physics is approximately 10''eV. Moreover, light scalar fields give rise to long-range forces
and time-dependent coupling constant that should be observable. Therefore we have to
invoke additional fine-tunings to explain why the quintessence field has not already been
experimentally detected.

Another possibility, how to explain today acceleration of Universe, is that there is
nothing special about the present era; rather acceleration is just something that happens
from time to time. This can be enforced by oscillating dark energy. In these models the
potential takes the form of a decaying exponential with small perturbations

Vig) = e_‘z’[l + acos @] . (2.35)

4For certain scalar potentials the fourth equation can be explained.
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Another models of quintessence are k-essence models that are based on presumption that
the scalar field ¢ has the form

K = f(¢)9(6?) , (2.36)
where f,g are functions specified by the model. Unfortunately, in neither the k-essence
models nor the oscillating models do we have a compelling particle-physics motivation for
the chosen dynamics and in both cases the behaviour still depends sensitively on the precise
form of parameters and interactions chosen.

Given the challenge of the problem it is worthwhile considering the possibility that
cosmic acceleration is not due to some kind of stuff but rather arise from new gravitational
physics.

As a first attempt, consider the simplest correction to the Einstein-Hilbert action,

M2 4
5= [atov=g (r-10) + [atov=gtu (237)

where p is a new parameter with units of [mass] and £y is the Lagrangian density for
matter. The equations arising from this action are complicated and it is difficult to solve
them. It is convenient to transform from the action used in (2.37) which we call the matter
frame to the Finstein frame where the gravitational Lagrangian takes the Einstein-Hilbert
form and the additional degrees of freedom (H and H) are represented by a fictitious scalar
field ¢. In terms of the new metric g, the theory is that of a scalar field ¢(z) minimally
coupled to Einstein gravity and non-minimally coupled to matter with the potential

2 2
Vip) = U2Mp2 exp (—2 3]\2}) exp ( 3]\?})) —1. (2.38)

Yet another option for the explaining the accelerated expansion of our Universe is that
gravity deviates from General Relativity at cosmological distances and time scales so that
the Friedman equation is not valid at present epoch. Finally, any modification of the
Einstein-Hilbert action must, of course, be consistent with the classic solar system tests of
gravity theory as well as numerous other astrophysical dynamical tests. In known Lorentz-
Invariant examples of such a theory there either exist ghosts (fields with negative energy
unbounded from below) or gravity becomes strongly coupled at quantum level. A consistent
theory of this sort would probably require “gravitational Higgs mechanism” and violation
of Lorentz-invariance but even this-rather exotic idea- has not yet lead to a consistent
model that would be able to explain the accelerated expansion of the Universe.

In summary, there are many models whose aim is to explain current acceleration area.
All of these models have many problems however it is certainly very important to study
them.

2.4 Observational Evidence for Dark Energy

In this section we briefly review facts considering observational evidence for dark energy.
The first one is based on so named Luminosity distance
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2.4.1 Luminosity distance

In 1998 the accelerated expansion of the Universe was reported on the observations of
Type Ia Supernova (SN Ia).This observations are based on the existence of red shift in the
expanding Universe that is related to the fact that the light emitted by a stellar object
becomes red-shifted due the the expanding of the Universe. The wavelength \ increases
proportionality to the scale factor a according to the formula

Ao ao

142=20_% 2.
+z 3 o (2.39)

where z is named as red shift and where the subscript zero denotes the quantities given at
present epoch.

Another important concept that is related to the observational tools in an expanding
background is the definition of the distance. In fact there are many ways how to define
distance in expanding Universe. For example, we can consider co-moving distance as a
distance measured in co-moving variables. It turns out that this distance does not change
during the evolution of the Universe. On the other hand we can define physical distance
that scales proportionally to the scale factor. An alternative way of defining of distance is
through the luminosity distance that plays a very important role in astronomy, including
supernova observations.

Let us consider for a moment Minkowski space-time and define an absolute luminosity
Ls of source that is related to the energy flux F at the distance d from the source by the

formula I
== 2.40
47rd? (2.40)
We can generalise this relation to the expanding Universe and define the luminosity distance
dy, as
L
3 =-—. 2.41
L= arF ( )

Let us consider an object with an absolute luminosity L located at coordinate distance
® from an observer located at y = 0. The energy of object that is emitted in time interval
Aty let is denoted as AFE; while the energy that reaches the sphere at radius y is written
as AFEy. From the basic principles it is clear that AF; and AFE are proportional to the
frequencies of light at x = xs and x = 0 respectively. In other words, AE; ~ vy , AEy ~ 1.

®Recall that the metric has following form:

ds® = —di* + o’ (1)[dx” + fi (x)(d6” + sin® 0dg”)] , (2.42)
where

fk =siny ,K=1,

fK =X ’K =0 )

fxk = sinhy ,K=-1.

(2.43)
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We also define the luminosities Ls and Ly through the relations

_ AE
A

_ AE,

L = .
s At

Lo

(2.44)

The speed of light is given by ¢ = v1A\1 = vgAg where A1, \g are wavelengths at x = xs and
X = 0. Then (2.39) implies
)\0 141 - AEl Ato

2L =——=1 24
)\1 140 AEO Atl Tz ’ ( 5)

using also the fact that vpAty = v1 Aty If we now combine (2.45) and (2.44) we obtain

Ly _ OBy Ot
Ly AEy Aty

=(1+2)*. (2.46)

The light travailing along y direction satisfies the geodetic motion ds? = —dt? +a?(t)dx? =

_ Xs _ to dt B 1 z dZ/ . _H(Z)
. _/0 dﬁ—/t a(t) aoHO/o h(z") lz) = Hy ' (2.47)

1

0 that implies

where we have take tg as the time at present epoch and consequently xo = 0. We have also
used the fact that )
lpo=t0 42 a0 g di (2.48)
a dt a ap
Now the form of the metric (2.42) implies that the area of two sphere at t = t( is given
by S = 4n(apf)K (xs))? where xs corresponds to the fact that we observe signal from the

distance ys. Hence the observed energy flux is

Lo
F=gr—F7—3" 2.49
(a0 (0))? (2.49)
Using these results we obtain
Ly Ln(a $))2
dQS — — ( OfK(X )) — a(Q)fK(Xs)Z(1+Z)2 ) (250)

AnF 4mLo

In the FRW background where fx(x) = x and if we combine (2.47) with (2.50) we obtain

1+2 [* dZ
dy = gz 2.51
L= /0 el (251)

We can invert this result and express H(z) as function of dy(z) and z

H(z) = (jz ﬁsz)D_l . (2.52)

If we measure the luminosity distance observationally we can determine the expanding rate

of the Universe.
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As we now the energy density on the right hand side of the Friedman equations includes
all components that are presented in Universe, namely non-relativistic particles, relativistic
particles, cosmological constant:

p= Ll a0 = 30 2 (2.53)

7

where we have used (2.39). Here w; and ,0( )

correspond to the equation of state and the
present energy density of each component.

Then the Friedman equation takes standard form

y snGpl”  p¥
ZQ (1 + 2)30+w) Q() T pol (2.54)

C
Hence the luminosity distance in a flat geometry is given by
/ dz'
(0) )
0 \/Zz Q1+ 2')3(+wi)

The formula above is the basic theoretical ingredient for the direct evidence of the current

g, = 1tz (2.55)

acceleration of the Universe that is related to the observation of luminosity distances of
high redshift supernovae.

The Type Ia supernova (SN Ia) can be observed when the white dwarf starts exceed
the mass of the Chandrasekhar limit and explode. The common belief is that SN Ia are
formed in the same way irrespective of where they are in the Universe that means that
they have a common absolute magnitude M independent of the red shift z. This implies
that they can be treated as an ideal standard candle. We do not go to these details but
it is important that using these methods the luminosity distance of the SN Ia supernovae
that was observed is

Hody, ~ 1.16 ,forz = 0.83 . (2.56)

On the other hand the theoretical estimate that follows from (2.55) is
Hodr, ~ 0,95, QO ~1,

Hod, ~1.23, Q9 ~03 0% ~0.7.
(2.57)

for two-component form of matter. There are of course lot of literature considering the
fitting the estimate date and the form of the matter that is present in Universe. The
conclusion is that the present experimental date suggests the form of the matter given
above.

2.5 The age of the Universe and the cosmological constant

Another important evidence for the existence of the cosmological constant emerges when
we compare the age of the Universe ty to the age of the oldest stellar populations ts. It
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is clear that the consistency demands that 3 > ts. On the other hand it is difficult to
satisfy this condition for a flat cosmological model with normal form of matter. On the
other hand the presence of cosmological constant can resolve this problem.

To begin with we review the estimates of the oldest stellar objects. It was estimated
that the age of the oldest objects lay in the interval 11 — 13Gyr. Consequently the age
of the Universe needs to satisfy the lower bound tg > 11 — 12Gyr. Let us calculate the
age of the Universe from the Friedman equations where we consider three contributions to
the matter: radiation (w, = 1/3), pressure-less dust (w,, = 0) and cosmological constant
wp = —1.

3 ag ag
-2
K
o -k (2 Ko=——
+ A 0 <a0 ] > A0 G%HOQ
(2.58)
Then using the fact that 1+ z = % we can determine the age of the Universe as
to a0 da apda
to = dt' = — = (—dz= =
0 /0 o Ha (—dz a? )
B /OO dz B /OO dz
o HO+2) Jo Huz0et + 003 + 100 - Kea?)
(2.59)

where x = 1 + z. Since the radiation dominated period is much shorter than the total
age of the Universe it is a natural to neglect its contribution to the formula above. In
other words the integral coming from the region z > 1000 does not affect too strongly the
integral (2.59). Hence we set Q% = 0 when we evaluate t.

Let us start with the case when the cosmological constant is absent (95\0) = 0). Since

Ky = Q0 — 1 the integral (2.59) is equal to

o d o d
to = / z - / i : (2.60)
0 Hox\/Qgg)x:”—Koxz 0 H0(1+z)2\/1+9$72)z
For a flat Universe that is characterised with Ky = 0 and QY = 1 we obtain
2
to= . 2.61
0= 37 (2.61)
As we know the present Hubble parameter is constrained to be
Hyt =9.776h~" Gyr, 0.64 <h < 0.8 . (2.62)
Then (2.61) gives
to =8 —10 Gyr . (2.63)
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However this does not satisfy the stellar age bound
to <11 —12 Gyr .

In other words the flat Universe without a cosmological constant suffers from a serious age
problem.
For arbitrary Q&S) the equation (2.59) can be integrated and we obtain

1 Q9 1-/1-Qf

— In
U T o R R AR ()

that is of course valid for (252) < 1 only. Let us consider various limits of the equation

above. For Qg,?) — 0 we obtain Hytg — 1 while for Qg,?) — 1 we obtain tgHy — 2/3. As we
know the observation of the CMB constraints the curvature of the Universe to be close to

Hotog = (2.64)

be flat |Ky| = \97(72) — 1] <« 1. However since then Q) ~ 1 in this case we again obtain
2
tr=—~8-10G 2.65
0=73 H, yr ( )
that is again in consistent with the time of the stellar age bound.

On the other hand the age problem can be easily solved in a flat Universe (Ko = 0)
with a cosmological constant 4 # 0). In this case the equation (2.59) gives

o _/OO dz B
R © 5,00
(T4 2)\/Qm/ (14 2)3 + Q)

144/

2
3\/QTAO)ID \/QTT’?)

where Q,(g) + QE\O) = 1. We see that Hytg — oo for Q(mo) — 0 and Hptg — 2/3 for 952) — 1.
When QS@)) = 0.3 and QEXO) = 0.7 one has

(2.66)

to = 0.964H; " = 13.1 Gyr ,for h = 0.72 . (2.67)

Hence this easily satisfies the constraint tg > 11 — 12 Gyr that arises from the observation
the oldest stellar populations. Thus the presence of A solves the age-crisis problem.

2.6 The Cosmological Constant Problem

In classical general relativity the cosmological constant A is a completely free parameter. It
has dimension [mass]? (while energy density pa has units [energy/volume]) and hence de-
fines a scale, while general relativity is otherwise scale-free. In fact, this scale is completely
free and its value should be determined by experiment.

The introduction of quantum mechanics changes the situation in some way. Firstly,
the Planck’s constant allows us to define the reduced Planck mass Mp ~ 102GeV, as well
as reduced Planck length

Lp = (87G)Y? ~10™%2em . (2.68)
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Hence the natural guess for the value of the cosmological constant is
-2
AL ~ L% (2.69)

or as an energy density
gusss  Mp = (108GeV)? . (2.70)

pvac

We can find support for this guess by thinking about the quantum fluctuation of vac-
uum. As we know any quantum field can be considered as collection of infinite number
of harmonic oscillators. From quantum mechanics we know that harmonic oscillator with
frequency w has the vacuum energy %hw Since each mode of the quantum field contributes
to the vacuum energy and the net result should be an integral over all of these modes. Usu-
ally we perform an integration over infinite interval and hence this integral diverges so that
the vacuum energy appears to be infinite. However, the infinity arises from contribution
of modes with very small wavelengths, it is possible to be mistake to include such a modes
since we do not know what happens at these scales. In other words we do not have any
justification whether the quantum field theory approach can be applied in these small scales
as well. To account for our ignorance we should include the cut-off energy above which we
ignore any potential contributions and hope that some more complete theory could justify
this approach. If the cut-off is at the Planck scale we get the value given above.

However, we claim to have measured the vacuum energy. The observed value is different
from the theoretical estimate:

pobseT ~ 10—120p9U€55 . (271)

vac vac

In other words, we can express the vacuum energy in terms of the mass scale

Pvac = M:)Lac , (272)
so that the observed result is
M2 ~ 107 3eV. (2.73)
The discrepancy is thus
M2 ~ 10730 prguess | (2.74)

In addition to the fact that it is very small to its natural value the vacuum energy at
present posses an additional puzzle. The coincidence between observed vacuum energy
and current matter density. It can be shown that the ratio of vacuum energy to matter
density depends on time as follows from

Q
A :&Nag

A 2.75
Qv pu (2.75)

As a consequence, at early times the vacuum energy was negligible with respect in com-
parison to matter and radiation while at late times matter and radiation are negligible.
To date the value of the cosmological constant is one of the most mysterious problems
in current physics, perhaps it could be compared with the mysterious radiation of the black
body at the end of 19’ century. On the other hand it is instructive to consider an example
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of supersymmetry which relates to the cosmological constant problem in interesting way.
The main idea of supersymmetry is that for each fermionic degree of freedom there is
corresponding bosonic degree of freedom and vice-versa. For example, for spin 1/2 electron
there should be spin 0 electron of the same mass and charge. The good news is that while
bosons contribute positively to the vacuum energy the fermion contributions is negative.
Hence, if the degrees of freedom exactly match the vacuum energy is zero.

We do not, however, live in supersymmetric state. If supersymmetry exists, then it
must be broken at some scale Mg,s,. In other words, for physical processes where the
characteristic energy is much smaller than Mg, we do not see any supersymmetry and
this is the case how our word looks like. On the other hand when we probe physics
with energy scale higher with Mjg,,, we can expect that supersymmetry is restored. More
precisely, we can explain this situation as follows. We expect that SUSY is broken in
nature, for example spontaneously broken which means that there is one ground state.
The fluctuation above states gain masses and one expect that super-partners of known
particles, get masses of order Mg,s,. Then for energies much smaller than Mg, these
particles are not visible, on the other hand for energies larges than Mj,s, we can neglect
their masses and these particles look like massless again. Then we say that supersymmetry
is restored at higher energies. This has an consequence for the vacuum energy. Recall
that the vacuum energy was defined as sum over infinite number of oscillators. For modes
with energy much larger that Mj,s, these modes find their super-partners and hence their
contribution to the vacuum energy vanishes. This is of course does not happen for modes
with energy smaller than Mjg,s,. In other words we can expect that the vacuum energy
will be equal to

Poac ~ M2 . (2.76)

susy

The question is how high Mj,s, should be. Nice property of SUSY is that it helps us
to understand hierarchy problem- why scale of electroweak symmetry breaking is much
smaller than the scales of quantum gravity or grand unification. For SUSY to be relevant
to the hierarchy problem we need the SUSY breaking scale to be just above the electroweak
breaking scale

Mgysy ~ 10°GeV . (2.77)

Since this is very close to the experimental bound it is now common belief that SUSY
should be discovered soon at Fermilab or CERN, if it is connected to electroweak physics.
However considering relation between SUSY and cosmological constant we again see that
we are in discrepancy with observation:

M%) ~ 1071 My, (Experiment). (2.78)

Of course there exists a possibility that our estimate Myq. ~ Mgysy is incorrect. For
example let us guess following formula

M
Mvac ~ ( ]\ij> Msusy . (2'79)
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Interestingly, since Mp is fifteen orders of magnitude larger than My, and Mgy, is fifteen
orders of magnitude larger than M, this guess gives up the correct answer. Unfortunately
this is simple numerology, we do not know how this formula should come from.

Another possibility how to explain the value of the cosmological constant is the pre-
sumption that it is simply feature of our local environment. This is the idea commonly
known as anthropic principle.

In order to give this idea concrete meaning let us presume that there are many different
regions of the Universe in which the vacuum energy takes different values. Then we can
expect that we find ourselves in a region which was suitable for our own existence. Larger
value of cosmological constant than we presently observe would either have led to a rapid
re collapse of the universe (if p,q. Were negative) or an inability to form galaxies (if pyac
were positive).

The idea environmental selection is based on certain special conditions and we do not
understand whether these conditions hold in our Universe. In particular we have to show
that there can be a huge number of different domains with slightly different values of the
vacuum energy and that these domains are big enough that our entire observable Universe
is in a single domain. Further we also have to show that the possible variation of other
physical quantities from domain to domain is consistent with observations.

Recent work in string theory whose pure essence is the currently very popular idea of
String Landscape supports the idea that there are huge number of possible vacuum states
rather than a unique one. Unfortunately the detailed discussion of this idea is beyond the
scope of this introduction review.

To conclude, at present, unfortunately,t here is not any theory that could explain the
mysterious facts considering cosmological constant. To find such a theory is one of the
most prominent goals of physical community.

2.7 The Cosmic Microwave Background

Most of the radiation we observe in Universe today is in the form of the almost isotropic
blackbody spectrum with temperature approximately 2.7K known as Cosmic Microwave
Background (CMB). The small angular fluctuations in temperature of the CMB reveal a
great deal about the constituents of the Universe.

We have seen previously that the radiation gas evolves and sources the evolution of the
expanding Universe. Since the radiation and dusts have different evolution laws that as we
approach earlier and earlier times in the Universe with smaller and smaller scale factors the
ratio of the energy density in radiation to that in matter grows proportionally to 1/a(t).
Furthermore, even particles which are now massive and contribute to matter used to be
hotter, at sufficiently early times were relativistic and thus contributed to radiation. In
summary, we say that the early Universe was dominated by radiation. More precisely,
at early times the CMB photons were easily energetic enough to ionize hydrogen atoms
and therefore the Universe was filled with a charged plasma. This phase lasted until the
photons red shifted enough to allow protons and electrons to combine during the era of
recombination. Shortly after this time the photons decoupled from the now neutral plasma
and free streamed through the Universe.
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More precisely, the concept of an expanding Universe provides us with a clear expla-
nation of the origin of the CMB. Blackbody radiation is emitted by bodies in thermal
equilibrium. The present Universe is certainly not in this state, and so without an evolving
space-time we should have no explanation for the origin of this radiation. However, at early
times, the density and energy densities in the Universe were high enough that matter was
in approximate thermal equilibrium at each point in space, yielding a blackbody spectrum
at early times. Then there is crucial thermodynamic fact about the CMB. A blackbody
distribution, such as that generated at early Universe, is such that at temperature 7', the
energy flux in the frequency range [v, v 4 dv] is given by Planck distribution

P(v,T)dv = $rh (5)3 _1 4 (2.80)

’ c e /kT _q ’
where h is Planck’s constant and k is the Boltzmann constant. Under rescaling v — Av
, with A = constant the shape of the spectrum is unaltered if T — T/A. We know that
the wave length are stretched with the cosmic expansion and therefore the frequencies will
scale inversely due to the same effect. We then see that the effect of cosmic expanding on
an initial blackbody spectrum is to retain its blackbody nature, but just at lower and lower

temperatures
1

T~ o (2.81)

This is what we mean when we say that the Universe is cooling as it expands.
It is also well known that CMB is not a perfectly isotropic radiation bath. Deviations
from isotropy at the level of one part in 10° have developed over the last decade into one
of our most precise observation tool in cosmology.The small temperature anisotropies on

the sky are usually analyzed by decomposing the signal into spherical harmonics via
AT
T = Z aleZm(éf),e) ) (282)
lm

where a;,,, are expansion coefficients and 0 and ¢ are spherical polar angles on the sky.
Next we define the power spectrum as

Cr = {Jaml?) - (2.83)

The fluctuations in the CMB spectrum are useful for the study of cosmology from many
reasons. To understand why, we should show at the first place why they arise. Matter
today in the Universe exists in the form of clusters of starts, galaxies, and clusters and
super-clusters of galaxies. Our understanding how large scale structures developed is that
initially small density perturbations in the otherwise homogeneous Universe grew through
the gravitational instability to the objects we observe today. Such picture requires that
from place to place there were small variations in the density of matter at the time when
CMB firstly decoupled from the photon-baryon plasma. Then CMB photons propagated
freely through the Universe nearly unaffected by anything except the cosmic expanding
itself. However it the time of their decoupling different photons were released from regions
of space with slightly different gravitational potentials. Since the gravitational potential
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affects the photon redshift, photons from some regions redshift slightly more than those
from other regions , giving rise to a small temperature anisotropy in the CMB observed
today. In this sense CMB reflects the initial conditions that ultimately gave rise to structure
in the Universe.

It is important that CMB fluctuations give us the value of . In fact, careful
analysis of all of the features of the CMB power spectrum provide constraints on essentially
all of the cosmological parameters. For example, let us consider recent result from WM AP.
For total density of the Universe they find

0.98 < Qyorar < 1.08 . (2.84)

at 0.95 confidence which is a strong evidence for a flat Universe. Nevertheless, much tighter
constraints on the remaining values can be derived by assuming either an exactly a flat
Universe or a reasonable value of Hubble constant. When for example we presume a flat
Universe, we can derive values for the Hubble constant, matter density (which then implies
the vacuum density from ¢, = 1) and baryon density:

h=0.72£0.05
Qp =1—-0Qp =0.29 +£0.07
Qp = 0.047 £ 0.006 .
(2.85)
If we instead assume that the Hubble constant is given by the value determined by HST

project
Hy = 100hkm/sec/Mpc ,h = 0.71 £ 0.06 (2.86)
we can derive separate tight constraints on €23, and Q4.

In summary, taking all of the data together we obtain a remarkably consistent picture
of the current constituents of our Universe:

Qp =0.04,
Qpy = 0.26
Qpr=0.7.

(2.87)

There are many mysterious things considering these values. Firstly, the barion density is
mysterious due to the asymmetry between baryons and antibaryons. Secondly, the problem
with dark matter is that we have never detected it directly and only have promising ideas
as to what it might be. However the biggest mystery is the vacuum energy, we now try
to explain why it is mysterious and what kinds of mechanism might be responsible for its
value.

3. Early Times in the Standard Cosmology

Early times at the in the Standard Cosmology are characterized by very high temperatures
and densities with many particle species kept in (approximate) thermal equilibrium by rapid
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interactions. Our goal is then to develop some tools of the thermodynamics in expanding
Universe. In fact, up the mild-1960 it was not clear whether the early Universe had been
hot or cold. This situation changed with the Pensias and Wilson’s 1964-1965 discovery of
2.7K microwave background radiation arriving from the farthest reaches of the Universe
since the existence of the microwave background has been predicted by the hot Universe
theory.

3.1 Review of the building blocks of the standard cosmology and matter

For reader’s convenience we review some basics facts considering the standard models of
cosmology.

e The Classical general relativity: The classical general relativity provides good
description of the geometry of space-time for scales | > Ilp = My L= 1033¢m or
equivalently for energy scales below the Planck scale Mp.

e Physical scales are stretched by the scale factor a(t) with respect to the co-moving
scales

Lpys (£) = a(t)lcom - (3.1)

A physical wavelength redshifts proportional to the scale factor where its time deriva-
tive obeys the Hubble law

lphys (t)
dt

a lhs
= Zaleom = H(t)lpys(t) = 2 3.2
aa ()phy() dH(t) ( )

e The equilibrium temperature decreases as the Universe expands as

T(t) = —% . (3.3)

e The Standard Model of Particle Physics:

The current standard model of particle physics that is experientially tested with
remarkable precision describes the theory of strong (QCD), weak and electroweak
interactions (EW) as a gauge theory based on the gauge group

SU(3)e® SU2) @ U(L)y . (3.4)

The particle content is: three generations of quarks and leptons:

O e

vector Bosons: 8 gluons (massless) that mediate the strong interactions in QCD,
Z9 W# that are massive with masses Mz = 91.18 4+ 0.02 GeV and My, = 80.4 +
0.06 GeV that mediate the electroweak interactions, the photon (massless)-the medi-
ator of electromagnetic interaction and the scalar Higgs, although the experimental
evidence for the Higgs bosons is still inconclusive.
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e It is known that the couplings associated with strong, weak and electrodynamics
interactions depend on the mass scale that characterize given process. The current
theoretical ideas propose that these couplings are unified in a grand unified theory
(GUT) at the scale

Mgyt ~ 10 GeV

Further, the UV scale where the Gravity is eventually unified with the rest of particle
physics is the Planck scale
Mp ~ 10" GeV

On the other hand the physics of the Standard Model describes phenomena at energy
scales below Mg where
Mg ~ 100 GeV

e The connection between the Standard model of particle physics and early Universe
cosmology is through Einstein’s equations that couple the space-time geometry to
the matter-energy content. We study gravity semi-classically at energy scales well
below the Planck scale. The Standard model of particle physics is a quantum field
theory(QFT) thus the space-time is classical but with sources that are quantum
fields. Semi classical gravity is defined by the Einstein equations with the expectation
value of the energy-momentum tensor T as sources

1 <juy>
RW — Zg"R = 3.6
29 Mz (3.6)

where the expectation value <TW> is taken in given quantum state or density matrix
that is compatible with homogeneity and isotropy so that it has to be translational
and rotational invariant. The ground state of the quantum field theory is usually the
state that solves the classical equations of motion or the equations of motion with the
quantum correction. In this case the vacuum expectation value of the stress energy
tensor corresponds to the classical one. The general formula above has important in
case we study the properties of the fluctuations above given classical solutions.

As the next step we review basic facts about the Energy scales, time scales and phase
transitions

Energy scales,time scales and phase transitions

In this section we give a brief overview of the main cosmological epochs by focusing on the
energy scales of particle, nuclear and atomic physics.
Energy scales:

e Total Unification

It is expected that Gravitational, strong and electroweak interactions become unified
and described by a single quantum theory at the Planck scale Mp ~ 10'9 GeV. The
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most promising approach to this unification is in terms of string theory however their
theoretical consistency is still studied and experimental confirmation is not available.

Grand Unification:

Strong and electroweak interactions are expected to become unified at an energy scale
Meayr ~ 10' GeV |, Tayr ~ 10¥°K
under large gauge group G, for example SU(5), SO(10) that breaks spontaneously
G—SU@B).2S5U2)U(1)y

at scale below unification. Main arguments for the existence of GUT theories follow
from merging of the running coupling constants of the strong, electromagnetic and
weak interactions for the minimal supersymmetric model and also the explanation of
the small neutrino masses via see-saw mechanism.

Electroweak:

Weak and electromagnetic interactions are unified in the electroweak theory based
on the gauge group
SUR2)eUQ1)y

The weak interactions become short ranged after symmetry breaking phase transition
SU2)@U(1)y — U(1)em

at the energy scale of the order of the mass of the Z°, W¥ vector bosons corresponding
to temperature
Tpw ~ 100 GeV ~ 10" K .

More precisely, at temperature T' > Ty the symmetry is restored as a consequence
of the fact that the effective potential of the theory depends on the temperature as
well. For temperature T' > Ty the stable minimum of the potential corresponds to
the symmetric phase where all vector bosons are massless and hence the symmetry
is restored. Omn the other hand for T' < Tgw the stable minimum of the poten-
tial corresponds to the situation when the vector bosons W, Z% become massive
through Higgs mechanism while photon remains massless corresponding unbroken
U(1) abelian symmetry of quantum electrodynamics. The temperature Tgy deter-
mines the temperature scale of the electroweak phase transition in the early Universe.

QCD

The strong interaction has a typical energy scale
AQCD ~ 200 MeV

At this coupling the coupling constant becomes strong as ~ O(1) that corresponds
to the temperature scale
Tocp ~ 10% K
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QCD is asymptomatically free theory that means that the coupling between quarks
and gluons becomes smaller at large energies but diverges at the scale Agcp. For
energies below Agcp the quantum chromodynamics is strongly interacting theory
and quarks and gluons are bound into mesons and baryons. This phenomenon is
interpreted in terms of a phase transition at an energy scale Agcp or Tocp. For
T > Tgep the relevant degrees of freedom are weakly interacting quarks and gluons,
while below are hadrons. In the limit when we can presume that up and down
quarks are massless, QC'D possesses new SU(2)r ® SU(2)g chiral symmetry that
is spontaneously broken at about the same temperature scale as the scale of QCD
transition. Pions are the Goldstone bosons that emerge in the breakdown of the
chiral symmetry
SU(2)L & SU(Q)R — SU(2)3+L

The high temperature phase above Thop where the quarks and gluons are almost
free (because the coupling is small by asymptotic freedom) is a quark-gluon plasma.

e Nuclear Physics

The low energy scales that are relevant in cosmology are determined by the binding
energy of light elements. For example, the binding energy of deuterium is ~ 2 MeV
that corresponds to the temperature T ~ 109 K. This is the energy scale that
determines the origin of the primordial nucleosynthesis. The first step in the system of
the nuclear reactions that yields the primordial elements is the formation of deuteron
in the reaction

n+pe—d+-ry

These nuclear reactions continue and all neutrons end up in nuclei, mainly helium.

e Atomic physics

A further important low energy scale relevant for cosmology is the binding energy
of hydrogen ~ 10 eV. This is the energy scale at which free protons and electrons
combine into neutral hydrogen. The large number of photons per baryons implies
that recombination actually takes place at an energy scare of order 0.3 eV, at about
400000 years after the beginning of the Universe. At this time when the neutral
hydrogen is formed the Universe becomes transparent since then photons no longer
scatter and travel freely. These are the photons measured by CMB experiments
today.

Time Scales:

e Inflation epoch

This is (according to current cosmological scenario) the earliest period in the life of
Universe where the scale factor grows exponentially as

a(t) = Mt
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Current experiments put upper bound on the energy scale of inflation as
H <10 GeV

In order to solve the entropy and horizon problems the inflationary stage hast to last
a time interval §t so that

StH ~ 60 = 6t ~ 1073* sec

Radiation dominated era

The inflationary stage is fellowed by a radiation dominated era after a short period
of reheating during which the energy stored in the field that drives inflation decays
into quanta of many other fields. These fields reach the state of thermal equilibrium
through the scattering processes.

After the thermal equilibrium is reached we obtain a detailed picture of the thermal
history of the Universe. This description is based on the combination of the statistical
mechanics with the basic principles of QFT: During the first 1000 years of the Uni-
verse and after the inflation stage that lasted ~ 10734 sec the Universe was radiation
dominated. Universe also expands and cools almost adiabatically. The electroweak
transition occurred at the energy scale T'~ 100 GeV that corresponds to the time

tew ~ 10712 sec
The QCD transition occurs at

toep ~ 1077 sec

Local Thermal Equilibrium (LTE) and Non equilibrium

Weather some process occurs in or out of a local thermodynamics equilibrium depends
on the comparison of two time scales-the expanding rate and the reaction rate. To
have a contact with standard thermodynamics note that we can formulate the same
problem as the problem of comparing of the cooling rate (the rate how temperature
decreases) and the rate of reaction. In fact the rate of cooling is related to the rate
of the expanding through the formula

% _ —%a — _H() (3.7)

On the other hand collisions as well as non-collisional processes contribute to establish
the equilibrium with a rate I'. The local thermodynamic equilibrium is established
when

T > H(t) (3.8)

In this case the evolution is adiabatic in the sense that the thermodynamics func-
tions depend slowly on time through the temperature. On the other hand when the
expanding is too fast

H(t)>T
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local thermodynamics equilibrium cannot be established, the temperature drops too
fast for the system to have time to relax.

While a detailed understanding of the relaxation dynamics requires an analysis of the
quantum Boltzmann equations a simple order of magnitude estimate for a collision

rate is given as follows.

The collision rate can be calculated in the standard statistical physics as
I' v<onv >, (3.9)

where < ... > means statistical ensemble average and where ¢ is a scattering cross
section, n is the density of particles that scatter and v is velocity of given particles.
For electromagnetic scattering a typical cross section is of order
o2
Oem ~~ @ )

where Q? is transferred momentum and « is the electromagnetic coupling constant.
At high temperature single photon exchange implies the estimate (the transferred
momentum is proportional to the momenta of one photon that is proportional to the

temperature)
a

Uem“’ﬁ

The density of relativistic degrees of freedom is n ~ T2 and for v ~ 1 (This estimate
follows from the fact that particles are ultra-relativistic) and we obtain

Lo ~ Q2T

In QCD that in the high temperature regime can be treated perturbatively the es-
timate of the single gluon exchange can be performed in the similar way and we
get

FQC’D ~ agT

where ay is corresponding coupling constant. Comparing these collision rate with
the value of H we find that that the strong interactions are in LTE for

T <10' GeV
and electromagnetic are in LTE for
T < 10" GeV

The estimate in case of weak interaction is slightly more involved: a typical scattering
process with an energy transfer £ < My has a scattering cross section

o~ G2E? |E < My

whereas if £ > My we have
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Then in thermal medium with £ ~ T and with a density of relativistic particles
n ~ T3 a typical weak reaction rate is

and
Tpw ~ G2T°

for T < Myy. In this latter temperature regime the ratio

Te (T
H MeV

and hence the weak interactions fall out of LTE for T'< 1 MeV.

Even if this analysis provides an intuitive estimate for the relaxation time scales this
analysis neglected several important aspects that however have to be studied on a
case-by-case basis. One such an example of subtle effects are Screening and infrared
phenomena: The relaxation rates I' were calculated on presumption of an exchange of
a vector boson of relativistic degrees of freedom. In a medium at a high temperature
and a density there are important screening effects that can change these estimates.

3.2 Hot Big Bang

We begin this section with the description of the evolution of the Universe in its hot stage.

The basic presumption is that it is plausible to extrapolate the evolution of the Universe
back in time using the known microscopic physics (electrodynamics, nuclear physics, QCD
and electroweak theory) and General Relativity. This theory is called as Hot Big Bang
Theory. According to this theory the Universe was hotter at earlier stages (equivalently,
at smaller values of a(t)) and the temperature scales as a(t) 2 both for non-relativistic and
relativistic particles. At high enough temperatures the Universe was in the phase that is
completely different from what we observe today. Instead of the almost empty space with
galaxies here and there there was dense, hot and almost homogeneous plasma that fills the
whole Universe. This is the area whose physical laws are governed by microscopic physics.
Note that gravity plays the role of the spectators of the theory and it is considered as
classical. Of course we consider back-reaction of this matter on the time evolution of the
Universe using the Friedman equations.

More precisely, the hot Universe theory is based on the phenomena of the phase tran-
sitions and the symmetry breaking. Let us consider for example the simplest GUT model
based on the gauge group SU(5). For temperature T < 10'*GeV there was no difference
between weak, strong and electroweak interactions. The matter in the Universe was in the
form of the dense plasma containing quarks, photons, gluons etc. Then there was no prob-
lem in the transformation of quarks to leptons. In other words it does not make sense to
speak about baryon conservation. At t; ~ 1073°sec when the temperature has dropped to
T ~ T, ~ 10" —10GeV the fist symmetry breaking phase transition takes place: SU(5)
breaks to SU(3) x SU(2)] x U(1) where SU(3) is gauge symmetry of the QCD, theory of
the strong interactions. In other words string interactions were separated from electroweak
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and leptons. Then at t5 ~ 107 %sec when the temperature dropped to T, ~ 102GeV there
was a second phase transition that broke the symmetry between weak and electromagnetic
interactions SU(3) x SU(2) x U(1) — SU(3) x U(1). As the temperature reduces further
to T, ~ 102MeV there was another phase transition with the formation of baryons and
mesons from quarks.

3.3 Review of the study of the expansion of the Universe

Let us again analyze the evolution of the Universe. As we have argued before at early times
the Universe was radiation dominated, then matter dominated and presently dark energy

dominated while the curvature term f—g was never important.

Deceleration to Acceleration

Since the dark energy dominates at present the Universe accelerates. On the other
hand when matter was dominating the Universe was decelerating. In order to see when
the change in regime occurred we write the Friedman equations as

N2
a 8rG a?
-] = Qu—2+0Q 3.10
<a> 3pc ( Ma3+ A>’ ( )

where we have assumed dark matter equation of state p = —p, neglecting spatial curvature
and also ultra-relativistic matter matter for the moment. The reason for this simplification
is that the relativistic matter dominates an expanding of the Universe at much earlier
stage. Further, ag, Q2x and p. are present values and hence time-independent constants.
Then the equation above implies

3
2= &G <QM% + QAa2) . (3.11)
3pc a

The second time derivative of the equation above implies

A7rGa ad
i = Q-2 +20 3.12
i= ¢ < Wy A) (3.12)

that is zero when (This event defines the turning point between decelerating and acceler-
ating phase)

L=(1+2pP="2 (3.13)
where or course €2, is time-dependent. For expected values Q) = 0.7, Qs = 0.3 we have
deceleration — acceleration: z ~ 0.7

In other words, the Universe was decelerating until fairly recently. Before z =~ 0.7 the
expansion was dominated by the non-relativistic matter.

Radiation domination to matter domination
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As we know the energy density of ultra-relativistic matter (radiation) scales as a =% while the
energy density of non-relativistic matter scales as a=3. Then it follows that the dominant
contribution to the energy density of the Universe at very small a (small ¢) came from
ultra-relativistic matter. Now we estimate z., at which the equilibrium between matter
and radiation occurred. In other words we would like estimate z., when the expansion
regime changed from the dominance of ultra-relativistic particles to the dominance of non-
relativistic matter, we write

pu(t) _ paoaga™(t) _ <PM> a(t) (3.14)
prad(t) pradoaél)a_4(t) Prad/ g @0
where again the subscript 0 refers to present values. Equilibrium occurs at
t
pulleq) (3.15)
prad(teq)
that gives
ao pPM Qnr
=142~ ( ) = . 3.16
a(teq) “ Prad / ¢ Qraa ( )
Since Qqq ~ 107, Qs ~ 0.3 we obtain
radiation domination — matter domination : 2., ~ 3000
The corresponding temperature is
Tog = To(1 + 2g) = 10°K ~ 1eV . (3.17)

At higher temperatures the expansion of the Universe was dominated by ultra-relativistic
matter. We must to stress that it is important for structure formation that the most
of the part of the lifetime of the Universe is dominated by non-relativistic matter. This
follows from the fact that the expanding rate at both radiation dominated and vacuum
dominated eras is such that gravitational perturbations grow slowly and only during the
matter dominated stage their growth is fast enough so that the existing structures of the
Universe can arise.

3.4 Epochs of the early Universe

There are two important epochs in the evolution of the Universe:Recombination epoch
that is the transition from plasma to neutral gas. This occurs at temperature T ~
3000K,t ~ 3 - 10°years and nucleosynthesis epoch that occurs at temperatures T =
1MeV to a few -10keV. Another event is neutrino decoupling. Briefly, at high tem-
peratures the neutrino was in thermal equilibrium with the rest of cosmic plasma. The
plasma became transparent for neutrinos at temperature about 1MeV. This decoupling of
neutrinos is very important for nucleosynthesis since it affects the neutron-proton ratio just
before nucleosynthesis (Since neutrinos decouples the reaction that transfers proton into
neutrons simply cannot occur) and hence it leads to the abundances of light elements that
need neutrinos for their formations. Further, the fact that neutrinos decoupled much ear-
lier than photons implies that the present neutrino-to-photon ration is less than one. This
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is consequence of the fact that photons are additionally heated, after neutrino decoupling,
due to the annihilations of e™ with e™.

If we move further back in time we obtain that the cosmic plasma has more and more
components. At temperatures roughly 0.5MeV there are many electrons and positrons
that are frequently pair created and annihilate: at 7" > 100MeV the plasma contains
muons and pions. This plasma remains in thermal equilibrium except possibly for phase
transitions

e QCD phase transition

At temperatures above 100MeV (QCD scale) strongly interacting particles are dis-
solved into quarks and gluons. This quark-gluon plasma converts into hadronic mat-
ter (mostly pions) during the quark-hadron phase transitions. Theoretical estimates
suggest that the temperature of this phase transition is about 170MeV .

e Electroweak transition

Briefly, at temperatures well above 100GeV electroweak symmetry is unbroken. The
consequence of this fact is that W and Z bosons are massless. At T' ~ 100GeV the
phase transition of the electroweak symmetry breaking takes place.

e GUT transition

It is slightly uncertain when we extrapolate back further (equivalently, we go to
higher temperatures), but if we do so we come to the Grand Unification epoch. The
temperature of this epoch is set by GUT scale, Tgpyr ~ 1016GeV. We expect that at
this temperature the Grand Unified phase transition occurs. On the other hand many
models of inflation suggest that the Universe never had such a high temperature after
inflation.

Expansion rate and life-time at radiation domination

Now we will discuss in more details the expansion of the Universe in radiation dominated
stage where we will presume thermal equilibrium of all ultra-relativistic species . In
the very early stages of its evolution was filled with an ultra-relativistic gas of photons,
electrons, positrons, etc. At that time the excess of baryons over antibaryons small fraction
(at most 10719) of the total number of particles. The matter could be considered as a gas
of free particles where their rest masses are small compared to temperature. In other words
the energy density and entropy density corresponds to the massless species
2 2
T 2
=3p=—g.(DT*, s="—g(T)T?. 3.18
p=3p=359T) a5 9(T) (3.18)
where the effective number of particle species g.(T') is g«(T") = gp(T) + %gF(T) where

gp and gr are the number of boson and fermions species degrees of freedom with masses

5This presumption is not however valid for neutrinos at temperatures below 1MeV .
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m < T. For example, for photons gg = 2, gr = 2 for neutrinos and gr = 4 for electrons
(Let us sketch the way how to derive the dependence of p on T'. By definition

e

p= [ drevs(s)

where f(%) is distribution functions and e(k) is an energy. For particles with m < T
we can neglect their rest masses so that e = k. After substitution % = m we obtain
p =T [ Pme(m)f(m) ~ T*.)

Generally g.(T") increases with increasing 7' but rather slowly. This follows from the
fact that at higher temperatures more species are ultra-relativistic (say, electrons contribute
at T'> 0.5MeV and do not contribute at lower temperatures.)

Let us now list some time scales that are relevant for the early stage of the evolution

of the Universe:

e Nucleosynthesis

The temperature relevant for nucleosynthesis rages from a few MeV to about 70keV .
This era begins at
t~1s (3.19)

and ends at
t ~ 200s ~ 3min (3.20)

After this brief introduction we will discuss the properties of the early Universe in brief
details.

3.5 Describing Matter
We try to describe matter a a perfect fluid described by an energy-momentum tensor

Ty = (p+p)UUy + g (3.21)

where U, is the fluid four-velocity, p is the energy density at rest frame of the fluid and
p is the pressure in that same frame. By definition the stress energy tensor is covariantly
conserved

V,.TH =0 . (3.22)

In more complicated examples a fluid will be characterized by quantities in addition to the
energy and pressure. Many fluids have a conserved quantity associated with them and so
we will also introduce a number flux density N* which is also conserved

VNt =0. (3.23)
For non-tachyonic matter N* is a time-like 4-vector and therefore we can write

NF = nU* . (3.24)
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In the same way we can introduce an entropy flux density S*. This quantity is not conserved
but rather obeys a covariant version of the second law of thermodynamics

VuS*>0. (3.25)
It is useful to resolve S* into components parallel and perpendicular to the fluid 4-velocity
St = sU! + st | (3.26)

where s,U* = 0. The scalar s is the rest-frame entropy density that can be written as

ptp
= . 2
s T (3.27)

We must also specify an equation of state. Typically we do this in such a way as to treat
n and s as independent variables.

3

For adiabatic expanding Universe sa® ~ const eq. (3.18) implies

()~ (3.28)

We see that the temperature cools during the expansion of the Universe. The background

1
t

radiation is a result of the cooling of the hot photon gas during the expansion of the
Universe.

3.6 Particles in Equilibrium

The various particles inhabiting the early Universe can be characterized according to three
criteria: in equilibrium vs. out of equilibrium (decoupled), bosonic vs fermionic and rela-
tivistic (velocities near 1) vs. non-relativistic. In this subsection we will consider species
which are in equilibrium with surrounding thermal bath.

Now we must discuss the conditions under which a particle is in equilibrium with the
surrounding thermal plasma. The particles will be in thermal equilibrium as long as its
interaction rate is larger then the expansion rate of the Universe. In other words, particles
have enough time to share the energy among themselves or equivalently, equilibrium re-
quires that it should be possible for the products of a given reaction have the opportunity
to recombine in the reverse reaction. If the expanding of the Universe is rapid enough this
will not happen. A particle species for which the interaction rates have fallen below the
expanding rate of the Universe is said to have frozen out or decoupled. The interaction
rate of some particle with the background plasma is I' where I' is inverse of the mean
time between the reaction of given particle species with the thermal background. Now the
particle will be decoupled from the thermal bath when the particle has not time enough to
react with thermal bath if

I'< H, (3.29)

where the Hubble constant H sets the cosmological timescale.
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At the early Universe the particles are in thermal equilibrium (unless they are very
weakly coupled). This can be seen from Friedman equation when the energy density is
dominated by plasma with p ~ 7% and we have

H2~p:>H~\/ﬁ~<T)T (3.30)
Mp
so that the Hubble parameter is suppressed with respect to the temperature by a factor of
T/M,. At extremely early times (near the Planck era) the Universe may be expanding so
quickly so that no species are in equilibrium but as the expansion rate slows the equilibrium
becomes possible.

At extremely early times near the Planck era, the Universe may be expanding so
quickly that no species are in equilibrium; as the expansion rate slows, equilibrium becomes
possible. On the other hand the interaction rate I' for a particle with cross section o is
typically of the form

I'=aov) , (3.31)

where n is the number density and v is typical particle velocity. Since n ~ a~3 the density
of particles will reduce so that the equilibrium can once again no longer be maintained. In
our current Universe no species are in equilibrium with the background plasma (represented
by CMB photons).

Now we review some facts about particles at equilibrium. For a gas of weakly-
interacting particles we can describe the state in terms of a distribution function f(p)
where the three momentum p satisfies

E(p)* =m*+p[*. (3.32)

The distribution function characterizes the density of particles of given momentum. The
number density, energy density and pressure of some species labeled 7 are given by

"= Gy | @,
p= s [ E@) R

G |P|2
pi = (2W)3/3E(p)fi(l))d3p7

(3.33)

where g; is number of spin states of the particles (massless photons, g, = 2, massive
vector bosons Z ,gz = 3.) As usual, particles and antiparticles are treated as separate,
for spin 1/2 electrons and positrons we have g.- = g.+ = 2. In thermal equilibrium at a
temperature T' the particles will be in either Fermi-Dirac or Bose-Einstein distributions

1

f(p) = cE®)/T +1° (334)

where the plus sign is for fermions while the minus sign for bosons.
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We can do the integrals over the distribution functions in two opposite limits, particles
which are relativistic T > m and highly non-relativistic T" < m. Then we obtain, for
relativistic bosons, following results:

i =5
T
pPi = 792T4 )

bi = 5pi
(3.35)

and for relativistic fermions

pi =
(3.36)

On the other hand non-relativistic limit that is the same for bosons and fermions

n; = g <m2 ) e—mi/T

2
Pi = Myng ,
pi = il << p;
(3.37)

where (¢ is Riemann zeta function with value ((3) ~ 1.202.

The results given above imply several interesting facts. For example, since the densi-
ties of relativistic particles are roughly the same, the relativistic particles remain approxi-
mately equal abundances in equilibrium. We also see that once the particles become non-
relativistic, they become exponentially suppressed with respect to the relativistic species.
This is a result of the fact that it becomes harder for massive particle-antiparticle pairs to
be produced in a plasma with T' < m.

We would like also mention that although matter is much more dominant than radia-
tion in the Universe today, since their energy densities scale differently, the early Universe
was radiation dominated. We can write the ratio of the density parameters in matter and
radiation as

Qv 0 Q
Mo ZMO @ MOy )= (3.38)

Qr  Qroao  Qro

In the same way as we did above we can determine the redshift of the matter-radiation
equality as

Qo

1+ 2y = —20

~3x10°. 3.39
Qo (3.39)
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From the form of the expression above where we compare the densities that scale as a =3

for matter and a~* for radiation it is clear that we have made an assumption that particles
that are non-relativistic today were also non-relativistic at z¢;. It can be shown that this
presumption is safe.

It can be shown that decoupled photons maintain a thermal distribution even if they
are not in thermal equilibrium. This follows from the fact that the thermal distribution
function redshifts into similar distribution function with lower temperature proportional
1/a. Then we can speak about an effective temperature of relativistic species that freezes
out at a temperature Ty and a scale factor ay so that

a;T; = al(a) = T (a) = T} (%) . (3.40)

For example, neutrinos decouple at T' =~ 1MeV, shortly thereafter electrons and positrons
annihilate into photons and hence transfer energy and entropy into plasma leaving neutrinos
decoupled. Consequently we expect a neutrino background and current Universe with
a temperature of approximately 2K while the photon temperature (that arise from the
annihilation of electrons and positrons after decoupling of neutrinos) is about 3K.

Similar effect occurs for particles which are non-relativistic at decoupling however there
is one important difference. For non-relativistic particles the temperature is proportional
to %va that has the redshift as 1/a? and we therefore have

Tren=rel(q) = Ty (ﬁ)g . (3.41)
¢ a

The whole picture is as follows: We imagine that the species freeze out while relativistic
or non-relativistic and stay this way afterwards.

Now the notion of the effective temperature allows us to define a corresponding notion
of an effective number of relativistic degrees of freedom that can be defined as

ge= > G (?):; S o <g¢?)4 , (3.42)

bosons fermions

where the temperature 71" is actual temperature of the background plasma assumed to be
in equilibrium. Then the total energy density in all relativistic species comes from adding
the contribution of each species and we obtain a simple formula

71_2

= —gT". 3.43

p= 359 (3.43)

We can do the same thing for the entropy density. Since the entropy density of relativistic
particles goes as T3 rather T%, we define the effective number of relativistic degrees of

freedom for entropy as

- Y a(f) s
gxS ng

bosons

(eI

> g (r‘;)d (3.44)

fermions
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so that the entropy density of relativistic species is then

= g.5T° . 3.45
8§ = Jp9es (3.45)

For example, in Standard model, we have

100 for T > 300 MeV
g« &~ gis 4 10 for 300 MeV >T >1¢eV (3.46)
3 for T<1MeV

The events that change the effective number of relativistic degrees of freedom are the QCD
phase transition at 300 MeV where quarks and gluons start to form bound states, and the
annihilation of electron-positron pairs at T'~ 1 MeV'.

Thanks to the release of the energy into the background plasma when species annihilate
it is only approximation that the temperature goes as 1/a. It is better to say that co-moving
entropy density is conserved so that

s~a 3 (3.47)

which holds in all forms of adiabatic evolutions, entropy is only produced at a process
like a first-order phase transition or out-equilibrium decay. It is expected that the en-
tropy production from such processes is very small compared to the total entropy and the
adiabatic presumption is excellent approximation for almost the entire early Universe. If
we now combine (3.47) with (3.45) we obtain a better expression for the evolution of the
temperature

T ~ L(J;gl/g’a_1 . (3.48)

We see the difference with the naive time dependence T ~ 1/a. In fact, the temperature will
consistently decrease under adiabatic evolution in an expanding Universe but it decreases
more slowly when the effective number of relativistic degrees of freedom is diminished.

3.7 Thermal relics

As we know particles typically do not stay in equilibrium forever, they density can be so
low that the interactions become infrequent and the particle freeze out. Since essentially
all of the particles in our current universe belong to this category it is important to study
the relic abundance of decoupled species.

We have seen that relativistic or hot particles have a number density that is propor-
tional to 7% in equilibrium. Thus a species X that freezes out while still relativistic will
have number density at freeze-out Ty given by

nx(Ty) ~ T} . (3.49)

Since this is comparable to the number density of photons at that time and since after this
freeze-out both photons and species X have densities that dilute by a factor a(t)~2 as the
Universe expands, we see that the abundance of X particles today should be comparable
to the abundance of CMB photons

nx, ~ Ny ~ 102em™2 . (3.50)
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We express this estimate as 10% rather as the precise number since the roughness of this
estimate does not warrant such misleading precision. For example, neutrinos that are
light (m, < MeV) have a number density of n, = 115cm~3 for each species. Then a
corresponding contribution to the density parameter (if they are heavy enough to be non-

= (g ) as

Thus, a neutrino with m, ~ 1072 eV would contribute €, ~ 2 x 1074, We see that this is
not large enough to make neutrinos to be dark matter.

relativistic today)

Let us now consider species X that is non-relativistic or cold at the time of decoupling.
In this case it is much harder to calculate the relic abundance of a cold relic than a hot one
simply because the equilibrium abundance of non-relativistic species is changing rapidly
with respect to the background plasma. Then we have to be quite precise following the
freeze-out process to obtain a reliable answer. The direct calculation typically involves
very complicated procedure. We rather give here reasonable approximate expression. If
oo is annihilation cross-section of the species X at temperatures T = mx, then the final
number density in terms o the photon density can be determined to be equal to

1

(3.52)

Since the particles are non-relativistic at the time of decoupling, they are certainly non-
relativistic today and their energy density is

pPxX =mxnx . (3.53)

Then finally we obtain the density parameter

PX T
Qv =" ~ —7T . 3.54
x Per UOMI%H(% ( )

Numerically, when & = ¢ = 1 we have 1 GeV ~ 2 x 10~ ¢m so the photon density today
is
ny ~ 100 em™3 ~ 1073 GeV ™3 . (3.55)

The present value of the Hubble constant is

Hy ~107* GeV (3.56)
and the Planck mass is

Mp ~ 108 GeV . (3.57)

Then finally (3.54) gives
1

X 50(109 GeV?)

We see an interesting fact that Qx does not depend on myx but it depends on the anni-

(3.58)

hilation cross-section. Let us elaborate more about this result and consider some weakly
interacting massive particle. The annihilation cross-section of these particles, since they
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are weakly interacting, should be oy ~ oz%,VG F, where apy is weak coupling constant and
G is the Fermi constant. Using

Gr ~ (3000 GeV)?, aw ~ 1072 (3.59)

and we obtain
oo~ 1072 GeV 2 | (3.60)

Then the density parameter of such particles would be
Qx ~1. (3.61)

In other words, a stable particle with weak interaction cross section produces relic density
of order of the critical density today and hence provides a perfect candidate for cold dark
matter.

After this introduction let us present the simplest possible scenario, that, of course,
can be refined by more careful calculations.

Let us again assume that there exists a heavy stable particle X and its anti-particle X.
Let us also presume that the dominant process in which these particles can be destroyed or
created is their pair-annihilation or creation with annihilation products being the particles
of the Standard Model. Let us also presume that there is no asymmetry between X and
X in the early Universe, in other words the densities X and X are equal to each other.
However we have to mention that this is actually a strong assumption that is valid in many,
but not all, realistic extensions of the Standard Model 7.

Let us outline the overall cosmological behaviour of these particles. At hight tempera-
tures, T' > Mx, the X- particles are in thermal equilibrium with the rest of cosmic plasma.
There are many X — X pairs in the plasma that are continuously created and annihilate.
As the temperature drops below My, the equilibrium number density decreases. At some
“freeze-out” temperature Ty the number density becomes so small so that X and X can
no longer meet each other during the Hubble time and their annihilation terminates. After
that the number densities of survived X and X decreases as a~3(¢) and these relic particles
contribute to the mass density of the present Universe. The purpose of the following analy-
sis is to estimate the range of properties of X particles in which their present mass density
is of the order of the critical density p. so that X may serve as dark matter candidates.

Let us again assume thermal equilibrium. It is well known that that the mean free path
< | > of a particle in a gas depends on the lifetime 7., of a non-relativistic X-particle as

Tann V- Tann - Mg =<1 >, (3.62)

where v is mean velocity of X particle, o4, is the annihilation cross section at velocity v

and n = nx is equilibrium number density

mxT 3/2 _mx
e T
2T

nx = gx ( (3.63)

"In fact, the alternative scenario with the generation of X asymmetry is also interesting since it might
be related to baryon asymmetric the density of dark matter.
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In order to find the life-time of the non-relativistic particle X we have to take some rea-
sonable value of < [ >. It is natural to presume that it is of order 1 in the natural units
< | >~ 1. Further, it can be also shown that for non-relativistic velocities the annihilation
cross section takes the form

Tanm = % , (3.64)
where og is constant. We will discuss its value later. We should now compare the life-

time with the Hubble time, or annihilation rate I'gny = 7.1

onn With the expansion rate H.

At T ~ myx the equilibrium density is of order ny ~ T° and Ty, < H for not too
small op. Conversely, the life-time is much smaller than Hubble time and consequently the
annihilation and creation of X — X pairs is rapid and hence X-particles are in equilibrium
with plasma. On the other hand for very small temperatures T' < myx the number density
ny is exponentially small and Typpy < H (Tann > H *1). Than it is clear that the thermal
equilibrium between X-particles and background plasma is not maintained. In other words
the number density nx gets diluted only because of cosmological expansion.
The freeze-out temperature Ty is determined by the relation

Tl =T~ H | (3.65)

ann —

where we can still use the equilibrium formula as X particles are in thermal equilibrium
(with respect to annihilation and creation) just before freeze-out. Then we find

2

T:) ~ H 1} 3.66

where we have introduced the effective Planck mass
Mp

Mp=——, 3.67
P 1.661/g.(1) (3.67)
and hence the expansion rate is equal to
T%(t)
H(t) = . 3.68
=3 (3.69)

The solution of the equation (3.66) gives the freeze-out temperature, up to log terms

mx

Ty (3.69)

~ In(mjHmxog)
This temperature is quite bit smaller than myx which means that X-particles freeze out
when they are indeed non-relativistic and hence it is natural to call them as cold dark
matter.

At the freeze-out temperature we use (3.66) to get

nx(Ty) = —I— . (3.70)
It is interesting to note that this density is inversely proportional to the annihilation

cross section. The explanation of this fact is that for higher annihilation cross section
the creation-annihilation processes are longer in equilibrium and less X particles survive.
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In order to estimate eh present density X-particles, it is convenient to consider ratio
nyx /s where s is the entropy density

2
2T 3

T

(3.71)

The point is that during the adiabatic expansion after freeze-out, the entropy density scales

3 since in the adiabatic process sa®

3

as s~a~ = const. In the same way since we are in the

freeze-out regime we have that nxa® = const we obtain that nx scales in the same way
nx ~ a~3. Then, up to a factor of order 1, this ratio at freeze-out is
nx 1
—~ 3.72
s 9«(Ty) M} Trog (372)
At late times, the entropy density, again up to actor of order 1, is equal to the number
density of photons, so the present number density of particles is of order

nx,o0 (nx -

S0 S ) freeze—out

nx nx
o), e ()
S / freeze—out S / freeze—out
(3.73)
and the present mass density is
In(Mmxog
PX,0 =MXNX 0 =" Ny, (M5 ) (3.74)

07 //m Na7x 0
9«(Ty) Mpoo

where we have also used (3.69). The formula above is very interesting since we see that
the present mass density depends mostly on one parameter, the annihilation cross section
0o. The dependence on the mass of X-particle is through the logarithm and g.(7) is very
mild. From this formula we derive the condition that ensure that X-particles are dark
energy candidates, i.e. their present mass density is of order p.

1,0

~ 7*111 M*mxao 3.75
9+(T¢)Mppe (M ) (3.75)

g0

that leads to the estimate
107y <1079 GeV 2, (3.76)

where the uncertainty in the estimate is a consequence of the way we deal with various
numerical factors. In any case the estimate given above tells us what the relevant range of
mass scales is. To see this note that the annihilation cross section may be parametrized as

(3.77)

where « is some coupling constant and M is the mass scale (In the calculation above
M? = Gr.). With a ~ 1072 the estimate of the mass scale for o9 ~ 10~!! is roughly

M~1TeV . (3.78)
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In other words, we very mild assumptions we find that the non-baryonic dark energy matter
may naturally originate from the T'eV-scale physics. Then it follows that one natural can-
didate for the cold dark matter is neutralino. More precisely, in supersymmetric extensions
of the Standard Model the neutralino-that is mixture of super-partners of photon, Z-boson
and neutral Higgs bosons- is the lightest supersymmetric particle that is often stable with
the suitable value of the annihilation cross section. In fact, the search for both direct and
indirect signals from neutralino dark matter is an active area of experimental research.

The mechanism discussed here is of course not the only one mechanism that is able to
model cold dark matter. Other dark matter candidates include very heavy relics produced
toward the end of inflation, axions, gravitinos, massive gravitons and so on.

3.8 Baryogenesis

The symmetry between particles and antiparticles is firmly established in collider physics.
However then we lead to the following question; why the observed Universe is composed
almost entirely of matter with little or no primordial antimatter.

Outside the particle accelerators the antimatter can be seen in cosmic rays in the form
of a anti protons where the ratio of these andirons to protons is

ne
2107, (3.79)
Tp

However this ratio is consistent with secondary anti proton productions through accelerator-

like processes

p+p—3p+D (3.80)

as the cosmic rays stream toward us. In other words there is no evidence for primordial
antimatter in our galaxy. Also let us imagine that we have clusters of matter and antimatter
galaxies. Then we could expect that we could detect background of v-radiation from
nucleon anti nucleon annihilations with clusters. This background is not observed and so
we conclude that there is negligible antimatter on the scale of clusters.

All these considerations put an experimental upper bound on the amount of antimatter
in the Universe.

In order to study this problem in more details let us introduce the baryon to entropy
ratio

np ny — Ny

=B_07% 3.81
= P (3.81)

where np is the difference between the number of baryons and anti-baryons per unit volume.
The range of n was determined recently as is equal to

n=61x10"140.210"1 . (3.82)

At early times, at temperatures well above 100 MeV ,cosmic plasma contained many quark-
anti quark pairs whose number density was of the order of the entropy density

ng+mng~s, (3.83)
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while baryon number density was related to densities of quarks and antiquarks as follows
(baryon number of quakrs equals 1/3)

1
Any = g(nq —ng) . (3.84)

Hence in terms of quantities characterise the very early epoch, the baryon asymmetry may
be expressed as

PRRL By (3.85)

ng + Ng

We see that there was one extra one extra quark per about 10 billion quark-antiquark pairs.
It is this thiny excess that is responsible for entire baryonic matter in the present Universe.
Thus the natural question arises, as the Universe cooled from early times to today, what
processes, both particle and cosmological, were responsible for the generation of this very
specific baryon asymmetry?

Of course there is no logical contradiction to suppose that this thiny excess of quarks
to antiquarks was built in as an initial condition. Of course, this is not very satisfactory for
physics. Furthermore, inflationary scenario does not provide such an initial condition for
Hot Big Bang, rather, inflation theory predicts that the Universe was baryon-symmetric just
after inflation. In other words we would like to explain the baryon asymmetry dynamically.

As pointed by Sakharov, a small baryon asymmetry may have been produced in the
early Universe from initially symmetric state if three necessary conditions are satisfied:

e Baryon number (B) violation,

e Violation of C' (charge conjugation symmetry) and C'P (the composition of parity
and C)

e Departure from thermal equilibrium.

The first condition is clear since when we start from a baryon symmetric Universe, baryon
number violation must take case in order the Universe to evolve into the state with baryon
number violation. In other words, if the baryon number were conserved that this charge
would remain constant during time evolution and hence w we would not observe the baryon
number asymmetry.

The second Sakharov criterion is required since, when C' and C'P are exact symmetries
it can be shown that the total rate for any processes that produces an excess of baryons is
equal to the rate of the complementary process which produces an excess of antibaryons
and so no net baryon number can be created. CP violation is present either if there
are complex phases in the Lagrangian which cannot be reabsorbed by field redefinition
(explicit symmetry breaking) or if some High scalar field acquires an VEV which is not
real (spontaneous symmetry breaking).

Finally, in order to explain the third equilibrium let us calculate the thermal equilib-
rium average of the baryon number operator B at temperature 7' =1/

(B)p = Tr(e P B) = Tr <(CPT)(CPT)*1e*ﬂH B) -
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Tr (e—ﬂH (CPT)—lB(CPT)> = —Tr(e PHB),
(3.86)

using the fact that (CPT) commutes with H and cyclicity of the trace. Finally, we have
used the fact that B is odd under (PC'). Then from the equation above we see that in the
thermal equilibrium the baryon number is equal to zero and there is not any generation of
baryon number.

The first two Sakharov’s conditions may be investigated only within a given particle
model, while the third condition the departure from thermal equilibrium may be discussed
in a more general way.

3.9 Baryon Number Violation

At present there are two well understood mechanisms of baryon number non-conservation.
One emerges in Grand-Unified Theories (GUT). Briefly, these GUT describe the funda-
mental interactions by means of the unique gauge group G that contains the Standard
Model group

SUB)c@SUR2)L,@U1)y .

The fundamental idea of GUT is that at energies higher than a certain energy Mgyt the
group symmetry is G and that, at lower energies, the symmetry is broken down to the
SM gauge symmetry, possibly through the chain of symmetry breaking. The motivation
for this scenario, whose explanation, however, is beyond the scope of this review, it the
fact that in some models, the (running) gauge couplings of the SM unify at the scale
Maur ~ 2 x 1016 GeV.

The interesting fact considering GUT is that the baryon number violation emerges
very naturally in it. Briefly, the mechanisms of the baryon number violation is due to
the exchange of super-massive particles. The scale of these new, baryon number violating
intercating is of order 1016 GeV.

Another mechanism of the baryon number violation is related to the triangle anomaly
in the baryonic current. It exists already in the Standard Model and possibly it operates
in all its extensions. The main feature of this mechanism, as applied to the early Universe,
is that it is effective over a wide range of temperatures

100 GeV < T < 10 GeV .

In summary, realistic mechanism of baryon number non-conservation are rare, but there
are several ways the baryon asymmetry could have been generated. They differ by the
characteristic temperature at which the asymmetry is produced.

The GUT mechanisms operates at extremely high temperatures

T ~ 10 — 1016 GeV

The most well developed source of the baryon asymmetry in this context are B- and CP-
violating decays of ultra-heavy particles. At late times the baryon number is violated by
anomalous electroweak processes.
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Electroweak baryogenesis is scenario in which the baryon asymmetry is generated en-
tirely due to the anomalous electroweak processes. Its generation would occur at tempera-
ture of order 100 GeV which is the energy at which these anomalous processes are switched
off. On the other hand the electoweak baryogenesis is still under development.

In summary, the observed asymmetry may be explained by a number of mechanisms
all of which, however, exist in extensions of the Standard Model only. The problem is that
direct proof that any given mechanism is indeed responsible for the baryon asymmetry.

3.10 Departure from the Thermal Equilibrium

In some scenarios, such as GUT baryogenesis, the third Sakharov condition is satisfied due
to the presence of superheavy decaying particles in a rapidly expanding Universe. These
processes are called as out-of-equilibrium decay mechanisms.

The underlying idea is simple.If the decay rate I'x of the superheavy particles X at
the time they become non-relativistic (at the temperature 7'~ Mx) is much smaller than
the expansion rate of the Universe, then the X particles cannot decay on the time scale of
the expansion and so they remain as abundant as photons for T < Mx. In other words
at some temperature 7' > Mx the superheavy particles X are so weakly interacting so the
they decouple from the thermal bath while they are still relativistic, so that

nx ~ n7 ~ T3 (387)

at the time of decoupling.

Then we obtain that at temperature T' ~ Mx they populate the Universe with an
abundance which is much larger than the equilibrium one. This abundance is precisely
the departure from thermal equilibrium needed to produce a final non-vanishing baryon
asymmetry when heavy states X decay in B and C'P violating decays.

It can be shown that the out-of-equilibrium condition requires very heavy states

My < (101 = 10'%) GeV | (3.88)

if these heavy particles decay through renormalizable operators.

A different mechanism of the departure from the thermal equilibrium can be found in
the electroweak theory.

A further natural way to depart from equilibrium is provided by the dynamics of the
topological defects.

3.11 Neutrino background

As an example of the previous discussion let us consider the fate of neutrinos in the expand-
ing Universe. The dynamics of the neutrinos and their reactions with other components of
the matter are governed by the Standard model. Then using the rules of standard quan-
tum field theory one can calculate the reaction rate I' of the neutrinos with the rest of
the matter (Roughly speaking the inverse I'"! is the average time between collision of the
neutrinos with all form of the matter). When I'"! is larger than H~! (conversely, when T
is less than H) there cannot occur the reactions between the neutrinos and the rest of the
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matter. We say that in this case neutrinos effectively decouple from the rest of matter. It
can be shown that the relevant ration is given by

Do( 2 Y_( T ¥ (3.80)
H \14Mev ) — \1.6x 100K ) '

This formula implies that for T < 1.6 x 100 the neutrinos decouple from the rest of the
matter. On the other hand electrons and positrons can still annihilate at slightly lower
temperature. This process increases the number of the photons. As a result the photon
temperature goes up with respect to neutrino temperature (Remember that it is natural
to speak about two different temperatures for two different species of particles since they
have already decoupled.). We can calculate this increase of temperature as follows. The
increase of T' is due to the change of degree of freedom ¢ and is given by
(aT’Y)gfter . Gvefore %(2 + 2) +2 _ 11

= = —_— . 3.90
(G’T’Y)%efore YGafter 2 4 ( )

Let us explain factors given above. In the numerator, one 2 is for electron, one 2 is for
positron and the factor 7/8 arises because of fermions. The remaining 2 in numerator is
for photon. In denominator 2 is for photon since they remain after the annihilation of
positrons with electrons. Using the relation above we obtain

11\ Y3 11\ Y3
(aT’V)after = (4> (aT’Y)before = (4> (aTl/)before =

11 1/3
= <4> (G’Tu)after = 1-4(QTV)afte7" :

(3.91)

The first equality is from (3.91), the second follows from the fact that the photons and
neutrinos had the same temperature originally. The third equality follows from the fact
that for decoupled neutrinos a7}, are constant. The final result leads to the prediction that
at present the Universe will contain a bath of neutrinos that has temperature that is lower
than of CMBR.

3.12 Primordial Nucleosynthesis

Theory of Big Bang Nucleosynthesis and observations of primordial abundances of light
elements probe the earliest epoch of the evolution of the Universe that is accessible to
observation today. This epoch corresponds to temperatures ranging from 1 MeV to a few
10 keV and age of the Universe from 1 s to 200 s.
Let us briefly review the properties of the matter at this early epoch of the Universe.
At temperatures above 1 MeV there is a thermal equilibrium with respect to reactions

preeon+tu.. (3.92)

As the Universe cools down below T' ~ 1 MeV neutrons are no longer produced or de-
stroyed, they concentration (relative to protons) ”freezes out”. Alternatively saying, the
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weak interactions are frozen out and neutrons and protons cannot interconvert. The equi-
librium abundance of neutrinos at this temperature is about 1/6 the abundance of neutrons
due to the slightly larger neutron mass.

When we reach a temperature somewhat below 100 keV the Bing-Bang Nucleosyn-
thesis (BBN) begins 8. At that point the neutron/proton ration is about 1/7. Since it
is energetically favorable for nucleons to form He the most part of the free neutrinos are
converted into He. For every two neutrons and fourteen protons we end up with one he-
lium nucleus and twelve protons. In other words 25 % of the baryons are converted to
helium. There are also trace amounts of deuterium and lithium. Heavier elements are not
synthesized in the Big Bang but require supernova explosions in the later universe. These
elements remain in the Universe so their primordial abundance is measurable today.

It is important to stress that Big Bang Nucleosynthesis serves also as a source of
constraints on particle physics. The fact that the temperature of the Universe reached at
least 1 MeV or so and that the expansion was described by know physics at this stage
constrain significantly some extensions of the Standard models.

The most amazing fact about nucleosynthesis is that, given the Universe is radiation
dominated during the relevant epoch, the relative abundances of the light elements depend
essentially on one parameter, the baryon to entropy ratio

p="2_0"" (3.93)

S S

where np is the difference between the number of baryons and anti-baryons per unit volume.
The range of n was determined recently as is equal to

=6.1x10"1°+0.210717. (3.94)

Let us be now more specific. We know that at present the Universe is expanding and filled
with radiation that is very cold today (Tp = 2.73K). If we trace the evolution of the universe
back in time to earlier epochs that were hotter and denser, the early Universe is a Primordial
Nuclear Reactor during its first 20 minutes (=~ 1000). In fact,when the temperature of the
Universe is higher than the binding energy of nuclei (~ MeV') none of the heavy elements
(helium and metals) could have existed in the Universe. The binding energy of the first
four light nuclei, H?, H3 He® and He* are 2.22MeV,6.92MeV,7.72MeV and 28.3MeV
respectively. Since the average energy in the thermal ensemble is proportional to the
temperature we obtain that these nuclei could be formed when the temperature of the
Universe is in the range (1 — 30)MeV. Surprisingly, the actual synthesis takes place at
much lower temperature Th,,. = T, &~ 0.1MeV. The reason for this delay is the high
entropy of the Universe that implies that the ration of photons to baryons, n~! is high.

Numerically
_ B g5 qgeto (2R Q2 = 3.65 x 108 ( —L0 3 (3.95)
=, T 0.02 ) ° -7 273K ) M0 ‘

8Note that the nuclear binding energy per nucleon is typically of order 1 MeV so that one could expect
that BBN would occur earlier. However the large number of photons per nucleons at that time prevent
BBG to occur until the temperature drops below 100 keV .
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Thus, even if the thermal equilibrium is maintained the significant synthesis of nuclei can
occur only at T' < 0.3MeV. Then we can expect significant production X4 ~ 1 of nuclear
species Aat temperature T' < T4. However it turns out that the rate of the nuclear reaction
is not high enough to maintain thermal equilibrium between various species. In order to
study non equilibrium abundances in an expanding universe is based on rate equations.

Let us now review its general concepts.

3.12.1 Rate equations

Consider a reaction in which two particles 1 and 2 interact to form two other particles 3
and 4. For example, let us consider reaction n + v, = p + e, that converts neutrons into
protons in the forward direction and proton into neutrinos in the reverse direction. Another
example is the reaction p + e = H + v where the forward reaction describes recombination
of electron and proton forming a neutral hydrogen atom with the emission of photon. In
general we are interested in how the number density n; of particle species 1 changes due
to the reaction of the form 1 4+ 2 < 3 4+ 4. Remember that even in case where there is no
reaction the number density change as n; o< ¢~ due to the expansion of the Universe. In
other words the quantity that changes due to the reaction is nja3. Further, the forward
reaction will be clearly proportional to the product of the number densities n1no while the
reverse reaction will be proportional to ngns. Hence we can write the equation for the rate
of the change of particle species ny in the form

id(nla:s)

T w(Ansng — ning) (3.96)

The left hand side is the relevant rate of change over and above that due to the expansion of
the Universe. On the right hand side the two proportionality constants have been written
as u and Ap that generally are functions of time. Usually p ~ ov where o is the cross
section for the relevant process and v is relative velocity. The left hand side has to vanish
for system in thermal equilibrium with n; = n;? where the superscript eq denotes the
equilibrium densities for the different species labeled with ¢ = 1...4. If we insert in the

above equation the condition n; = n;? we can express A as
n{Ins?
eq, eq eq, eq _ _ My
Ang'ny' —ni'ny' =0 = A= <4 (3.97)
ng 1y
and than the rate equation becomes
1 d(nia®) o N3Ny ning
_ q,,€q
3T g T HN Ny ( eq,_eq — _eq eq) (3'98>
a dt Ng'ny ny Ny

On the left hand side we can write % =aH % that shows that the relevant scale for this
proccess is H~!. Clearly when % <& 1 the right hand side becomes ineffective because
the factor 4; factor. Then we see that the number of particles of species 1 does not
change. In other words when the expansion rate of the Universe is large compared to the
reaction rate (4 < 1) the given reaction is ineffective in changing the number of particles.

However this result does not mean that the reactions have reached thermal equilibrium
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and n; = n;?. In fact, the opposite situation occurs: The reactions are not fast enough to
drive the number densities towards equilibrium densities and the number densities ”freeze
out” at non-equilibrium values. Of course the right hand side in (3.98) will also vanish
when n; = n;? that is the extreme limit of thermal equilibrium.

Using this general formalism we will now apply it to the process of nucleosynthesis
which requires protons and neutrons that combine together to form bound nuclei of heav-
ier elements like deuterium, helium... The abundance of these elements are going to be
determined by the relative abundance of neutrons and protons in the Universe. For that
reason we should start the discussion with the problem of the thermal equilibrium between
protons and the neutrons in the early Universe. As long as the inter-conversion between n
and p through the weak interaction processes

v+nepte,e+n—p+v (3.99)

or their decay
nepte+v (3.100)

is rapid with respect to the expansion rate of the Universe thermal equilibrium can be
maintained. Then the equilibrium static physics implies that the the equilibrium n/p

ration is equal to
n XTL
(”) = X0 p(—q/T) (3.101)

Np Xp
where Q = m, —m, = 1.293MeV. For T > () the factor in the exponent is approaching
zero and we obtain X, ~ X,. However when T drops below about 1.3MeV the neu-
tron fraction will drop exponentially on condition that the thermal equilibrium is still
maintained. However to check weather the thermal equilibrium is maintained we have to
compare the expansion rate with the reaction rate. The expansion rate is

H= \/8775” (3.102)

30

where g = 10.75 represents the relativistic degrees of freedom present at these temperatures.

where

p (3.103)

At T = @Q this gives H ~ 1.1s7'. The reaction rate needs to be computed from weak
interaction theory. The neutron to proton conversion rate is approximated by

T 5 2
Anp = 0.29571 <Q) (g) +6 <§2> +12

At Q = T this gives A ~ 557! that is more rapid than the expansion rate. But as T

(3.104)

drops below @ this decreases rapidly and the reaction ceases to be fast enough to maintain
thermal equilibrium. Then we have to work out the neutron abundance using the equation
(3.98).
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If we denote n1 = n,,n3 = ny and ng, ng = n; where the subscript [ stands for leptons
then the equation (3.98) becomes

1 d(n,a® Ny
a3(th) = pnfl <Zq” - nn> . (3.105)
P

To proceed we use the fact that un;? is equal to the rate of the neutron to proton conversion
Anp- We also use the relation

e
ned

n—;q =exp(—Q/T) (3.106)

Let us now introduce the fractional abundance

Tin

Xp=—""— 3.107
(n + 1p) ( )
Then the equation (3.105) takes the form
dX,
= (1= Xn)em 9T — X)) (3.108)
where we have used
n
Xp+X,=1,X,=—2— 1
+ Xy A (3.109)
and also the fact
1 d(npa®)  a®(nn 4 ny) dX, (3.110)

a3 dt al dt

3 is constant. This equation can be integrated numerically and determine

since (n, +ny)a
how the neutron abundance changes with time. The neutron fraction falls out of equilibrium
when temperature drop below 1MeV and it freezes to about 0.15 at temperature below
0.5MeV. As the temperature decreases further the neutron decays with a half life of
Tn ~ 886.7sec becomes important and starts to reduce the neutron number density. Then
the only way how the neutrons can survive is through the synthesis of light elements. As
the temperature falls further to T' = Ty, &~ 0.28 M eV significant amount of He could have
been produced if the nuclear reaction rates were high enough. These reactions are all based
on D, He and H and do not occur rapidly enough because the mass fraction of D, He
and H are still quite small [10712,1071 5 x 10719 at T ~ 0.3MeV. The equilibrium
deuterium abundance passes through unity at temperature of about 0.07MeV which is
when nucleosynthesis can really begin.

The production of still heavier elements-even those like C, O which have higher binding
energies than He is suppressed in the early Universe.

3.13 Decoupling of matter and radiation

In the early hot phase the radiation will be in thermal equilibrium with matter. As the
Universe cools below kT ~ (¢,/10) is the binding energy of atoms the electrons and ions
will combine to form neutral atoms and radiation will decouple from matter. This occurs
at T ~ 3 x 103K. As the Universe expands further these photons will continue to exist
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without any further interaction. We shall now discuss some details related to the formation
of neutral atoms and decoupling of photons.
The relevant reaction is
e+p=H+~. (3.111)

If the rate of this reaction is faster than the expansion rate then one can calculate the
neutral fraction as follows. Introducing the fractional ionization X; for each of the particle
species and using the facts that n, = n. and n, +ny = ng. We also have X, = X, and
Xy = Z—g =1—- 22 —1— X,. The equation that governs the time evolution of X, that

np
expresses the equilibrium situation now takes the form

1- X,
X2

T\ 3/2
~ 3.84n <> exp(B/T) , (3.112)
Mme
where 1 = 2.68x10~8(Q5h?) is the baryon-to-photon ratio.We define T, as the temperature
at which 90 percent of the electrons have combined with protons. This implies n, = 0.1np
and hence X, = X, = 0.1. This leads to the condition

(Qph?) '3/ exp[—13.67"1] = 3.13 x 107'¥ | (3.113)

where 7 = (T'/1eV'). The solution of this equation can be given by iterative procedure.
For Qph? =1,0.1,0.01 we then obtain Tys0, = 0.324eV,0.307eV, 0.292¢V .

These results were based on the equilibrium densities. Then it is important to check
that the rate of the reaction p + e <» H + + is fast enough to maintain equilibrium. It
turns out however that this is not fully satisfied and hence we have to again use the rate
equation. The rate equation (3.98) for ny = ne,n2 = npy,n3 = nyg and ng = n, and for
X, = —2=— takes the form

Ne+Nnpg

a

djie = <ﬁ(1 — X.) — an§> : (3.114)

where the recombination rate « is the rate is given by

, /B 1/2 B
a=9.78rjc T In 7)o (3.115)

where rg = meTZZ is classical electron radius. In (3.114) the ration [/« is given as

(0%

5 _ meT’
< 2m

3/2
> exp|—B/T] (3.116)

Using this result we obtain that the value of T}, does not change significantly.

3.14 Structure formation and linear perturbation theory

The structure formation is based on the key idea that if there exist small fluctuations in
the energy density in the early Universe, then gravitational instability then leads in a well
understood manner leading to structures like galaxies today. The most popular model
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for generating these fluctuations is based on the idea that if the very early Universe went
through the inflation phase then the quantum fluctuations of the field driving the inflation
can lead to energy density fluctuations.

Let us illustrate this idea on the example of the massless scalar field ¢ minimally
coupled to gravity. The action of the scalar field is

1 v
Sy = -3 / dzy/=gg"" 0,60, (3.117)
In spatial flat FRW background this action has the form
1 1
So=—3 /dazdta3(t)[—(8t¢)2 + ﬁ(aigb)z] (3.118)

so that the equation of motion takes the form
O1(a®0y¢) — ad;id'¢ = 0 (3.119)

or equivalently
. .1 .
o+ 3H(t)p — gﬁiaqu =0, (3.120)

where & = Oyx , & = 0x. Thanks to the homogeneity and isotropy of space it is natural to
work in the momentum representation where we search for the solutions in the form

XK (t) (3.121)

If we insert (3.121) into (3.120) we obtain ordinary differential equation for ¢y in the form

.. ) k2
¢k + 3H(t) oy + ggb =0. (3.122)
Note that k is a coordinate momentum. The physical momentum at time ¢ is

p==- (3.123)

a

and it depends on time.

Looking on (3.122) we see that the second term in it acts as a friction term. Then
we can consider two regimes with the qualitatively different behaviour of the modes ¢y:
Subhorizon modes:

These modes are characterized condition

k
p=_>H. (3.124)

Modes obeying this property are subhorizon modes since their physical length A ~ p~! is

much shorter than the Hubble distance H ! that is a horizon size in matter and radiation
dominated Universe. More precisely, for modes obeying the condition (3.124) we can neglect
the friction term in (3.122) and hence we get

Bradto=0 wmlt) =" (3.125)
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This equation has the general solution

1 it Aty (t')
b = —et' 1o (3.126)
a
since
bk = —Hoy + iwrdx ~ iwkdi ,
b = ik — Wik = —iHwidk — Wik ~ —widk -
(3.127)

This solution (modulo slowly varying prefactor) describes oscillations with the frequency
experiencing redshift (The frequency is lowered with time).

Superhorizon modes:

These modes are characterized by condition

k
p=—-<H. (3.128)
a
In this case the last term in (3.122) are negligible and the solutions are

constant mode : , ¢ = const ,

t dt/
growing mode : , ¢y (t) = K ,
to a3(t/)
(3.129)
It is clear that the constant mode is solution of (3.122). The growing mode is solution as
well since K
Sk =5 0k=—3Hox. (3.130)

The gravitational waves obey precisely the same equations as (3.122) so that they have
exactly the same behaviour, in particular, for given k£ one of the superhorizon modes
blows up at small t. It follows that the whole picture of the FRW Universe with small
perturbations is thus self-consistent only if this modes vanishes at finite times.

Now recall that for radiation dominated and matter dominated Universe H ~ t~!
while the scale factor behaves as a ~ t1/2 for radiation dominated Universe and a ~ ¢2/3
for matter dominated Universe. Then the ration of physical momentum to H behaves as

LIORNIE (3.131)

(t)

for radiation dominated Universe and

p(t)
) ™ /3 (3.132)

for matter dominated Universe. These results mean that all modes start as superhorizon
and then enter the horizon. In the scalar mode example the requirement that the growing
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mode vanishes determines the initial date for each k up to overall amplitude. Then we
have

k
Pk = cx v, <H (3.133)
and

t
k

K = Ci COS (/ dt’wk(t’)> ,—>H . (3.134)
0 a

For density perturbations the oscillating behaviour means that at late enough times there
are sound waves in the primordial plasma with the wave-lengths that are shorter than the
horizon size at each moment of time. Briefly speaking the fate of the primordial density
perturbations is as follows. They stay constant until they enter the horizon at radiation or
matter dominate stage. After that they start to oscillate and make the sound waves. The
amplitudes of these waves grow during the matter dominated stage due to the gravitational
instability. The regions with higher density tend to gravitationally attract matter and
become even more overdense. The dense regions collapse and form gravitationally bound
structures.

Let us now discuss in more details how the simple description given above is related
to the more realistic situation. As long as the fluctuations are small one can study their
evolution by linear perturbation theory. The basic idea of linear perturbation theory is
well defined and simple. We write the metric as

Juv = gifu’.W + h;w ) (3.135)
where gifw is background FRW metric and Ay, is small perturbations that propagate on

the background characterized with gfyRW. In the same way we perturb the source energy
momentum tensor by
Ty = T/ + 6T, (3.136)

where again TﬁRW is the stress energy tensor for the background matter that solves the
FRW equations and 67}, are perturbations. If we linearize the Einstein’s equations one

can relate the perturbed quantities by a relation of the form

LG5 Vhyy = 0Ty, (3.137)

where L is second order linear differential operator depending on the background metric
gfﬁw. As wa argued above due to the fact that the background is maximally symmetric
one can separate out time and space and we can write down the equation for any given
mode labeled with the wave vector k as

L(a(t), K)hyu (t, k) = 0T, (8, K) . (3.138)

Then careful analysis performed in case of metric perturbations implies that the linearized
equations of motion for gravity perturbations take the forms given in the toy example
of the massless scalar fields studied above. More precisely, it can be shown,after some
simplifications and presumption, that are all well justified, that perturbed metric can be
written in the form

ds® = a®(n)[(1 + 2®)dn? — (1 — 2®)8dada?] . (3.139)
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In other words we obtain one perturbed scalar degree of freedom ®. Then it can be shown
that the dynamics of the mode ® is governed by the equations that has the same form as
(3.122).

4. Inflation cosmology

4.1 Problems of the standard Big-Bang model

The standard Big-Bang model suffers from number of problems. Before we enter in their
discussion we review some properties of the Friedman models at the early stage of the
Universe.

The question is what can we say about the Hubble parameter H = %, the density p
and the quantity k7

At the earliest stages of the evolution of the Universe H and p could be arbitrarily
large. On the other hand it is believed that for p < Mj?, quantum gravity are significant
and the quantum fluctuations of metric exceed the classical value of g,,. The standard
cosmology where the metric is treated in the classical manner restricts to the region of
phenomena where

p< Mp T < Mp~10*GeV,H < Mp . (4.1)

We also have to stress that in the expanding Universe thermodynamics equilibrium
cannot be established immediately but only when the temperature T is sufficiently low.
The behaviour of the non-equilibrium Universe at densities of order of the Planck density
is very important problem.

Now we come to the list of problems of the standard hot Universe theory

4.2 Problems of the standard scenario

The singularity problem

The Friedman equations imply that the density of matter in the Universe goes to infinity as
t — 0 and the corresponding solutions cannot be formally continued to the domain ¢ < 0.

One of the most exciting questions of cosmology is whether anything existed before
t = 0. If there is nothing before ¢ < 0 the question is: where did the Universe come from?

Studied of the the general structure of space-time near a singularity suggest that it
is highly unlikely that this problem could be solved with the framework of the classical
gravitation theory. One hope that these questions could be answered in the context of string
theory. We will review some string theory inspired models in next sections. However these
models are faced with many important and conceptional problems so that the problem of
the birth of the Universe is the most challenging un answered question in physics.

Flatness Problem

The flatness problem concerns with the observation that the real density of the Universe,
p, is known to be very close to the critical density p.. Recall, that in the previous section
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we have studied the Friedman equation

1 k

H = — _p— —
sMz’ a2

(4.2)

1
) V8nG
that H = £ where a(t) is the scale factor with the spacetime metric on the form

~ 2-108GeV is the four dimensional Planck mass. Recall also

where now Mp =

ds® = —dt* + a*d% | (4.3)

where dY is co-moving volume element of space with & = 0,+1, —1 corresponding to flat,
positively curved and negatively curved spaces respectively. As we known we can rewrite
the Friedman equation in the form

k

= am e

(4.4)

where {2 means the sum of particular €2’s. Note that for ordinary type of matter, ag—}qg will
increase with time. To see this we use the continuity equation given by

p+3H(p+p)=0. (4.5)
If we assume an equation of state of the form
p=wp, (4.6)

for w = const. Then the continuity equation can be written as

dp da a _dp p
%E+35(1+w)p_%+3(1+w)a_0’ (47)
that implies
p~ q 30Fw) (4.8)

If we start with 2 ~ 1 we obtain that £ ~ 0. Then the Friedman equation is
H?~ p= @ q31+w)/2 (4.9)
a
that implies
daa1+30)/2 = § = g ~ (5T | (4.10)

As a consequence we get that

1 2_3%
™ 730w (4.11)

This expression grows with time for any w > —1/3-examples include pressureless dust with
w = 0 and radiation with w = 1/3. Looking on the form of the Friedman equation (4.4)
we see that, unless the Universe is exactly flat (k = 0) and, as a consequence = 1, Q will
rapidly evolve away from 2 = 1. In order to have a value of §2 close to 1 today, one would
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therefore expect to need a value of 2 even closer to 1 in the early Universe. This is the
famous Flatness problem. That is, how can 2 be so close to one?

We can argue alternatively as follows. Looking on the form of Friedman equation we
see that the curvature contribution is

_p 3Mp
|chrv| = (:)u:v = m ’ (4'12)

where we have defined the curvature contribution to the Friedman equation as

3Mp

’pcurv’? . (413)
The present value of the equation (4.12) is
|Qeuro] < 0.02 . (4.14)

Since |p|eury scales as 1/a? while the radiation matter and radiaton scales as 1/a® and 1/a*
respectively. This implies that the curvature contribution to the Friedman equations was
even smaller in the past, for example

nucleosynthesis :  |Qeyro| < 10716,
electroweak epoch ,  [Qeyro| < 10726 .
(4.15)

In other words the spatial curvature of the Universe was tiny at the beginning. The question
is, why the initial conditions were so flat? This flatness problem cannot be solved within
Hot Big Bang theory.

The total entropy and total mass problem

The question is why the total entropy S and total mass M of matter in the observable
part of the Universe with R, is so large. The total entropy S of the present Universe can
be estimate as follows. The size of the observable part of the Universe is

Lo ~ 2Hy ' ~ 10%° m
The entropy inside a sphere of the size [f7 is roughly of the order ot the number of photons
S~ Ny ~nylipg . (4.16)

Using also the fact that
ny~ T3~ 27K

where T, is the temperature of the primordial background radiation. Then we finally obtain
S =10%. (4.17)
On the other hand the estimate of the total mass in the observable Universe is

M ~ 13 gpe ~ 10°%g . (4.18)
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In the Hot Big Bang theory the expansion of the Universe is almost adiabatic so this
huge entropy should be built in as an initial condition. Certainly this initial condition
is very special. Moreover, the condition of naturalness, which is the statement that all
dimensionless quantities should be of order 1 implies that such a initial conditions with
huge entropy are rather un-natural.

Horizon problem

We known that the region of the Universe look very similar even though, assuming normal
radiation dominated expansion of the early universe, they can not have been in causal
contact. In fact, the horizon problem stems from the existence of particle horizons in FRW
cosmologies. Horizons exist because there is only a finite amount of time since the Big
Bang singularity and thus only a finite distance that photons can travel within the age of
the Universe. Consider a photon moving along a radial trajectory in a flat Universe. In a
flat, Universe, we can normalize the sale factor to be ap = 1. A radial null path obeys

0 = ds® = —dt* 4 a2dr? (4.19)

so the co-moving (coordinate) distance traveled by such a photon between times t; and to

L2 qt
Ar = /t ok (4.20)

To get a physical distance as it would be measured by an observer at any time t simply

is

multiply by a(t). For simplicity, we are in matter dominated Universe for which

o= (;)2/3 . (4.21)

The Hubble parameter is therefore given by
a 2

H === — —2/3H 4.22

a 3t a 0 ( )

where Hj is Hubble parameter of today Universe. Then the photon travels a co-moving
distance

Ar =2H; (az — /ay) (4.23)

The co-moving horizon size when a = a4 is the distance a photon travels since the Big
Bang

rr(as) = 2Hy ' /ay . (4.24)

The physical horizon size, as measured on the spatial hypersurface at a, is therefore simply

H
dp(ay) = asrp(ay) = 2H(;1ai’/2 =2H 120

— =9H 1. 4.25

The horizon problem is simply the fact that CMB is isotropic to high degree of precision

even though widely separated points on the last scattering surface are completely outside
each other’s horizons. When we look at the CMB we see the Universe at a scale factor
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acymp ~ 1/200. The co-moving distance between a point on the CMB and an observer on
Earth is

Ar =2H, (1 — acyp) ~ 2H, ' . (4.26)

However, the co-moving horizon distance for such a point is

rp(acvB) = QHO_I\/CLCMB =6 X 10_2H0_1 . (4.27)

Hence if we observe two widely separated parts of the CMB they will have non-overlapping
horizons; different patches of the CMB sky were causally disconnected at recombination.
On the other hand they are observed to be at the same temperature at high precision. This
is the core of the famous horizon problem.

Problem of the large-scale homogenity and isotropy of the Universe .

As we argued in introduction all cosmological models are based on the presumption of
absolutely homogeneous and isotropic Universe. Of course Universe is not absolutely ho-
mogeneous and isotropic at now at least on small scale and hence there is no reason to
believe that it was homogeneous at its beginning. The most natural assumption is that
the initial conditions at points that are sufficiently far from one another were chaotic and
uncorrelated. On the other hand it was shown by Collins and Hawking that class of the
initial conditions for which the Universe tends asymptotically (at large ¢) for Friedman
universe is one of measure zero among all possible conditions. In other words according
to this classical analysis Friedman model is very unprobable. This is the problem of large
scale homogeneity and isotropy.

The galaxy formation problem

We know that Universe contains many inhomogeneities as stars, galaxies and so on. In order
to explain the origin of galaxies one have to presume an existence of initial inhomogeneities
whose spectrum is usually taken to be almost scale invariant. For a long time the origin of
such density inhomogeneities remained obscure.

The baryon asymmetry problem

This is the problem why the Universe is added almost entirely of matter with almost no
antimatter and why on the other hand the number of baryons is much less than number of
photons Z—f ~ 1079,

The domain wall problem

It is natural to presume that the symmetry breaking occurs independently in all causally
unconnected regions of Universe. Then at all these regions that comprise Universe at
the time of symmetry-breaking phase transition, both field ¢ = 4pu/v/A and the field
¢ = —p/v/A. Domains filled by the field ¢ = +u/v/\ are separated from those with the
field ¢ = —p/ VA by domain walls. It can be shown that the energy density of these walls

- 69 —



is so high so that their existence is inconsistent with cosmological consequences. Since the
theories based on the spontaneously breaking of gauge symmetry are very appealing and
since in these theories domain walls arise in natural way we meet Domain wall problem. In
other words how to deal with such theories in cosmology.

The primordial monopole problems

This problem is closely related to the domain wall problems. Many theories based on
symmetry-braking mechanism can produce another nontrivial structures that are nontrivial
configurations of the scalar and gauge fields and that are stable. However it can be shown
that these objects are very massive. Moreover it can be also shown that the monopole
density at present would be comparable with the baryon density. Thanks to the enormeous
mass of these objects we obtain that the Universe filled of monopoles is 10! higher than
the critical density. This implies that Universe filled with such matter would have collapsed
long ago. The explanation of the mechanism how to deal with monopoles is one of the most
important problems in cosmology.

Unvanted Relics

We have argued that for correct description of the early Universe the models of particle
physics should be present. However these models contain monopoles and other topolog-
ical defects. However the energy density of these objects can be very big and hence the
monopole abundance in GUT is serious problem for cosmology if GUT have anything to
do with reality.

4.3 Inflation as a solution
4.3.1 The General Idea of Inflation

The horizon problem is an extremely serious problem for the standard cosmology. Cosmo-
logical inflation is mechanism that can solve this problem.

The main idea is that the Universe undergoes a period of accelerated expansion defined
as a period when @ > 0 at early times. The effect of this acceleration is to quickly expand
a small region of space to huge size. At this process the spatial curvature of the Universe
is reduced and consequently we make the Universe extremely close to flat. In addition, the
horizon size is greatly increased so that distant points on the CMB actually are in causal
contact and unwanted relics are diluted, solving the monopole problem. Finally, quantum
fluctuations imply that inflation cannot smooth out the Universe with perfect precision, so
there is a spectrum of remnant density perturbations.

The general idea of inflation is that before Hot Big Bang (but after Planck era) the
Universe was in vacuum-like state and then it went through the era of the exponential
expansion R
a(t) = const - ¢ Hinsdt (4.28)

where Hj,z; is almost constant in time. Due to the exponential expansion a small patch
of the Universe expands to great size. Let us presume that the duration of inflation #;,
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exceeds 140 Hubble times

140
tinfl > . 4.29
T, 7l (4.29)
Let us also presume that the size of the patch is initially at the order Planck size [p = ﬁp ~
10733¢m. Then at the time ¢;,, 7 the size exceeds the present horizon size Iy o ~ 10%8¢em. It

is also clear the Universe flattens out, any initial inhomogeneities are diluted out. In the end
of inflation, the Universe becomes spatially flat,homogeneous and isotropic at exponentially
large spatial scales. This solves the horizon and flatness problems.

A natural way to ensure that the Universe expands exponentially is to assume that
the matter at inflationary stage is in the vacuum-like state characterized with the energy
density p;np that is almost constant in time. At some point this energy density should
transform into conventional energy density of hot plasma. This transformation is called
reheating and after reheating the Hot Big Bang era begins. During reheating, huge entropy
is released and this solves the entropy problems.

4.4 Many models of inflation

Before we come to the more detailed study of the question how the inflation works we give
summary of some models of the inflation theory. The common property of these model is
that the matter with suitable equation of state is in the form of the scalar field(s).

The initial model of inflation ( “old inflation model”) was based on ide that the scalar
field ¢ was initially in a false vacuum with large potential energy. To end of inflation, a
quantum tunneling from the false vacuum to the true vacuum was performed. However
this model has the problem that it leads to an initially microscopical bubble of the true
vacuum which cannot grow to contain our present observed Universe. Hence the attention
shifted to models in which the scalar field ¢ slowly rolls during the inflation.

Models of scalar field-driven inflation can be divided into three groups:

e Small-field iflation

e Large-field inflation

e Hybrid inflation
Small field inflationary models are based on ideas from spontaneous symmetry breaking in
particle physics. For example, let us consider the scalar field with the potential in the form

V(p) = i(<f>2 —0%)?, (4.30)

where we interpret o as the symmetry breaking scale and A as a dimensionless coupling
constant. The main idea of the small-field models ("new inflation”) was that the scalar
field starts to roll close to its symmetric point ¢ = 0. At sufficient high temperature ¢ = 0
is a stable ground state of the one-loop finite temperature effective potential Vi (¢$). When
the temperature drops below to some value that is smaller than T¢., ¢ = 0 becomes unstable
local minimum of Vr(¢) and ¢ can roll towards a ground state of the zero temperature
potential (4.30) with

Ggr = Lo . (4.31)
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The problem of this model is that the slow-roll conditions *

V! 2 v
<V> M3 <1 ,VM% <1 (4.32)

that for the potential (4.30) take the form

@2 1 3¢%— o2 1
e L e & (4.33)
@02 "M (@ -7 M
and that have to be valid for inflation to works imply that
o~ Mp (4.34)

however this is in contradiction with the fact that we have to presume that o is some
symmetry breaking scale of the standard quantum field theory while Mp is the scale of the
quantum gravity regime where the approximation of the quantum field theory in curved
space time cannot be valid. The potential (4.30) can be changed to satisfy the slow-roll
conditions however this procedure needs several fine-tuning of the shape of the potential. A
further problem of the slow-roll model is that the initial field velocity must be constrained
to be small which is again fine-tuned initial condition.

As the alternative to the small-field inflationary models are large-field inflation models
that are also known as chaotic inflation. The simplest example is provided by a massive
scalar field with the potential

1
V(p) = §m2q§2 : (4.35)
In the chaotic inflation scenario it is presumed that the scalar field rolls towards the origin
from large values of |¢|. The slow roll conditions for the potential (??) takes the form °
l¢| > Mp . (4.36)

Values of |¢| comparable or larger than Mp are also required in other realizations of large-
field inflations. The question is whether such a model can consistently be embedded in a
realistic particle physics model, as for example supergravity. In many these models V(¢)
receives supergravity-induced correction terms that destroys the flatness of the potential for
|¢| > Mp. The value m ~ 10'3GeV is required in order to obtain the observed amplitude
of density fluctuations.

With two scalar fields it is possible to construct a class of models which combine some
of the nice features of large-field inflation models which is large set of the initial conditions
that lead to inflation with the small-field inflation where the inflation takes place at sub-
Planckian field values. These models are known as Hybrid inflation. For example, let us
consider two scalar fields ¢ and £ with the potential

V(9,6) = Phel€ — o) + gmi — PP (137

9Precise definition of these conditions will be given in next section
"Note that the dimensional analysis that implies that ¥ has dimension [V] = 4 in mass unit implies that

[¢] = 1.
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In the absence of the thermal equilibrium it is natural to assume that |¢| begins at large
values. For large ¢ the term

S PE
that serves as an effective mass term for £ is positive and hence £ has stable minimum at
¢ = 0. The parameters in (4.37) are chosen such that ¢ is slowly rolling for values of |¢|
somewhat smaller than Mp but the parameters are chosen in such a way that the potential

energy for these fields values is dominated by the first term in (4.37). The field ¢ is slowly
rolling whereas the potential energy is determined by the contribution from £. Once ¢

Ve

drops to the value

e = Y—0. 4.38
|9 ; (4.38)
For this value the effective potential for £ takes the form
_ Ao 952)2 4
V(der) = £(8* — 20°) (439)
that has three extremae
€ =0,V(0) =\t & =+V20,V(ps)=0 (4.40)

that clearly shows that the configuration with & = 0 is unstable and decays to the one
of the states &+ = 4++/20. Since in this case the ground state is not unique we have a
possibility of the formation of topological defects at the end of the inflations.

After the slow-roll conditions break down the period of inflation ends and the inflaton
begins to oscillate around its ground state. Since the inflation field ¢ couples to other
matter fields the energy of the Universe, that at the end of the period of inflation is stored
completely in ¢ is transferred to the matter fields of the particle physics Standard model.
The description of this process is very complicated.

4.5 How does the inflation work

The key property of the laws of physics that makes inflation possible is the existence of
states of negative pressure. To recognize the effect negative pressure let us again consider
Friedman equation

. 4G
a= —T(P+3P)a,
> 8rG  k
H?>= " =""/,_ >
a? 3 T a2
p=-3H(p+p) . (4.41)

Once again, the metric is given by Robertson-Walker form

dr?

2 _ g2 2
ds* = —dt* + a*(t) T

+7r2(d6* + sin? 0dg? | | (4.42)

where k = 0,1, —1. From the first equation in (4.41) we see that positive pressure (p is
always positive) contributes to the deceleration of the Universe while the negative pressure
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can cause acceleration. In other words, negative pressure produces a repulsive form of
gravity.

The characteristic property of the inflation is that the physical wavelengths grow faster
than the size of the Hubble radius

as follows from the fact

Aphys 1 d(a(t)ho) _ a g
- =Sopg=1 g, 443
Monys  a(t)Xo dt a dn Mg (443)

[S]
..
T
S]

This equation shows that during inflation when %

> 0 the physical wavelengths become
larger than the Hubble radius. However when the physical wavelength becomes larger
than Hubble radius it is causally disconnected from physical processes. The inflationary
era is followed by the radiation dominated and matter dominated stagers where the Hubble
radius grows faster than the scale factor and the wavelengths that were outside now re-
enter Hubble radius. This is the basic mechanism how the inflation explains the generation
of temperature fluctuations and also the origin of the emergence of large scale formation:
Briefly, quantum fluctuations generated early in the inflationary stage exit the Hubble
radius during inflation and then eventually re-enter during the matter dominated era.

Remarkably, we can easily find form of the matter that produces negative pressure.

4.6 Slowly-Rolling Scalar Fields

In order the inflation to solve the problems of the standard cosmology thiw it must be active
at extremely early times. Thus we would like to study the earliest times in the Universe
amenable to classical description. It is expected that this is around the Planck time ¢p.
For that reason we will retain values of Planck mass in the equation of this section. As we
will see there are many models of inflation. In this section we will restrict ourselves to the
study of the model of chaotic inflation.

Consider matter in the form of the scalar field ¢ that is described with the action

1
Smatter = —/d4$\/ -9 |:28Mglwau¢ + V(Qs) (444)
In field theory the stress energy tensor is defined as
2 5Smatte7‘

TWw=——-/—"— 4.45
T VEg g (44)

that for the action of the form S = — [ d*x\/—gL r takes the form

oL

T;u/ - _gpyﬁ + 259#”’ (446)

where we have used

o0y/—g 1
5g = —2\/—ggwj . (4.47)
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More precisely, for the action (4.44) the stress energy tensor takes the form

L098(Vad) (V) + V()] (4.48)

Tw/ = (vu¢)(vu¢) — Guv 9

where for the scalar field ¢ we have Vo = 0,¢. Let us now restrict to the homogenous
case in which all quantities depend only on cosmological time ¢ and we also set k = 0. A
homogenous real scalar field behaves as a perfect fluid with

¢2

pz%045+vw) (4.49)

The other components of the stress energy tensor take the form
1
Tij = —gij(ﬁg“”@@&,qﬁ + V) + 8,q58]¢ (4.50)
If we define pressure as
1
p= 3 Z Ty (4.51)

we get

2
p= %—V@) (4.52)

Thus any state which is dominated by the potential energy of a scalar field will have
negative pressure.
Note also that the equation of motion for the scalar field are given by

b+ 3Ho+V'(p) =0, (4.53)

that can be thought of as a usual equation of motion for a scalar field in Minkowski space
but with a friction term due to the expansion of the Universe. The Friedman equation
with such a field as a sole energy source is

81
3

H? = [&+V@4. (4.54)
The accelerated expansion occurs if the Universe is dominated by an energy component
that approximates a cosmological constant. In that case the associated expansion rate will
be exponential. From (4.49) we see that for ¢? < V(¢) the potential energy of the scalar
field is the dominant contribution to both the energy density and pressure ant the resulting
equation of state is p = —p that has the same form as the state equation for cosmological
constant.

More technically, the slow-roll approzimation for inflation involves neglecting the ¢
term in (4.53) and neglecting the kinetic energy compared of ¢ compared to the potential
energy. In this case the scalar field equation of motion and the Friedman equation become

. V!
¢ = _7H )
w ="y ().

(4.55)
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The slow low conditions are conveniently characterized with so named slow roll parameters

M2 \%d 2 v
€= TP (V) 1= M1%7 ) (4.56)
where
8nG = M, . (4.57)

It is easy to see that the slow-roll conditions yield inflation. Recall that inflation is defined
by

.
->0 4.58
. (459)

that using the fact that

or alternatively

g = H+H?. (4.59)
Then the inflation occurs when )
H
ik -1. (4.60)
But in slow roll .
. 8rG _ , . 8tGV
2HH = ”TVQ;s = —%? (4.61)
and hence ' )
H ArG V" A%
W9 W 16nG (v) = (4.62)

which will be small. Smallness of the second parameter 1 ensures that inflation will continue
for a sufficient period.

It is useful to have a general expression that describes how much inflation occurs once
it has begun. Such a quantity is the number of e-folds defined by

i)

Usually we are interested in how many e-folds occur between a given field value ¢ and the

N(t) =In ( (4.63)

field value at the end of inflation ¢¢,q where €(¢enqg) = 1. To do this we express N(t) as

a(tend) /
N(t) = In <“(t€"d)> :/ da_
a(t) aty @
tend tend Pend ot
:/ Lap = Hdt’:/ nde _
t a t @ o

Pend dq'; 1 Dend V ~
:—3/ H2:/ —do .
P Vv’ Mg P Vv’

(4.64)
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The problem of the initial conditions for inflation is very subtle. In case of chaotic inflation
in which we assume that the early Universe emerges from the Planck epoch with the
scalar field taking different values in different part of the Universe with typically Planckian
energies.

Let us now consider some examples of the potential that could lead to inflation. We
start with the simple monomial

V= AMp e . (4.65)
For potential above we obtain following slow roll parameters
o? M3 M3
€= 252 n=ala—1)—- ¢2 (4.66)

Inflation starts at a large value of ¢ and the inflaton then rolls slowly towards the minimum
with the increase of ¢ and 7. Inflation ends when the slow roll conditions are saturated,

¢~ AMp . (4.67)

The number of e-foldings we obtain before this happens is given by

te

t, d
N = &) _ (Hdt =X /Hdt = In(ay) —ln(ai)> Hdt =
t

a(ti) i
Pe do de 3H2 1 be 1
— 2L — 7 ~dd = dé =
i ¢ /1 MI% /L v’ i M2 ¢ =
o7 1 1,
= e = LN
2Mja 4 20M;
(4.68)
that implies
¢i = V2aNMp > Mp . (4.69)
Using this initial value ¢; we can determine the values of slow roll parameters at ¢;
« a—1
o o~ 4.
€ AN 1 N (4.70)
Another example of the inflation potential is
Yz
V=VWe rMp (4.71)
with the slow roll parameters
1 2
p p

Recall that for this potential we can combine the equation of motion to get

¢=— MP V/ \/7 VV (4.73)

M2p
y o~ SMip (4.74)

that has the solution
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and hence )

H2~]t)—2:>lna~plnt:>a~tp. (4.75)

To gain more insight in the idea of inflation note that in most inflation models the

energy density p is approximately constant leading to exponential expansion of the scale

factor. In fact, using p = —p in the Friedman equation we get
87
a= WT pa (4.76)

that in the approximation of p = const can be solved with the anstatz a = e that inserted
in the equation above implies

81 8rG
ALTW:O;»AZMTW, (4.77)

where py is constant energy density.

In the original model of inflation the state that drove the inflation involved a scalar field
in a local (but no global) minimum of its potential energy.The scalar field state employed
in the original version of inflation is callred a false vacuum since the state temporally acts
as if it were the state of lowest possible energy density. Classically this state is stable that
there is no possibility how the scalar field crosses a potential energy barrier that separates
it from the states of lower energy. However quantum mechanically this state would decay
through tunelling. Initially it was hoped that this tunneling could successfully ends an
inflation but it was soon found that the reandomness of the bubble formation when the
false vacuum decayed would produced large inhomogenieties.

This problem was solved in the new inflation scenario proposed by Linde. In this
theory the inflation is driven by an scalar field with the potential in the form in the form

__An By
V=-58+ 0 (4.78)

that has minima at ¢ = 0, V(0) = 0 that is a false vacuum and also minima at ¢4 = +4/ %

with V(¢1) = —g. This scalar field is called inflaton. If this theory the inflation is driven
by the scalar field on the plateau of the potential energy diagram (region around the point
¢ = 0). If this plateau is flat enough, such a state can be stable enough for succesful
inflation. Soon after the introduction of the new inflation scenario it was shown that the
inflaton potential need not have either a local minimum or a gentle plateau: This new
scenario is known as a chaotic inflation.

4.7 Solving the problems of standard cosmology

To demonstrate the fact that inflation can solve the problems of the standard cosmology
let us again consider the potential with the simplest form

V(9) = gm*” (4.79)
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With this potential the Friedman equation takes the form
m2¢ m

é=—3g H= 7m0 (4.80)

2 m
¢ =¢o— \/;Mpt (4.81)

\[MP
o= Conpl (o - S —mesl - ). (4s2)

and we find

and

The period of time during the solution above is valid ends at ¢ ~ At at which

a(At) ~ a(0) exp(e%) . (4.83)

If we take a typical value for m for which ¢ < 10~% we obtain
a(At) ~ a(0) x 10%7<10% (4.84)

This has a remarkable consequence. A proper distance Lp at ¢ = 0 will inflate to a size
101° e after a time At ~ 5 x 10736 s. As we know the size of observable Universe today
is Hy 1~ 10%® ¢m. Therefore, only a small fraction of the original Planck length comprises
today’s entire observable Universe.

General arguments

Inflation is not really a theory, but instead it is a paradigm, or class of theories. Each
specific model of inflation makes definitive predictions but the class of the models as a
whole can be tested only by looking for generic features that are common for all models.
Nevertheless, there are number of features of the Universe that seem to be characterize
consequences of inflation. The basic arguments for inflation are as follows:

e The Universe is big

We know that Universe is very large; the visible part of the Universe contains about
10% particles. Most of scientists believe that the creation of Universe can be explained
in scientific terms. Thus we think about the theory that could explain how the
Universe got so be so big. Such a theory has to explain the number of particles, 107
or more. Simple way to get such a huge number, with small number as an input, is
for the calculation to involve an exponential. The exponential expansion of inflation
can explain this huge number. Moreover, inflationary cosmology suggests that, even
though the observed Universe is incredible large, it is only a small fraction of the
entire Universe.

e The Hubble Expansion

In standard FRW cosmology the Hubble expansion is part of the postulates that
define the initial conditions. But the inflation offers the possibility of explaining how
the Hubble expansion began.
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o Homogeneity and Isotropy

As we have shown before the degree of uniformity of Universe is starling. The in-
tensity of the cosmic microwave background radiation is the same in all directions.
The cosmic background radiation was released 400000 years after big bang after the
Universe cooled enough so that the opaque plasma neutralized into a transparent gas.
The cosmic background radiation photons have mostly been traveling on straight lines
since then so they provide an image of what the Universe looked like at 40000 years
after big bang. The observed uniformity of radiation therefore implies that the ob-
served universe had become uniform in temperature by that time. In standard FRW
cosmology a simple calculation shows that the uniformity could be established so
quickly if signals could propagate at about 100 times the speed of light a proposition
clearly contradicting the known laws of physics.

In inflationary cosmology the uniformity is easily explained. It is created initially on
microscopic scales by normal thermal equilibrium processes and then inflation takes
over and stretches the regions of uniformity to become large enough to encompass
the observed Universe and more.

e Flatness problem

The problem concerns the value of the ration

ot = Pt ) (4.85)
Po
where pso¢ is total mass density of the Universe and where pg = gfg is the critical

density that would make the Universe spatially flat (In pso¢ the vacuum energy, it is
nonzero, is included.)

There is now general agreement that (2 lies in the range
0.1<Qy<2, (4.86)

but it was very hard to pinpoint the value with more precision. Despite this large
range the value of 2 at early times is highly constrained, since 2 = 1 is an unstable
equilibrium point of the standard model evolutions. Thus, if 2 was exactly equal to
one, it would remain exactly one forever. On the other hand if Q differed slightly
from one in the early universe, that difference-whether positive or negative, would be
amplified with time. More generally, it can be shown that 2 — 1 grows as

a1 { t (during the reaiation — dominated era) (4.87)

t2/3 (during the matter — dominated era)

It was shown that at ¢ = 1s when the processes of big bang nucleosynthesis were
just beginning, ) must be equal to one to an accuracy of one part of 10'°. Classical
cosmology cannot explain this fact. In the context of modern particle physics cos-
mology, where we try to push all thinks all the way back to Planck scale 10~*3sec
the problem becomes even more severe.
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While this extraordinary flatness of the early universe has o explanation in classi-
cal FRW cosmology, it is a natural prediction for inflation cosmology. During the
inflationary period, we have following relation

Q— 1~ e st (4.88)

where H;,r is Hubble parameter during inflation. Thus, as long as there is a sufficient
period of inflation, 2 can start at almost any value and it will be driven to unity by
the exponential expansion. Moreover, recent observation favored value of {2y to be
equal to Qg = 1.02 + 0.02 according with recent WMAP results that is in beautiful
agreement with inflation.

e Absence of magnetic monopoles

All grand unified theories predict that there should be, in the spectrum of possible
particles,extremely massive particles carrying a net magnetic charge. It was shown in
the context of the standard cosmology that magnetic monopoles would be produced
so strongly so that they would overweigh everything else in the Universe by a factor
of about 10'2. Such a large mass density would cause that the Universe would come
to its big crunch in about 30.000 years. Inflation is simplest known mechanism
to eliminate monopoles from the visible Universe even though they are still in the
spectrum of possible particles. The monopoles are eliminated simply due to the fact
that inflation diluted them to a completely negligible level.

e Anisotropy of the cosmic microwave background radiation

The process of inflation smooths the Universe completely. On the other hand the
density fluctuations are generated as inflation ends by the quantum fluctuations of
the inflaton field. The general properties of these fluctuations are that are adiabatic,
Gaussian, and nearly scale-invariant.

4.8 Reheating and Preheating

The great strength of inflation is its ability to red-shift away all unwanted relics, such
as topological defects. However during this process radiation and dust-like matter are
similarly red-shifted away to nothing so that at the end of inflation the Universe contains
nothing but the inflationary scalar field condensate. The question is how does the matter
arise and how is the Universe reheated?

The problem of reheating is very complicated and complex. In fact, the theory of
reheating of the Universe after inflation is the most important application of the quantum
theory of particle creation since almost all matter constituting the Universe was created
during this process.

Now we scatch the standard picture.

Inflation ends when the slow-roll conditions are violated and the field begins to fall to-
wards the minimum of the potential. Initially all energy density is in the inflation however
now this energy is damped by two possible terms. Firstly, the expansion of the Universe
naturally damps the energy density. Secondly, the inflation may decay into other particles,
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such as radiation or massive particles, both fermionic or bosonic. To describe this process
one introduce a phenomenological decay term I'y into the scalar field equation. For exam-
ple, if we consider the fermions only, then the rough expression for how the energy density
evolves is

po+ (B3H +Ty)py =0 . (4.89)

It can be shown that the inflaton undergoes damped oscillations and decays into radiation
that equilibrates rapidly at a temperature known as the reheat temperature Trp.

More precisely, early theory of reheating of Universe after inflation were based on the
idea that the homogeneous inflation field can be represented as a collection of the particles
of the field ¢. Put differently, we expect that inflation field has the same form as the
ordinary quantum field in the flat spacetime. Then we can model reheating as a decay
of each particle separately and this process can be studied in the standard perturbative
description of particle decay.Typically, it takes thousands of oscillations of the inflaton field
until it decays into usual elementary particles by this mechanism.

In case of bosons the situation is more complicated since now inflaton oscillations
may give rise to parametric resonance that is characterized by an extremely rapid decay
that results into distributions of products that are far from equilibrium and only much
later settles down to an equilibrium distribution at energy Try. Such a decay due to the
parametric resonance is known as preheating. The parametric resonance is an example
of the coherent field effect that leads to the homogeneous field decay much faster than
would be predicted by perturbative effects. These coherent effects produce high energy,
non-thermal fluctuations that could have significance for understanding developments at
the early Universe, as for example baryogenesis.

4.9 Quantum fluctuations

The key problem is how to test an inflation. The answer is the structure formation. As we
have seen an important reason to involve an inflation is to make the Universe smooth and
flat. However as we observe every day there is a large amount of structure in Universe.
This structure can be traced back to subtle variations in the matter distribution during
the time when the cosmic microwave background was released. The naive application of
inflation in fact excludes such non-uniformity. It is a nice example of the application of the
quantum field theory in curved background that explains the emergence of non-uniformity.

The main point is that inflation magnifies microscopic quantum fluctuation to cosmic
size and hence provides seeds for structure formations. It is very interesting that then
the details of physics at the highest energy scales is therefore reflected in the distribution
of galaxies and other structures on large scales. More precisely, the fluctuations start at
their smallest scales and grow larger (in wavelength) as the Universe expands. Eventually
they become larger than the horizon and free. Intuitively, the different parts of wave can
no longer communicate with each other since light can not keep up with the expansion
of Universe. This is a consequence of the fact that the scale factor grows faster than the
horizon which is a defining property of an accelerating and inflating Universe. At a later
time, when inflation stops, the scale factor will start to grow slower than the horizon and
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the fluctuations will eventually come back within the causal horizon.The fluctuations will
then appear as acoustic waves in the plasma and hence they will affect the CMB.

Let us now study this problem in more details. We assume that metric as well as
the inflaton can be split into a classical background piece and a piece due to fluctuations
according to

g#l’ = g}(LOI/) + h#V(T7 X) )
¢ = ¢ +d¢(,x)
(4.90)

where for convenience we have introduced conformal time 7 such that the metric is given
by

ds® = a(7)?(dr? — dx?) . (4.91)
Since the background metric is homogenous it is convenient to Fourier transform the fluc-
tuation mode d¢ as

56 (r,x) = (%1)3/2 / iG> (4.92)

Since we can presume that fluctuation are small in magnitude we can neglect the potential
term for the fluctuation mode §¢ so that its equation of motion takes to form

1
Ve
that using the (4.91) takes the form

O [V=99""0,6¢] =0 (4.93)

1 2a’ 1 .
5"+ 2158 — 8,016 =0, (4.94)
a? a a?

where (...) = d&'ﬂ'_’). Finally, using (4.92) we obtain differential equation for mode d¢px

/
oL + 2%&;5;{ +k25¢ =0 . (4.95)

If we introduce the re-scaled mode pyx = ad¢y so that

/ / " ) ! N2
M Hka n_ My M@ Hka fic(a’)
56 =k _ ) — 'k _ 2 4.96
¢k a az ¢k a2 a2 a2 + a3 ( )
the equation (4.95) can be transformed into
" 2 a”
My + k° — ; pk =0. (4.97)

It can be shown that the metric fluctuations can be reduced to two polarizations obeying
an equation identical to the one for the scalar fluctuations. In what follows we will consider
the scalar fluctuations only.

To proceed let us presume that the conformal factor depend on conformal time as

an~TVEY (4.98)
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H

where v is a constant. AN important example is a ~ e’* with H = const. where the change

of coordinates gives

dr 1 —Ht —Ht 1
_ — = _Hr= =——, 4.99
dt a(t) ‘ - 7= alr) Hr ( )

Comparing with (4.98) we find that —1 =1/2 — v = v = 3/2. Note also that the physical
range of 7 is —oo < 7 < 0. Using now (4.98) the equation for fluctuation (4.97) takes the

1 1
2 2 _
u + <k - (1/ _4>>Mk—0- (4.100)

It is nice that the equation given above has solution known as a Hankel function. The

form

general solution is given by

filr) = V;T” (Cl(k:)Hil)(—kT)+02(k)H,52)(—kT)) , (4.101)

where C1(k) and Ca(k) are to be determined by initial conditions.
When we quantize this system we need to introduce oscillators ay(7) and (IT_k(’T) such
that

e = == () +aly ()
i = () + L) = iy 5 (ax(r) —al (7)) (4.102)

obey standard commutation relation. It is important to stress that these operators are
time dependent and can be expressed in terms of oscillators at a specific moment in time
using the Bogoljubov transformations

ai (1) = ukax(ro) + vie(1)al . (10)

a’ (1) = ug(r)al y (10) + vip(T)ax(mo)

(4.103)
where
Jure(T)? — ok (7)* = 1 (4.104)
Then we can write the quantum field py as
pc(7) = fie(T)ax(70) + fie(T)a—k(m0) , (4.105)
where 1
fi(7) = —=(uxc(7) + v (7)) (4.106)

V2k
is given in (4.101).

Now we come the the key question that is what are the initial conditions? The usual
choice is to consider the infinite past and choose a state annihilated by the annihilation
operator

ak(T()) ’0,7’0> =0 s (4.107)
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for 79 — —oo. However there is great debate about this choice in the past and is commonly
known as a Problem of transplanckian physics. However we will not discuss this issue in
this section and we will continue according to common practise. From (4.102) we get that

k .
m(70) [0, 70) = —l\gfﬂk 0, 70) = —ikux(70) 10, 70) - (4.108)

Since the Hankel functions behave as for 1o — —oco

B (—kr) ~o =2
TT

HP) (—kr) ~ HV*(<k7)
(4.109)

we find that the vacuum choice corresponds to C2(k) = 0 and |Cy (k)| = 1.
In summary we have determined the quantum fluctuation and now we would like to
see how they act on CMB. To do this we compute the size of the fluctuation according to

K1 k1
Pw: NmM=*%mw Lihd = E Ll

212 a2 4

[HM (=)
(4.110)

where ((...)) mean the vacuum expectation value with respect to the sate |0,79). Note

that we are working in Heisenberg representation where the quantum mechanical operators

evolve with time while states not.
Now we should calculate (4.110) at late times, namely 7 — 0. In this limit the Hankel

HM (k1) ~ \/z(—kf)‘” (4.111)

and hence (4.110) for 7 — 0 takes the form
11 1
P~ ——(— 1721/]{:3721/ ~ 7H2k3721/ ) 4.112
472 a2( ™) 472 ( )

For v = 3/2 and for slow roll when H for 7 — 0 is almost constant we can set the scale of

function behaves as

the fluctuations. In fact, we find the well known scale invariant spectrum for v = 3/2

P= 1w, 4.113
It can be shown that this is more or less the whole story in case of the gravitational, or
tensor, perturbations. The scalar fluctuations obey similar equation

H\* 1
P~ (=) —H?. 4.114
’ <¢) dr? ay
Usually we express the deviation from the scale invariance by introducing spectral
indices according to
dln P,

ns—1= Tk =3 —2us,
dln Pr
nr = dln k 3—2VT,

(4.115)
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where v, refers to the scalar perturbations and vp refers to the gravitational, or tensor
perturbations. While not clear from our simplified analysis, the /s need not be the sam in
the two cases. Observations show that ng is very close to 1 consistent with the basic idea
of inflation. It is extreme important to find any slight deviation from the scale invariant
vale which could give important information about the inflationary potential.

In fact, the flatness of the spectrum of density fluctuations, together with flatness of
the Universe ) = 1 constitute the two most robust predictions of inflationary cosmology.
On the other hand there is an important difference between the prediction of flatness of the
Universe and the flatness of the spectrum of perturbations of metric. It is difficult (though
possible) to construct an inflationary model deviating from the prediction 2 = 1. On the
other hand the situation with the flatness of the spectrum is opposite: It is very difficult
(though possible) to construct a model with an exactly flat spectrum of perturbations
of metric. In this sense, existence of a small deviation of the spectrum of inflationary
perturbations from the flat spectrum (i.e. breaking of the scale invariance of the spectrum)
represents an additional robust prediction of inflation.

4.10 Eternal Inflation

The eternal inflation scenario is based on the discovery of the process of self-reproduction
of inflationary Universe.In fact, this process exists in old inflationary theory and in the new
one but its significance was appreciated after discovery of eternal inflation in the simplest
versions of the chaotic inflation scenario.

In the case of the new inflation, the exponential expansion occurs as the scalar field
rolls from the false vacuum state at the peak of the potential energy towards to the true
vacuum. Remarkably, it was shown very briefly after introduction of this model that the
new inflation scenario is generically eternal. The key point is that, even though classically
the field would roll off the hill, quantum mechanically there is always an amplitude for it
to remain at the top.

The time scale for the decay of the false vacuum is controlled by

9 o*V
m 20 o , (4.116)
which is the negative mass-squared of the scalar field when it is at the top of the hill on
the potential. This is a free parameter of each model but m has to be small compared to
Hubble constant or lese the model does not lead to enough inflation.

In other words, for parameters chosen so that the inflation works, the exponential
decay of false vacuum is slower than an exponential expansion. Even if the false vacuum is
decaying, the expansion outruns the decay and the total volume of false vacuum actually
increases with time rather than decreases. Thus inflation does not end at all places at
once,instead it ends at localized patches, in a succession that continues at infinitum. Each
patch is essentially a whole Universe so that it can be said that inflation produces not just
one Universe but an infinite number of Universes.

In the context of the chaotic Universe models the situation is slightly subtle even if it
was shown by A. Linde that these models are eternal as well. We know that inflation occurs
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as the scalar field rolls down a hill of the potential energy diagram. As the field rolls down
the hill quantum fluctuations will be superimposed on top of the classical motion. The
best way to think about this is to ask what happens during one time interval of duration
At = H' (Hubble time) in a region of one Hubble volume H®. Suppose that ¢g is the
average value of ¢ in this region at the start of the interval. By definition of a Hubble time
the rate of the expansion is given by

a(t + At)/a(t) = TPl = ¢ | (4.117)
This means that the change of volume is
V({t+A)/V(E)=ad*(t+A)H 3/ (a*(t)H3) = & (4.118)

Since e3 ~ 20 we see that volume will expand by a factor 20. Since correlations are extended
typically over one Hubble length if follows that in the end of the Hubble time the initial
Hubble size region grows and breaks up into 20 independent Hubble sized regions.

During the time interval At the classical field ¢ is rolling down the hill. On the other
hand the classical change in the field A¢, during the time interval At is going to be
modified by quantum fluctuations A¢y, which can drive the field upwards or downward
relative to classical trajectory. For any one of the 20 regions at the end of the Hubble time
we can describe the change of the field as

In the rough approximation the fluctuation is treated as a free quantum field. This fact
implies that A¢y, the quantum fluctuation averaged over one of the 20 Hubble volumes at
the end, will have a Gaussian probability distribution, with a with of order H/2m. Then
there is then a probability that the sum of the two terms on the right hand side will be
positive-that the scalar field will fluctuate up instead down. As long as the probability is
bigger than 1 in 20 then the number of inflating regions with ¢ > ¢ will be larger at the
end of the interval than at the beginning. This process will then go on forever so inflation
will never end.

We see that the condition for an existence of eternal inflation is that the probability for
the scalar field to go up must be bigger than 1/e3 ~ 1/20. It can be shown that criterion

implies the relation
2

H
—>38 (4.120)

cl
The probability that A¢ is positive tends to increase as one considers larger and larger
values of ¢ so that sooner or later one reaches the point when the inflation becomes eternal.
In fact for that reason we think that inflation is almost always eternal.

The eternal inflation follows from the observation that in many models large quan-
tum fluctuations that are produced during inflation may locally increase the value of the
energy density in some parts of the Universe. These reasons then expand at a greater
rate than their parent domains and quantum fluctuations in them lead to production of
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new inflationary domains which expand even faster. This leads to an eternal process of
self-reproduction of the Universe.

In order to understand the process of self-reproduction we should remember that the
processes separated by distances [ greater than H ! proceed independently one another.
This is a consequence of the fact that during an exponential expansion the distance between
any two objects separated by more than H ! is growing with speed exceeding the speed
of light. Then an observer in the inflationary Universe can see only the processes occuring
inside the horizon of radius H~'. In this sense any inflationary domain of initial radius
exceeding H~! can be considered as a separate mini-Universe.

In order to study the behaviour of such a mini-Universe we should take into account
the quantum fluctuations. Let us consider an inflationary domain of initial radius H !
containing sufficient homogeneous field with initial value ¢ > Mg. From the basic equation

of the inflation model

H:”\;g,q's:—m % (4.121)

we can deduce that during time interval At = H~! the field inside the domain will be
reduced by A¢ that follows from the second equation above

bo_ T [T 2
N m\/;:>A¢— m\/;H =5 (4.122)

where in the second step we have used the first equation in (4.121). On the other hand it
can be shown that the quantum fluctuation of the field ¢ is

H meo
0p(z)|~ — = ——. 4.123
Fo(o)] = 5= (1.123)
Then we see that the magnitude of quantum fluctuation is larger than A¢ for
mao* 2 5
T L st~ —— 4.124

Then for ¢ <« ¢* the decrease of the field ¢ due to the classical motion is much greater than
the average amplitude of the quantum fluctuations d¢ generated during the same time. On
the other hand for ¢ > ¢* one has d¢(z) > A¢. Since the typical wave length of the
fluctuation mode is ~ H~! it turns out that the whole domain after the time At = H~!
divides into following number of domain with almost homogenous field

a(AYH Y /H™ =T L2 (4.125)

where the first expression express the physical size of the domain divided wave length. In
summary, we get 20 separated domains of size H~!, each containing almost homogenous
field ¢ — Ap+9¢. In almost half of these domains the field ¢ grows by |[0¢(z)|—A¢ ~ H/27
rather than decreases. This means that the total volume of the Universe containing growing
field ¢ increases 10 times. During the next time interval At = H~! this process repeats.
Thus, after the two time intervals H~! the total volume of the Universe containing the
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growing scalar field increases 100 times. In other words the Universe enters eternal process
of self-reproduction.

One should however be careful with interpretation of this result. There is still an
ongoing debate of whether eternal inflation is eternal only in the future or also in the past.
To see this precisely where is the problem let us consider any particular time-like geodetic
line at the stage of inflation. For any given observer following this geodetic the duration ¢;
of the stage of inflation on this geodesic will be finite. On the other hand eternal inflation
implies that if one takes all such geodesics and calculate the time ¢; for each of them, then
there will be no upper bound for ;. In other words for each time T' there will be such
geodesic which experience inflation for the time t; > T

Similarly, if we study any particular geodesic in the past time direction, one can prove
that it has finite length. In other words, the inflation n any particular point in the Universe
should have a beginning at some time 7;. However there is no reason to expect that there is
an upper bound for all 7; on all geodesics. If this upper bound does not exist, then eternal
inflation is eternal not only in the future but also in the past.

Put differently, there is a beginning for each part of the Universe and there will be
an end for inflation at any particular point. But there will be no end for the evolution of
Universe as a whole in the eternal inflation scenario and at present we do not have any
reason to believe that there was a single beginning of the evolution of the whole Universe
at some moment ¢ = 0 which was traditionally associated with Big Bang.

If this scenario is correct, then physics alone cannot provide a complete explanation
for all properties of our part of the Universe.

4.11 Eternal Inflation: Implications

Even if the other Universes that are created during the eternal inflation are too remote to
imagine observing directly we will see that an eternal inflation has real consequences in
terms of the way we extract predictions from theoretical models.

Firstly, the eternal inflation implies that all hypothesis about initial conditions for the
Universe, such as the Hartle and Hawking no boundary proposal, the tunneling proposals
by Vilenkin or Linde become totally divorced from observation. This follows from the
presumption of the eternal inflation with its infinite production of pocket Universes. Then
one can expect that the statistical properties of inflating region should approach a steady
state which is independent on initial condition. Unfortunately there are great problems
with the study of this steady state, for example, the properties of this state seems to
depend crucially on the super-Planckian physics which we do not understand at present.
It is however possible that string theory could be helpful with this study. More precisely,
the same quantum fluctuations that make eternal inflation possible tend to drive the scalar
field further and further up to potential energy curve so that some attempts that wanted
to quantity the steady state require the imposition of some kind of a boundary condition
at large ¢.

Even if the Universe forgets the details of its genesis the question, how the Universe
began still remain interesting. To see this note that eternally inflating Universes continue
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forever once they start they are apparently not eternal into the past. !

The second consequence of the eternal inflation is that the probability of the onset of
inflation becomes totally irrelevant provided that the probability is not identically zero. In
fact, this observation is slightly in the clash with our previous claim that chaotic inflation
gives better result that the new inflation scenario. Even if the initial conditions necessary
for the new inflation scenario cannot be justified on the basis of the thermal equilibrium
as was proposed in original papers, in the context of the eternal inflation it is sufficient to
conclude that the probability for the required initial conditions is nonzero.

The third consequence of the eternal inflation is the possibility that it offers to rescue
the predictive power of theoretical physics. Here we mean the status of M-theory. Even if
this theory by itself has uniqueness it appears that the vacuum is far from unique. Since the
predictions will depend on the properties of the vacuum, the predictive power of M-theory
could be limited. Eternal inflation however provides a possible mechanism to remedy this
problem since it might help to constrain the vacuum state of the real Universe and hopely
significantly enhance the predictive power of M-theory. We must however stress that this
is pure speculation whose validity is not justified but one can hope that recent works in
the context of the string theory landscape could bring new light on this conjecture.

4.12 Does Inflation Need a Beginning

We know that according to the inflation scenario is eternal in the future. Than a natural
question arises: Is it possible that the inflation is eternal into the past? There is a nice
theorem by Borde, Guth and Vilenkin (2003) that proves that the answer to this question
is no. There is of course no conclusion that an eternally inflating model must have a unique
beginning and no conclusion that there is an upper bound on the length of all backwards-
going geodesics from a given point. In other words this theorem shows that some new
physics would be needed do describe the past boundary of the inflating region.

4.13 Inflation and Observations

It is very nice that inflation can make prediction which can be tested by cosmological
observations. The inflationary prediction for nearly flat spectrum of density perturbation
is in agreement with both you measurements of the CMB anisotropy and observations of
structures in the Universe.

Let us also give another example where the inflation cosmology gives very nice expla-
nation of the observation date.

Today,we have three-dimensional maps of the distribution of galaxies in space that
obtain more than one hundred thousand galaxies.They clearly indicate that the luminous
matter in the Universe is neither uniformly nor randomly distributed. We see clusters of
galaxies,super-clusters, filaments and voids that are regions of space empty of galaxies.
The distribution can be quantified in terms of the luminosity power spectrum.

As we have also seen another observation window in cosmology is the cosmic microwave
background radiation. This radiation is characterized by a surprising isotropy, in other

1 This remark implies that the word “eternal” is not technically correct, we should rather speak about
“semi-eternal” or “future-eternal” Universe.
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words it looks the same from all different directions on the sky. However this radiation
has also fractional level of a bit less than 10~% of anisotropies. These anisotropies can
be characterized in terms of their angular power spectrum. The sky map (that is clearly
two-dimensional of topology of sphere) of anisotropies is expanded in spherical harmonics
}/lm

AT =
0.0) =" > amYim(9,0) . (4.126)
=1 m=-1
where 0, ¢ are the usual angles on the surface of two-sphere. It can be shown that the
angular power spectrum of CMB has characteristic pattern of anisotropies. The challenge
of cosmology is to explain both the overall isotropy of CMB and the specific patter of
anisotropies.

In order to explain these observation structures we have to look to the very early Uni-
verse. The reason is that the Standard Big Bang cosmology that describes the cosmological
evolution at late times where the notion “late times” means the times that includes period
of nucleosynthesis and later implies that the length scales that are currently observed were
outside the Hubble radius in the early times and no causal structure formation scenario is
possible.

It is great success of inflationary cosmology that can explains all problems we listed
above and also provides a causal mechanism for the origin of inhomogeneities in the Uni-
verse.
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