{VERSION 3 0 "IBM INTEL LINUX" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "Hyperlink" -1 17 "" 0 1 0 128 128 1 2 0 1 0 0 0 0 0 0 } {CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 }{PSTYLE " Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 24 0 0 0 0 2 1 2 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 3 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 }1 0 0 0 8 4 0 0 0 0 0 0 -1 0 }{PSTYLE "" 2 6 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Warning" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "Error" 7 8 1 {CSTYLE "" -1 -1 "" 0 1 255 0 255 1 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Title" 0 18 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 1 0 0 0 0 0 0 }3 0 0 -1 12 12 0 0 0 0 0 0 19 0 }{PSTYLE "R 3 Font 0" -1 256 1 {CSTYLE "" -1 -1 "Helvetica" 1 24 0 0 0 0 2 1 2 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "R3 Font 2" -1 257 1 {CSTYLE "" -1 -1 "Courier" 1 11 0 0 0 0 2 1 2 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 259 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 260 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 261 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 262 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 263 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 264 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 265 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 266 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 267 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 268 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 269 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 270 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 271 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 272 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 273 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 274 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 275 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 276 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 277 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 278 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 279 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 280 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 281 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 282 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 283 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 284 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 285 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 286 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 287 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 288 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 289 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 290 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 291 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 292 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 293 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 294 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 295 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 296 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 297 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 298 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 299 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 300 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 301 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 302 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 303 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 304 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 305 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 306 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 307 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 308 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 309 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 310 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 311 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 312 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 313 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 314 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 315 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 316 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 317 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 318 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 319 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 320 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 321 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 322 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 323 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 324 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 325 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 326 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 327 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 328 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 329 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 330 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 331 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 332 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 333 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 334 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 335 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 336 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 337 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 338 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 339 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 340 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 341 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 342 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 343 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 344 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 345 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 346 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 347 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 348 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 349 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 350 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 351 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 352 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 353 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 354 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 355 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 356 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 357 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 358 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 359 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 360 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 361 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 362 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 363 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 364 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 365 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 366 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 367 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 368 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 369 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 370 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 371 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 372 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 373 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 374 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 375 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 376 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 377 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 378 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 379 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 380 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 381 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 382 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 383 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 384 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 385 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 386 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 387 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 388 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 389 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 390 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 391 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 392 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 393 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 394 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 395 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 396 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 397 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 398 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 399 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 400 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 401 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 402 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 403 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 404 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 405 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 406 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 407 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 408 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 409 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 410 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 411 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 412 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 413 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 414 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 415 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 416 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 417 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 418 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 419 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 420 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 421 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 422 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 423 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 424 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 425 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 426 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 427 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 428 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 429 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 430 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 18 "" 0 "" {TEXT -1 29 "MATEMATICKA ANALYZA V MAP LU \n" }}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 21 "Symbolicke derivovani" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 331 "" 0 "" {TEXT -1 56 "Pomoci procedury diff muzeme derivovat formul e (vyrazy):" }}{PARA 258 "> " 0 "" {MPLTEXT 1 0 20 "'diff(exp(-x^2),x) ';" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%%diffG6$-%$expG6#,$*$)%\"xG\" \"#\"\"\"!\"\"F," }}}{EXCHG {PARA 259 "" 0 "" {TEXT -1 181 "Apostrofy \+ kolem predchazejiciho prikazu zamezi vyhodnoceni.\nStejneho efektu dos ahneme i procedurou Diff. Diff se pouziva pro vetsi prehlednost a z du vodu\nkontroly spravnosti zadani." }}{PARA 260 "> " 0 "" {MPLTEXT 1 0 2 "%;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&%\"xG\"\"\"-%$expG6#,$*$) F%\"\"#\"\"\"!\"\"F&!\"#" }}}{EXCHG {PARA 261 "> " 0 "" {MPLTEXT 1 0 44 "Diff(ln(x/(x^2+1)),x)=diff(ln(x/(x^2+1)),x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%%DiffG6$-%#lnG6#*&%\"xG\"\"\",&*$)F+\"\"#F,\"\"\"F1F 1!\"\"F+*&*&,&*&F,F,F-F2F1*&*$F/F,F,*$)F-\"\"#F,F2!\"#F1F-F1F,F+F2" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "Diff(ln(x/(x^2+1)),x):%=val ue(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%%DiffG6$-%#lnG6#*&%\"xG\" \"\",&*$)F+\"\"#F,\"\"\"F1F1!\"\"F+*&*&,&*&F,F,F-F2F1*&*$F/F,F,*$)F-\" \"#F,F2!\"#F1F-F1F,F+F2" }}}{EXCHG {PARA 262 "> " 0 "" {MPLTEXT 1 0 10 "normal(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%%DiffG6$-%#lnG6#* &%\"xG\"\"\",&*$)F+\"\"#F,\"\"\"F1F1!\"\"F+,$*&,&F.F1!\"\"F1F,*&F+\"\" \"F-\"\"\"F2F6" }}}{EXCHG {PARA 263 "> " 0 "" {MPLTEXT 1 0 27 "Diff(x^ (x^x),x):%=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%%DiffG6$)% \"xG)F(F(F(*&F'\"\"\",&*(F)F+,&-%#lnG6#F(F+F+F+F+F/F+F+*&F)\"\"\"F(!\" \"F+F+" }}}{EXCHG {PARA 264 "> " 0 "" {MPLTEXT 1 0 78 "collect(%,ln(x) , simplify); #diva se na vyraz jako na polynom v promenne ln(x)" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#/-%%DiffG6$)%\"xG)F(F(F(,(*&)F(,&F)\" \"\"F(F.F.)-%#lnG6#F(\"\"#\"\"\"F.*&F,F4F0F.F.)F(,(F)F.F(F.!\"\"F.F." }}}{EXCHG {PARA 265 "" 0 "" {TEXT -1 22 "Derivace vyssich radu:" }} {PARA 266 "> " 0 "" {MPLTEXT 1 0 31 "Diff(exp(-x^2),x,x):%=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%%DiffG6$-%$expG6#,$*$)%\"xG\"\"# \"\"\"!\"\"-%\"$G6$F-F.,&F'!\"#*&F,F/F'\"\"\"\"\"%" }}}{EXCHG {PARA 267 "> " 0 "" {MPLTEXT 1 0 32 "Diff(exp(-x^2), x$5):%=value(%);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#/-%%DiffG6$-%$expG6#,$*$)%\"xG\"\"#\" \"\"!\"\"-%\"$G6$F-\"\"&,(*&F-\"\"\"F'F7!$?\"*&)F-\"\"$F/F'F/\"$g\"*&) F-F4F/F'F/!#K" }}}{EXCHG {PARA 330 "" 0 "" {TEXT -1 31 "Derivace funkc e dane implicitne" }}}{EXCHG {PARA 413 "> " 0 "" {MPLTEXT 1 0 8 "resta rt;" }}}{EXCHG {PARA 268 "> " 0 "" {MPLTEXT 1 0 40 "alias(y=y(x)): #y \+ povazujeme za funkci x" }}}{EXCHG {PARA 269 "> " 0 "" {MPLTEXT 1 0 14 "eq:=x^2+y^2=c;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#eqG/,&*$)%\"xG\" \"#\"\"\"\"\"\"*$)%\"yGF*F+F,%\"cG" }}}{EXCHG {PARA 270 "> " 0 "" {MPLTEXT 1 0 11 "diff(eq,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/,&%\" xG\"\"#*&%\"yG\"\"\"-%%diffG6$F(F%F)F&\"\"!" }}}{EXCHG {PARA 271 "> " 0 "" {MPLTEXT 1 0 40 "dydx:=solve(%, diff(y,x)); # 1. derivace" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%%dydxG,$*&%\"xG\"\"\"%\"yG!\"\"!\"\" " }}}{EXCHG {PARA 272 "> " 0 "" {MPLTEXT 1 0 13 "diff(eq,x$2);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#/,(\"\"#\"\"\"*$)-%%diffG6$%\"yG%\"xGF %\"\"\"F%*&F,F&-F*6$F,-%\"$G6$F-F%F&F%\"\"!" }}}{EXCHG {PARA 273 "> " 0 "" {MPLTEXT 1 0 21 "solve(%,diff(y,x$2));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&,&\"\"\"F&*$)-%%diffG6$%\"yG%\"xG\"\"#\"\"\"F&F/F,! \"\"!\"\"" }}}{EXCHG {PARA 274 "> " 0 "" {MPLTEXT 1 0 39 "d2ydx2:=norm al(subs(diff(y,x)=dydx,%));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'d2yd x2G,$*&,&*$)%\"xG\"\"#\"\"\"\"\"\"*$)%\"yGF+F,F-F,*$)F0\"\"$F,!\"\"!\" \"" }}}{EXCHG {PARA 275 "> " 0 "" {MPLTEXT 1 0 11 "alias(y=y):" }}} {EXCHG {PARA 332 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 333 "> " 0 "" {MPLTEXT 1 0 28 "implicitdiff(x^2+y^2,y,x,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&,&*$)%\"xG\"\"#\"\"\"\"\"\"*$)%\"yGF)F*F +F**$)F.\"\"$F*!\"\"!\"\"" }}}{EXCHG {PARA 276 "" 0 "" {TEXT -1 19 "Pa rcialni derivace:" }}{PARA 277 "> " 0 "" {MPLTEXT 1 0 36 "Diff(exp(a*x *y^2),x,y$2):%=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%%DiffG6 %-%$expG6#*(%\"aG\"\"\"%\"xGF,)%\"yG\"\"#\"\"\"F--%\"$G6$F/F0,(*&F+F1F 'F,F0**)F+F0F1F.F1F-F1F'F1\"#5**)F+\"\"$F1)F/\"\"%F1)F-F0F1F'F1F>" }}} {EXCHG {PARA 278 "> " 0 "" {MPLTEXT 1 0 10 "factor(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%%DiffG6%-%$expG6#*(%\"aG\"\"\"%\"xGF,)%\"yG\"\" #\"\"\"F--%\"$G6$F/F0,$*(F+F1F'F,,(F,F,F*\"\"&*()F+F0F1)F/\"\"%F1)F-F0 F1F0F,F0" }}}{EXCHG {PARA 279 "> " 0 "" {MPLTEXT 1 0 40 "Diff(sin(x+y) /y^4, x$5, y$2):%=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%%Dif fG6%*&-%$sinG6#,&%\"xG\"\"\"%\"yGF-\"\"\"*$)F.\"\"%F/!\"\"-%\"$G6$F,\" \"&-F56$F.\"\"#,(*&-%$cosGF*F/*$)F.\"\"%F/F3!\"\"*&F(F/*$)F.\"\"&F/F3 \"\")*&F=F/*$)F.\"\"'F/F3\"#?" }}}{EXCHG {PARA 280 "> " 0 "" {MPLTEXT 1 0 27 "collect(%,cos(x+y),normal);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #/-%%DiffG6%*&-%$sinG6#,&%\"xG\"\"\"%\"yGF-\"\"\"*$)F.\"\"%F/!\"\"-%\" $G6$F,\"\"&-F56$F.\"\"#,&*&*&,&*$)F.F:F/F-!#?F-F--%$cosGF*F-F/*$)F.\" \"'F/F3!\"\"*&F(F/*$)F.\"\"&F/F3\"\")" }}}{EXCHG {PARA 281 "" 0 "" {TEXT -1 61 "Pokud derivujeme funkci, musime pouzit funkcniho operator u D." }}{PARA 282 "> " 0 "" {MPLTEXT 1 0 22 "g:=x->x^n*exp(sin(x));" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gGR6#%\"xG6\"6$%)operatorG%&arrow GF(*&)9$%\"nG\"\"\"-%$expG6#-%$sinG6#F.F0F(F(F(" }}}{EXCHG {PARA 283 " > " 0 "" {MPLTEXT 1 0 5 "D(g);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#R6#% \"xG6\"6$%)operatorG%&arrowGF&,&*&*()9$%\"nG\"\"\"F/F0-%$expG6#-%$sinG 6#F.F0\"\"\"F.!\"\"F0*(F-F7-%$cosGF6F0F1F7F0F&F&F&" }}}{EXCHG {PARA 284 "> " 0 "" {MPLTEXT 1 0 11 "D(g)(Pi/6);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*&*(),$%#PiG#\"\"\"\"\"'%\"nGF*F,F*-%$expG6##F*\"\"#F *\"\"\"F(!\"\"F+*(F&F2-%%sqrtG6#\"\"$F2F-F2F0" }}}{EXCHG {PARA 285 "" 0 "" {TEXT -1 102 "diff derivuje vzorec a na vystupu vraci vzorec, D d erivuje funkci a na vystupu vraci funkci.\nPriklady:" }}{PARA 286 "> \+ " 0 "" {MPLTEXT 1 0 32 "diff(cos(t),t); #derivace vzorce" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#,$-%$sinG6#%\"tG!\"\"" }}}{EXCHG {PARA 287 "> " 0 "" {MPLTEXT 1 0 24 "D(cos); #derivace funkce" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$%$sinG!\"\"" }}}{EXCHG {PARA 288 "> " 0 "" {MPLTEXT 1 0 80 "(D@@2)(cos); #pro druhou derivaci funkce musime pouzit operato ru skladani funkci" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$%$cosG!\"\"" } }}{EXCHG {PARA 289 "> " 0 "" {MPLTEXT 1 0 41 "D(cos)(t); # derivace fu nkce v danem bode" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$-%$sinG6#%\"tG! \"\"" }}}{EXCHG {PARA 290 "" 0 "" {TEXT -1 53 "Vsimnete si rozdilu mez i nasledujicimi dvema prikazy:" }}{PARA 291 "> " 0 "" {MPLTEXT 1 0 10 "D(cos(t));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%\"DG6#-%$cosG6#%\"tG " }}}{EXCHG {PARA 292 "" 0 "" {TEXT -1 71 "Maple povazuje cos(t) za sl ozeni funkci cos a t, spravny zapis je tedy:" }}{PARA 293 "> " 0 "" {MPLTEXT 1 0 11 "D(cos @ t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&-%\" @G6$,$%$sinG!\"\"%\"tG\"\"\"-%\"DG6#F*F+" }}}{EXCHG {PARA 294 "" 0 "" {TEXT -1 46 "Derivace implicitni funkce pomoci operatoru D:" }}{PARA 295 "> " 0 "" {MPLTEXT 1 0 14 "eq:=x^2+y^2=c:" }}}{EXCHG {PARA 296 "> \+ " 0 "" {MPLTEXT 1 0 6 "D(eq);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/,&*& -%\"DG6#%\"xG\"\"\"F)F*\"\"#*&-F'6#%\"yGF*F/F*F+-F'6#%\"cG" }}}{EXCHG {PARA 297 "> " 0 "" {MPLTEXT 1 0 14 "solve(%,D(y));" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#,$*&,&*&-%\"DG6#%\"xG\"\"\"F*F+\"\"#-F(6#%\"cG!\"\"\" \"\"%\"yG!\"\"#F0F," }}}{EXCHG {PARA 298 "> " 0 "" {MPLTEXT 1 0 30 "dy dx:=subs(D(x)=1, D(c)=0, %);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%dyd xG,$*&%\"xG\"\"\"%\"yG!\"\"!\"\"" }}}{EXCHG {PARA 299 "> " 0 "" {MPLTEXT 1 0 11 "(D@@2)(eq);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/,**&- -%#@@G6$%\"DG\"\"#6#%\"xG\"\"\"F-F.F+*$)-F*F,F+\"\"\"F+*&-F'6#%\"yGF.F 6F.F+*$)-F*F5F+F2F+-F'6#%\"cG" }}}{EXCHG {PARA 300 "> " 0 "" {MPLTEXT 1 0 19 "solve(%,(D@@2)(y));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&,** &--%#@@G6$%\"DG\"\"#6#%\"xG\"\"\"F.F/F,*$)-F+F-F,\"\"\"F,*$)-F+6#%\"yG F,F3F,-F(6#%\"cG!\"\"F3F8!\"\"#F " 0 "" {MPLTEXT 1 0 69 "d2ydx2:=normal(subs(D(x)=1, (D@@2)(x)=0, (D@@2)(c)=0, D(y)=dydx, %));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'d2ydx2G,$*&,&*$ )%\"xG\"\"#\"\"\"\"\"\"*$)%\"yGF+F,F-F,*$)F0\"\"$F,!\"\"!\"\"" }}} {EXCHG {PARA 302 "" 0 "" {TEXT -1 64 "Operatoru D je mozno pouzit i pr o vypocet parcialnich derivaci.\n" }}{PARA 303 "> " 0 "" {MPLTEXT 1 0 34 "h:=(x,y,z)->1/(x^2+y^2+z^2)^(1/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"hGR6%%\"xG%\"yG%\"zG6\"6$%)operatorG%&arrowGF**&\"\"\"F/*$-% %sqrtG6#,(*$)9$\"\"#F/\"\"\"*$)9%F8F/F9*$)9&F8F/F9F/!\"\"F*F*F*" }}} {EXCHG {PARA 304 "> " 0 "" {MPLTEXT 1 0 18 "'D[1](h)'=D[1](h);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#/-&%\"DG6#\"\"\"6#%\"hGR6%%\"xG%\"yG% \"zG6\"6$%)operatorG%&arrowGF0,$*&9$\"\"\"*$),(*$)F6\"\"#F7F(*$)9%F=F7 F(*$)9&F=F7F(#\"\"$F=F7!\"\"!\"\"F0F0F0" }}}{EXCHG {PARA 305 "" 0 "" {TEXT -1 47 "Zde D[1](h) je parcialni derivace vzhledem k x." }}{PARA 306 "> " 0 "" {MPLTEXT 1 0 22 "'D[1,2](h)'=D[1,2](h);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-&%\"DG6$\"\"\"\"\"#6#%\"hGR6%%\"xG%\"yG%\"zG6\"6 $%)operatorG%&arrowGF1,$*&*&9%F(9$F(\"\"\"*$),(*$)F9F)F:F(*$)F8F)F:F(* $)9&F)F:F(#\"\"&F)F:!\"\"\"\"$F1F1F1" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 84 "D[1,2](h) = proc (x, y, z) options operator, arrow; 3 *y*x/((x^2+y^2+z^2)^(5/2)) end;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/R6 %%\"xG%\"yG%\"zG6\"6$%)operatorG%&arrowGF),$*&*&9%\"\"\"9$F1\"\"\"*$), (*$)F2\"\"#F3F1*$)F0F9F3F1*$)9&F9F3F1#\"\"&F9F3!\"\"\"\"$F)F)F)R6%F&F' F(F)F*F)F-F)F)F)" }}}{EXCHG {PARA 307 "" 0 "" {TEXT -1 102 "Zde D[1,2] (h) je vlastne D[1] (D[2](h)) - smisena parcialni derivace, jednou pod le x a jednou podle y." }}{PARA 308 "> " 0 "" {MPLTEXT 1 0 22 "'D[1,1] (h)'=D[1,1](h);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-&%\"DG6$\"\"\"F(6 #%\"hGR6%%\"xG%\"yG%\"zG6\"6$%)operatorG%&arrowGF0,&*&*$)9$\"\"#\"\"\" F:*$),(*$F7F:F(*$)9%F9F:F(*$)9&F9F:F(#\"\"&F9F:!\"\"\"\"$*&F:F:*$)F=# \"\"$F9F:FG!\"\"F0F0F0" }}}{EXCHG {PARA 309 "" 0 "" {TEXT -1 38 "Druha parcialni derivace vzhledem k x." }}{PARA 310 "> " 0 "" {MPLTEXT 1 0 32 "L[h]:=(D[1,1]+D[2,2]+D[3,3])(h);" }}{PARA 12 "" 1 "" {XPPMATH 20 " 6#>&%\"LG6#%\"hG,(R6%%\"xG%\"yG%\"zG6\"6$%)operatorG%&arrowGF.,&*&*$)9 $\"\"#\"\"\"F8*$),(*$F5F8\"\"\"*$)9%F7F8F=*$)9&F7F8F=#\"\"&F7F8!\"\"\" \"$*&F8F8*$)F;#\"\"$F7F8FF!\"\"F.F.F.F=R6%F+F,F-F.F/F.,&*&*$F?F8F8*$)F ;#\"\"&F7F8FFFGFHFMF.F.F.F=R6%F+F,F-F.F/F.,&*&*$FBF8F8*$)F;#\"\"&F7F8F FFGFHFMF.F.F.F=" }}}{EXCHG {PARA 311 "" 0 "" {TEXT -1 53 "Maple muze d erivovat i po castech definovane funkce:\n" }}}{EXCHG {PARA 334 "> " 0 "" {MPLTEXT 1 0 40 "F:=x->piecewise(x>0, sin(x), arctan(x));" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"FGR6#%\"xG6\"6$%)operatorG%&arrowG F(-%*piecewiseG6%2\"\"!9$-%$sinG6#F1-%'arctanGF4F(F(F(" }}}{EXCHG {PARA 335 "> " 0 "" {MPLTEXT 1 0 9 "Fp:=D(F);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#FpGR6#%\"xG6\"6$%)operatorG%&arrowGF(-%*piecewiseG6% 2\"\"!9$-%$cosG6#F1*&\"\"\"F6,&\"\"\"F8*$)F1\"\"#F6F8!\"\"F(F(F(" }}} {EXCHG {PARA 336 "> " 0 "" {MPLTEXT 1 0 28 "plot(\{F, Fp\}, -3*Pi..3*P i); " }}{PARA 13 "" 1 "" {INLPLOT "6&-%'CURVESG6$7`q7$$!1++$>%zxC%*!#: $!1yY?I&)3l9F*7$$!1/jNm7\"R,*F*$!1P^d'\\3.Y\"F*7$$!13=$)o$=kl)F*$!1\"[ '*[\"\\yb9F*7$$!1R0b;-Qa#)F*$!1*o&**[gB]9F*7$$!1`MU%4x'\\yF*$!1<+\"G3& 3W9F*7$$!1$e\"fbu*oW(F*$!1DK^T2JP9F*7$$!13=,r\"pM2(F*$!1kJ%[p`.V\"F*7$ $!1[)R@\"e!oo'F*$!1yOUL#[BU\"F*7$$!1>oE8!=pG'F*$!11:$yHdIT\"F*7$$!14jj fEJ))eF*$!1'eJIStDS\"F*7$$!1*Q,'e!)HyaF*$!1vKH-dC!R\"F*7$$!1KU$[(p:<^F *$!1%o_4\\2yP\"F*7$$!1maa]wf5ZF*$!1q@QkWhh8F*7$$!1a(4Y&*oBI%F*$!11B>r6 UU8F*7$$!1,y8j\\'*3RF*$!1ZH=,bM?8F*7$$!1S`5]kr^NF*$!12QAvrM'H\"F*7$$!1 uPH9M\"p7$F*$!1'Q#G<5Fh7F*7$$!1OaX@&\\qw#F*$!1d&R$)piBo6F*7$$!1$fQ3\"R!z(>F*$!1m^BA,p-6F*7$$!1ifF5YOr:F*$!1Wc( Gn[S+\"F*7$$!1u.(z0VU=\"F*$!18I#GX*\\&p)!#;7$$!13w8Rp#G#)*F`r$!1BN07dg kxF`r7$$!1y9d)HBK!yF`r$!1yo[lmEEmF`r7$$!1pu]/nf[fF`r$!1\\1eLFJm`F`r7$$ !1hMW5,(R4%F`r$!1jd^$34e)QF`r7$$!1#R&RxZ]$4#F`r$!1Ut[[-qj?F`r7$$!1fAtM W%RI*!#=$!1?eP))fn.$*F]t7$$\"1s-:;=)[)>F`r$\"1,&)\\;U(=(>F`r7$$\"1nykw I!G1%F`r$\"1C!y&4<&>&RF`r7$$\"1/aLU'R;(eF`r$\"1>Aa6@-SbF`r7$$\"1UH-3iZ !o(F`r$\"1cI-*yAt%pF`r7$$\"17Dm`#pSj*F`r$\"1UYy+vS6#)F`r7$$\"13-$*Hiwe 6F*$\"15&*F`r7$$\"1#[mu]\"fg 8F*$\"1D4$f(>))z(*F`r7$$\"1^0&o#y/69F*$\"1x%3p?tE()*F`r7$$\"1?YBYT]h9F *$\"1VXv@bLS**F`r7$$\"1)o=cYg>^\"F*$\"1r@d*p'p#)**F`r7$$\"1dF+&y;Cc\"F *$\"1$4^%=*['****F`r7$$\"1#H3)\\%y%z<]5F*$ \"1\"\\$\\$e)Gi#*F`r7$$\"1ADw)*)\\$[@F*$\"1Gv\"eY3!y$)F`r7$$\"10!ySp*Q RBF*$\"1xbbc;*))=(F`r7$$\"1)R#Q:o]^DF*$\"1HN@tMKkbF`r7$$\"1\"z'oORijFF *$\"1r$RqCL.p$F`r7$$\"1%))oWg?U&HF*$\"1Un7pexi=F`r7$$\"1x4Dss\"[9$F*$! 1YO$G28YA$F]t7$$\"1KD:(*)>$[LF*$!1,$*)=KzD0#F`r7$$\"1(3a?_A=b$F*$!1y^1 Y8?))RF`r7$$\"1(3_m9Eit$F*$!11W*o%>0-cF`r7$$\"1)3]7xH1#RF*$!1qJ&>nXf-( F`r7$$\"1OdJS;BATF*$!1^ZL48`3$)F`r7$$\"1%Q\"Q4N$QK%F*$!1p5pyGda#*F`r7$ $\"1]i!eB![F*$!1N@)H:b&f**F`r7$$\"1d@BE'G >&[F*$!1KUO08!G!**F`r7$$\"1FfXL#*\\,\\F*$!18F:I)=<#)*F`r7$$\"1mM!zWS1+ &F*$!15#4;2Cue*F`r7$$\"1/5Ni;y*4&F*$!1^QJq=(*e#*F`r7$$\"1jUKz*QOH&F*$! 1xZos'pxN)F`r7$$\"1AvH'H'\\([&F*$!1$QGFRfM9(F`r7$$\"1[uSTpW!p&F*$!1m;2 ONM'e&F`r7$$\"1ut^'e(R$*eF*$!1Fxvu1#**z$F`r7$$\"1sX,zJ'))3'F*$!1o`5fY, J>F`r7$$\"1p<^r(GVG'F*$\"1w,+$3kM9\"F]t7$$\"1>7cr0A%['F*$\"1,Np@&Qo*>F `r7$$\"1q1hrB6%o'F*$\"1DDIx0s-RF`r7$$\"1=Djm*[B)oF*$\"1'f=O9?&RcF`r7$$ \"1nVlhbe!3(F*$\"1c<-'3Ca:(F`r7$$\"1LJU/WuisF*$\"1YG,qp^-$)F`r7$$\"1** =>ZK!\\W(F*$\"1T+-pz([<*F`r7$$\"1JeSU0H\\vF*$\"1]!)\\,nRR&*F`r7$$\"1k( >w$yn`wF*$\"1xT(fxh+!)*F`r7$$\"1InA&[req(F*$\"1&GO*ys^!*)*F`r7$$\"1'pL G8l!exF*$\"1lxqz`.a**F`r7$$\"1i1W!ye-\"yF*$\"1Kn-$3V/***F`r7$$\"1Hw/GC XiyF*$\"1LTQI7k****F`r7$$\"1!Hs'[]84zF*$\"1/VKfVz%)**F`r7$$\"1^pHpw\"e &zF*$\"1^%)41>>[**F`r7$$\"17;#**G+D+)F*$\"1>DuAO\"**))*F`r7$$\"1tia5H= \\!)F*$\"1us8!\\'35)*F`r7$$\"1%f&z^\"[D9)F*$\"1?Ld#)z_'e*F`r7$$\"1=\\/ $R8fB)F*$\"1dy&Huj%z#*F`r7$$\"12fr; _,*F*$\"19qb#*F*$\"1+!H8#Q_L?F`r7$$\"1++$>%zx C%*F*$\"1%)G8?!QR)=!#B-%'COLOURG6&%$RGBG$\"#5!\"\"\"\"!F`[m-F$6$7eq7$F ($\"1T-\\wzD86!#<7$F.$\"1G8_cmz:7Fg[m7$F3$\"1(RX!G/%pJ\"Fg[m7$F8$\"1,k V'p\\kW\"Fg[m7$F=$\"1e#)H<%**pf\"Fg[m7$FB$\"1kZ;y?GrFg[m7$FL$\"1U3+DPa(=#Fg[m7$FQ$\"1a9P(*>fnCFg[m7$FV$\"1]\")Gr8I.GFg [m7$Fen$\"12**zpUeCKFg[m7$Fjn$\"11b#p=f%yOFg[m7$F_o$\"1%Qf9q`AJ%Fg[m7$ Fdo$\"1EXffrZD^Fg[m7$Fio$\"1)o\\+Z.D9'Fg[m7$F^p$\"1([^ui2]M(Fg[m7$Fcp$ \"1[U'QK9&y#*Fg[m7$Fhp$\"1(Qo$zG>b6F`r7$F]q$\"1E7))en([`\"F`r7$Fbq$\"1 c5UlvyN?F`r7$Fgq$\"1)frY&*>D)GF`r7$$!1oJ7MQ!yP\"F*$\"1_MYznC]MF`r7$F\\ r$\"1D4Tw$\\C;%F`r7$Fbr$\"1;#)Ri6P*3&F`r7$Fgr$\"15)*GP`T:iF`r7$F\\s$\" 1![dg&))H'Q(F`r7$Fas$\"1<#['RN`k&)F`r7$Ffs$\"1_$>+'e7!e*F`r7$F[t$\"1g_ 5TW8****F`r7$$\"1i2x2(3WE%Fg[m$\"1\\J-(y34***F`r7$$\"1\\Z,f=@f%*Fg[m$ \"1DJ@/]Hb**F`r7$$\"1ue-,:Sl9F`r$\"1#=`M#>#G*)*F`r7$Fat$\"1hJc'4eO!)*F `r7$$\"1q!*RYC%Q-$F`r$\"123i>=HY&*F`r7$Fft$\"1U/u(yrf=*F`r7$F[u$\"1QGy ]>:D$)F`r7$F`u$\"1hAY/Uo#>(F`r7$Feu$\"1KSx%Qdsq&F`r7$Fju$\"1d!)>%\\.Z+ %F`r7$F_v$\"1,*\\hQE71$F`r7$Fdv$\"1\\F2^@g'3#F`r7$F^w$\"1WjZ>tu!4\"F`r 7$Fhw$\"1>K\\GPWz$)F]t7$F\\y$!14n&H=F%z=F`r7$Ffy$!1czR`f(faF`r7$F`z$!17yKOrC^pF`r7$Fez$!1I31!>H*3$)F`r7$Fjz$!1B>_O;;%H*F `r7$$\"1QydqA#*eGF*$!1tvVr.9.'*F`r7$F_[l$!16jCb:(\\#)*F`r7$$\"12WTr(p= +$F*$!1f/v!GYD!**F`r7$$\"1J*f$Q*=&\\IF*$!1%G[=4Uw&**F`r7$$\"1aaI0\"or4 $F*$!1,6I?R8!***F`r7$Fd[l$!1,v@4![*****F`r7$$\"1mjZGHp&>$F*$!15tEq$p`) **F`r7$$\"1a&)y$F`r7$F\\^l$!1F#\\5ucb(>F`r7$F`_l$!1R'4q@ Z?<*F]t7$Fd`l$\"1c_%3&3&)z=F`r7$F^al$\"154/NfvxPF`r7$Fcal$\"1k0-e3p!\\ &F`r7$Fhal$\"11mi+u#z*pF`r7$F]bl$\"1>heb/9%H)F`r7$Fbbl$\"1&QB;X(*)\\#* F`r7$$\"1ufw#QI6*fF*$\"1fQBDCaw&*F`r7$Fgbl$\"1GU:Izy6)*F`r7$$\"1r)QrdH x8'F*$\"1XiyN&*R%*)*F`r7$$\"1qJEvff'='F*$\"1_M+g()Q`**F`r7$$\"1puQtBYN iF*$\"1I*)**oZh))**F`r7$F\\cl$\"0KZCY$******F*7$$\"1JT_@[*[**F`r7$$\"1c)[:iZUV'F*$\"1eeq( ph')Qd&F`r7$Fjdl$\"1fA[\"GRw(RF`r7$F_el$\"1HV?&4&)***HF`r7$Fdel$ \"1XRwA1n*)>F`r7$F^fl$\"1i\"*o?(\\pd*Fg[m7$Fhfl$!1BayqFpq%)F]t7$F\\hl$ !1#=y%H*R'R>F`r7$Ffhl$!1j$*\\Dt8FPF`r7$F[il$!1(GE]d8))[&F`r7$F`il$!1m( >JUSO.(F`r7$Feil$!1<$fvl#o_#)F`r7$Fjil$!19sj[i&H<*F`r7$$\"1)\\q%>qg<\" *F*$!128\"\\'y#>`*F`r7$F_jl$!1h)Rr;c5z*F`r7$$\"1Z-q![#>r#*F*$!1^I*)f\" *G#))*F`r7$$\"1)\\VWj(QA$*F*$!1)*)[])oiZ**F`r7$$\"1\\n=)y#et$*F*$!1NH] L\")*o)**F`r7$Fdjl$F_[mF`[m-Fjjl6&F\\[mF`[mF][mF`[m-%+AXESLABELSG6$%!G Ffbn-%%VIEWG6$;$!+izxC%*!\"*$\"+izxC%*F]cn%(DEFAULTG" 2 264 264 264 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 12460 0 0 0 0 0 0 }}}{EXCHG {PARA 312 "> " 0 "" {MPLTEXT 1 0 43 "F:=x->if x>0 then sin(x) else arctan(x) fi;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"FGR6#%\"xG6\"6$%)operatorG%&arrowGF(@%2 \"\"!9$-%$sinG6#F/-%'arctanGF2F(F(F(" }}}{EXCHG {PARA 313 "> " 0 "" {MPLTEXT 1 0 9 "Fp:=D(F);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#FpGR6# %\"xG6\"6$%)operatorG%&arrowGF(@%2\"\"!9$-%$cosG6#F/*&\"\"\"F4,&\"\"\" F6*$)F/\"\"#F4F6!\"\"F(F(F(" }}}{EXCHG {PARA 314 "> " 0 "" {MPLTEXT 1 0 28 "plot(\{F, Fp\}, -3*Pi..3*Pi); " }}{PARA 13 "" 1 "" {INLPLOT "6&- %'CURVESG6$7`q7$$!1++$>%zxC%*!#:$!1yY?I&)3l9F*7$$!1/jNm7\"R,*F*$!1P^d' \\3.Y\"F*7$$!13=$)o$=kl)F*$!1\"['*[\"\\yb9F*7$$!1R0b;-Qa#)F*$!1*o&**[g B]9F*7$$!1`MU%4x'\\yF*$!1<+\"G3&3W9F*7$$!1$e\"fbu*oW(F*$!1DK^T2JP9F*7$ $!13=,r\"pM2(F*$!1kJ%[p`.V\"F*7$$!1[)R@\"e!oo'F*$!1yOUL#[BU\"F*7$$!1>o E8!=pG'F*$!11:$yHdIT\"F*7$$!14jjfEJ))eF*$!1'eJIStDS\"F*7$$!1*Q,'e!)Hya F*$!1vKH-dC!R\"F*7$$!1KU$[(p:<^F*$!1%o_4\\2yP\"F*7$$!1maa]wf5ZF*$!1q@Q kWhh8F*7$$!1a(4Y&*oBI%F*$!11B>r6UU8F*7$$!1,y8j\\'*3RF*$!1ZH=,bM?8F*7$$ !1S`5]kr^NF*$!12QAvrM'H\"F*7$$!1uPH9M\"p7$F*$!1'Q#G<5Fh7F*7$$!1OaX@&\\ qw#F*$!1d&R$)piBo6F*7$$!1$fQ3\"R!z(>F*$! 1m^BA,p-6F*7$$!1ifF5YOr:F*$!1Wc(Gn[S+\"F*7$$!1u.(z0VU=\"F*$!18I#GX*\\& p)!#;7$$!13w8Rp#G#)*F`r$!1BN07dgkxF`r7$$!1y9d)HBK!yF`r$!1yo[lmEEmF`r7$ $!1pu]/nf[fF`r$!1\\1eLFJm`F`r7$$!1hMW5,(R4%F`r$!1jd^$34e)QF`r7$$!1#R&R xZ]$4#F`r$!1Ut[[-qj?F`r7$$!1fAtMW%RI*!#=$!1?eP))fn.$*F]t7$$\"1s-:;=)[) >F`r$\"1,&)\\;U(=(>F`r7$$\"1nykwI!G1%F`r$\"1C!y&4<&>&RF`r7$$\"1/aLU'R; (eF`r$\"1>Aa6@-SbF`r7$$\"1UH-3iZ!o(F`r$\"1cI-*yAt%pF`r7$$\"17Dm`#pSj*F `r$\"1UYy+vS6#)F`r7$$\"13-$*Hiwe6F*$\"15&*F`r7$$\"1#[mu]\"fg8F*$\"1D4$f(>))z(*F`r7$$\"1^0&o#y/69F* $\"1x%3p?tE()*F`r7$$\"1?YBYT]h9F*$\"1VXv@bLS**F`r7$$\"1)o=cYg>^\"F*$\" 1r@d*p'p#)**F`r7$$\"1dF+&y;Cc\"F*$\"1$4^%=*['****F`r7$$\"1#H3)\\%y%z<]5F*$\"1\"\\$\\$e)Gi#*F`r7$$\"1ADw)*)\\$[@F *$\"1Gv\"eY3!y$)F`r7$$\"10!ySp*QRBF*$\"1xbbc;*))=(F`r7$$\"1)R#Q:o]^DF* $\"1HN@tMKkbF`r7$$\"1\"z'oORijFF*$\"1r$RqCL.p$F`r7$$\"1%))oWg?U&HF*$\" 1Un7pexi=F`r7$$\"1x4Dss\"[9$F*$!1YO$G28YA$F]t7$$\"1KD:(*)>$[LF*$!1,$*) =KzD0#F`r7$$\"1(3a?_A=b$F*$!1y^1Y8?))RF`r7$$\"1(3_m9Eit$F*$!11W*o%>0-c F`r7$$\"1)3]7xH1#RF*$!1qJ&>nXf-(F`r7$$\"1OdJS;BATF*$!1^ZL48`3$)F`r7$$ \"1%Q\"Q4N$QK%F*$!1p5pyGda#*F`r7$$\"1]i!e B![F*$!1N@)H:b&f**F`r7$$\"1d@BE'G>&[F*$!1KUO08!G!**F`r7$$\"1FfXL#*\\, \\F*$!18F:I)=<#)*F`r7$$\"1mM!zWS1+&F*$!15#4;2Cue*F`r7$$\"1/5Ni;y*4&F*$ !1^QJq=(*e#*F`r7$$\"1jUKz*QOH&F*$!1xZos'pxN)F`r7$$\"1AvH'H'\\([&F*$!1$ QGFRfM9(F`r7$$\"1[uSTpW!p&F*$!1m;2ONM'e&F`r7$$\"1ut^'e(R$*eF*$!1Fxvu1# **z$F`r7$$\"1sX,zJ'))3'F*$!1o`5fY,J>F`r7$$\"1p<^r(GVG'F*$\"1w,+$3kM9\" F]t7$$\"1>7cr0A%['F*$\"1,Np@&Qo*>F`r7$$\"1q1hrB6%o'F*$\"1DDIx0s-RF`r7$ $\"1=Djm*[B)oF*$\"1'f=O9?&RcF`r7$$\"1nVlhbe!3(F*$\"1c<-'3Ca:(F`r7$$\"1 LJU/WuisF*$\"1YG,qp^-$)F`r7$$\"1**=>ZK!\\W(F*$\"1T+-pz([<*F`r7$$\"1JeS U0H\\vF*$\"1]!)\\,nRR&*F`r7$$\"1k(>w$yn`wF*$\"1xT(fxh+!)*F`r7$$\"1InA& [req(F*$\"1&GO*ys^!*)*F`r7$$\"1'pLG8l!exF*$\"1lxqz`.a**F`r7$$\"1i1W!ye -\"yF*$\"1Kn-$3V/***F`r7$$\"1Hw/GCXiyF*$\"1LTQI7k****F`r7$$\"1!Hs'[]84 zF*$\"1/VKfVz%)**F`r7$$\"1^pHpw\"e&zF*$\"1^%)41>>[**F`r7$$\"17;#**G+D+ )F*$\"1>DuAO\"**))*F`r7$$\"1tia5H=\\!)F*$\"1us8!\\'35)*F`r7$$\"1%f&z^ \"[D9)F*$\"1?Ld#)z_'e*F`r7$$\"1=\\/$R8fB)F*$\"1dy&Huj%z#*F`r7$$\"12fr;_,*F*$\"19qb#*F*$\"1+!H8#Q_L?F`r7$$\"1++$>%zxC%*F*$\"1%)G8?!QR)=!#B-%'COLOURG6&% $RGBG$\"#5!\"\"\"\"!F`[m-F$6$7eq7$F($\"1T-\\wzD86!#<7$F.$\"1G8_cmz:7Fg [m7$F3$\"1(RX!G/%pJ\"Fg[m7$F8$\"1,kV'p\\kW\"Fg[m7$F=$\"1e#)H<%**pf\"Fg [m7$FB$\"1kZ;y?GrFg[m7$FL$\"1U3+DPa(=#Fg[m7$FQ$ \"1a9P(*>fnCFg[m7$FV$\"1]\")Gr8I.GFg[m7$Fen$\"12**zpUeCKFg[m7$Fjn$\"11 b#p=f%yOFg[m7$F_o$\"1%Qf9q`AJ%Fg[m7$Fdo$\"1EXffrZD^Fg[m7$Fio$\"1)o\\+Z .D9'Fg[m7$F^p$\"1([^ui2]M(Fg[m7$Fcp$\"1[U'QK9&y#*Fg[m7$Fhp$\"1(Qo$zG>b 6F`r7$F]q$\"1E7))en([`\"F`r7$Fbq$\"1c5UlvyN?F`r7$Fgq$\"1)frY&*>D)GF`r7 $$!1oJ7MQ!yP\"F*$\"1_MYznC]MF`r7$F\\r$\"1D4Tw$\\C;%F`r7$Fbr$\"1;#)Ri6P *3&F`r7$Fgr$\"15)*GP`T:iF`r7$F\\s$\"1![dg&))H'Q(F`r7$Fas$\"1<#['RN`k&) F`r7$Ffs$\"1_$>+'e7!e*F`r7$F[t$\"1g_5TW8****F`r7$$\"1i2x2(3WE%Fg[m$\"1 \\J-(y34***F`r7$$\"1\\Z,f=@f%*Fg[m$\"1DJ@/]Hb**F`r7$$\"1ue-,:Sl9F`r$\" 1#=`M#>#G*)*F`r7$Fat$\"1hJc'4eO!)*F`r7$$\"1q!*RYC%Q-$F`r$\"123i>=HY&*F `r7$Fft$\"1U/u(yrf=*F`r7$F[u$\"1QGy]>:D$)F`r7$F`u$\"1hAY/Uo#>(F`r7$Feu $\"1KSx%Qdsq&F`r7$Fju$\"1d!)>%\\.Z+%F`r7$F_v$\"1,*\\hQE71$F`r7$Fdv$\"1 \\F2^@g'3#F`r7$F^w$\"1WjZ>tu!4\"F`r7$Fhw$\"1>K\\GPWz$)F]t7$F\\y$!14n&H =F%z=F`r7$Ffy$!1czR`f(faF`r7$F`z$!17yKOrC^pF`r7$Fe z$!1I31!>H*3$)F`r7$Fjz$!1B>_O;;%H*F`r7$$\"1QydqA#*eGF*$!1tvVr.9.'*F`r7 $F_[l$!16jCb:(\\#)*F`r7$$\"12WTr(p=+$F*$!1f/v!GYD!**F`r7$$\"1J*f$Q*=& \\IF*$!1%G[=4Uw&**F`r7$$\"1aaI0\"or4$F*$!1,6I?R8!***F`r7$Fd[l$!1,v@4![ *****F`r7$$\"1mjZGHp&>$F*$!15tEq$p`)**F`r7$$\"1a&)y$F`r 7$F\\^l$!1F#\\5ucb(>F`r7$F`_l$!1R'4q@Z?<*F]t7$Fd`l$\"1c_%3&3&)z=F`r7$F ^al$\"154/NfvxPF`r7$Fcal$\"1k0-e3p!\\&F`r7$Fhal$\"11mi+u#z*pF`r7$F]bl$ \"1>heb/9%H)F`r7$Fbbl$\"1&QB;X(*)\\#*F`r7$$\"1ufw#QI6*fF*$\"1fQBDCaw&* F`r7$Fgbl$\"1GU:Izy6)*F`r7$$\"1r)QrdHx8'F*$\"1XiyN&*R%*)*F`r7$$\"1qJEv ff'='F*$\"1_M+g()Q`**F`r7$$\"1puQtBYNiF*$\"1I*)**oZh))**F`r7$F\\cl$\"0 KZCY$******F*7$$\"1JT_@[*[**F`r7$$\"1c)[:iZUV'F*$\"1eeq(ph')Qd&F`r7$Fjdl$\"1fA[\"GRw (RF`r7$F_el$\"1HV?&4&)***HF`r7$Fdel$\"1XRwA1n*)>F`r7$F^fl$\"1i\"*o?(\\ pd*Fg[m7$Fhfl$!1BayqFpq%)F]t7$F\\hl$!1#=y%H*R'R>F`r7$Ffhl$!1j$*\\Dt8FP F`r7$F[il$!1(GE]d8))[&F`r7$F`il$!1m(>JUSO.(F`r7$Feil$!1<$fvl#o_#)F`r7$ Fjil$!19sj[i&H<*F`r7$$\"1)\\q%>qg<\"*F*$!128\"\\'y#>`*F`r7$F_jl$!1h)Rr ;c5z*F`r7$$\"1Z-q![#>r#*F*$!1^I*)f\"*G#))*F`r7$$\"1)\\VWj(QA$*F*$!1)*) [])oiZ**F`r7$$\"1\\n=)y#et$*F*$!1NH]L\")*o)**F`r7$Fdjl$F_[mF`[m-Fjjl6& F\\[mF`[mF][mF`[m-%+AXESLABELSG6$%!GFfbn-%%VIEWG6$;$!+izxC%*!\"*$\"+iz xC%*F]cn%(DEFAULTG" 2 264 264 264 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 16329 -7415 0 0 0 0 0 0 }}}{EXCHG {PARA 315 "" 0 "" {TEXT -1 72 "Nasledujici priklad ilustruje moznosti Maplu pri symbolickem derivovani:" }} {PARA 316 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 317 "> \+ " 0 "" {MPLTEXT 1 0 27 "alias(g=g(x,y(x)), y=y(x)):" }}}{EXCHG {PARA 318 "> " 0 "" {MPLTEXT 1 0 10 "diff(g,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&--&%\"DG6#\"\"\"6#%\"gG6$%\"xG%\"yGF)*&--&F'6#\"\"#F* F,F)-%%diffG6$F.F-F)F)" }}}{EXCHG {PARA 319 "> " 0 "" {MPLTEXT 1 0 25 "dydx:=solve(%,diff(y,x));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%dydxG ,$*&--&%\"DG6#\"\"\"6#%\"gG6$%\"xG%\"yG\"\"\"--&F*6#\"\"#F-F/!\"\"!\" \"" }}}{EXCHG {PARA 320 "> " 0 "" {MPLTEXT 1 0 21 "convert(dydx,'diff' );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'&whereG6$,$*&-%%diffG6$-%\"gG 6$%\"xG%#t1GF.\"\"\"-F)6$-F,6$F.%#t2GF5!\"\"!\"\"<$/F5%\"yG/F/F:" }}} {EXCHG {PARA 321 "> " 0 "" {MPLTEXT 1 0 22 "subs(op(2,%),op(1,%));" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&-%%diffG6$%\"gG%\"xG\"\"\"-F&6$F(% \"yG!\"\"!\"\"" }}}{EXCHG {PARA 322 "> " 0 "" {MPLTEXT 1 0 12 "diff(g, x$2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,*--&%\"DG6$\"\"\"F)6#%\"gG6$ %\"xG%\"yGF)*&--&F'6$F)\"\"#F*F,F)-%%diffG6$F.F-F)F)*&,&F0F)*&--&F'6$F 4F4F*F,F)F5\"\"\"F)F)F5F?F)*&--&F'6#F4F*F,F)-F66$F.-%\"$G6$F-F4F)F)" } }}{EXCHG {PARA 323 "> " 0 "" {MPLTEXT 1 0 21 "solve(%,diff(y,x$2));" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&,(--&%\"DG6$\"\"\"F+6#%\"gG6$%\"x G%\"yGF+*&--&F)6$F+\"\"#F,F.F+-%%diffG6$F0F/F+F6*&--&F)6$F6F6F,F.F+)F7 F6\"\"\"F+F@--&F)6#F6F,F.!\"\"!\"\"" }}}{EXCHG {PARA 324 "> " 0 "" {MPLTEXT 1 0 39 "d2ydx2:=normal(subs(diff(y,x)=dydx,%));" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#>%'d2ydx2G,$*&,(*&--&%\"DG6$\"\"\"F.6#%\"gG6$%\" xG%\"yGF.)--&F,6#\"\"#F/F1F9\"\"\"F.*(--&F,6$F.F9F/F1F.--&F,6#F.F/F1F. F5F.!\"#*&--&F,6$F9F9F/F1F.)F@F9F:F.F:*$)F5\"\"$F:!\"\"!\"\"" }}} {EXCHG {PARA 325 "> " 0 "" {MPLTEXT 1 0 42 "convert(%,'diff'): subs(op (2,%), op(1,%));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&,(*&-%%diffG6$ %\"gG-%\"$G6$%\"xG\"\"#\"\"\")-F(6$F*%\"yGF/\"\"\"F0*(-F(6$F2F.F0-F(6$ F*F.F0F2F0!\"#*&-F(6$F2F4F0)F9F/F5F0F5*$)F2\"\"$F5!\"\"!\"\"" }}} {EXCHG {PARA 326 "> " 0 "" {MPLTEXT 1 0 11 "alias(g=g):" }}}{EXCHG {PARA 327 "> " 0 "" {MPLTEXT 1 0 23 "g:=(x,y)->exp(x^2+y^2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gGR6$%\"xG%\"yG6\"6$%)operatorG%&arrowGF )-%$expG6#,&*$)9$\"\"#\"\"\"\"\"\"*$)9%F4F5F6F)F)F)" }}}{EXCHG {PARA 328 "> " 0 "" {MPLTEXT 1 0 5 "dydx;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #,$*&%\"xG\"\"\"%\"yG!\"\"!\"\"" }}}{EXCHG {PARA 329 "> " 0 "" {MPLTEXT 1 0 15 "normal(d2ydx2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$ *&,&*$)%\"xG\"\"#\"\"\"\"\"\"*$)%\"yGF)F*F+F**$)F.\"\"$F*!\"\"!\"\"" } }}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 18 "Integrace a sumace" }}{EXCHG {PARA 337 "" 0 "" {TEXT -1 190 "Maple pouziva k integraci specialni al goritmy (a to tehdy, pokud zakladni metody(per partes, rozklad na parc . zlomky, ...)) selhavaji.\nProcedura Int integral nevyhodnocuje, pouz e prepisuje.\n" }}{PARA 338 "> " 0 "" {MPLTEXT 1 0 29 "Int(x/(x^3+1), \+ x):%=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&%\"xG\" \"\",&*$)F(\"\"$F)\"\"\"F.F.!\"\"F(,(-%#lnG6#,&F(F.F.F.#!\"\"F--F26#,( *$)F(\"\"#F)F.F(F6F.F.#F.\"\"'*&-%%sqrtG6#F-F)-%'arctanG6#,$*&,&F(F " 0 "" {MPLTEXT 1 0 16 "diff (rhs(%), x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(*&\"\"\"F%,&%\"xG\" \"\"F(F(!\"\"#!\"\"\"\"$*&,&F'\"\"#F+F(F%,(*$)F'F/F%F(F'F+F(F(F)#F(\" \"'*&F%F%,&F(F(*$)F.F/F%#F(F,F)#F/F," }}}{EXCHG {PARA 340 "" 0 "" {TEXT -1 62 "rhs() odkazuje na pravou stranu rovnice, lhs() na levou s tranu" }}{PARA 341 "> " 0 "" {MPLTEXT 1 0 21 "normal(%,'expanded');" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#*&%\"xG\"\"\",&*$)F$\"\"$F%\"\"\"F*F* !\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "infolevel[int]:=2: " }}}{EXCHG {PARA 12 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 342 "> " 0 "" {MPLTEXT 1 0 29 "Int(x/(x^5+1),x): %=value(%);" }}{PARA 6 "" 1 "" {TEXT -1 48 "int/indef1: first-stage indefinite integration" }} {PARA 6 "" 1 "" {TEXT -1 44 "int/ratpoly: rational function integrat ion" }}{PARA 6 "" 1 "" {TEXT -1 44 "int/ratpoly: rational function i ntegration" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&%\"xG\"\"\", &*$)F(\"\"&F)\"\"\"F.F.!\"\"F(,0-%#lnG6#,&F(F.F.F.#!\"\"F--F26#,**$)F( \"\"#F)!\"#F(F.*&-%%sqrtG6#F-F)F(F.F.F=F.#F.\"#?*&F7F.F?F)#F6FC*&*&-%' arctanG6#*&,(F(!\"%F.F.*$F?F)F.F)*$-F@6#,&\"#5F.FNF=F)F/F.F?F)F)*$-F@6 #FRF)F/#F=F--F26#,*F:FF.F " 0 "" {MPLTEXT 1 0 35 "normal(diff(rhs(%),x), 'expanded' );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&%\"xG\"\"\",&*$)F$\"\"&F%\"\" \"F*F*!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "infolevel[in t]:=0:" }}}{EXCHG {PARA 344 "" 0 "" {TEXT -1 16 "Urcity integral:" }} {PARA 345 "> " 0 "" {MPLTEXT 1 0 35 "Int(x/(x^3+1), x=1..a): %=value(% );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&%\"xG\"\"\",&*$)F(\" \"$F)\"\"\"F.F.!\"\"/F(;F.%\"aG,,-%#lnG6#,&F2F.F.F.#!\"\"F--F56#,(*$)F 2\"\"#F)F.F2F9F.F.#F.\"\"'*&-%%sqrtG6#F-F)-%'arctanG6#,$*&FCF),&F2F?F9 F.F.#F.F-F.FL-F56#F?FL*&FCF)%#PiGF.#F9\"#=" }}}{EXCHG {PARA 346 "> " 0 "" {MPLTEXT 1 0 36 "Int(1/((1+x^2)*(1+2*x^2)), x=0..1): " }}}{EXCHG {PARA 347 "> " 0 "" {MPLTEXT 1 0 11 "%=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&\"\"\"F(*&,&\"\"\"F+*$)%\"xG\"\"#F(F+\"\"\" ,&F+F+F,F/\"\"\"!\"\"/F.;\"\"!F+,&%#PiG#!\"\"\"\"%*&-%%sqrtG6#F/F(-%'a rctanG6#*$F=F(F+F+" }}}{EXCHG {PARA 348 "" 0 "" {TEXT -1 60 "Maple kon troluje nespojitosti integrandu na danem intervalu." }}{PARA 349 "> " 0 "" {MPLTEXT 1 0 30 "Int(1/x, x=-1..1): %=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&\"\"\"F(%\"xG!\"\"/F);!\"\"\"\"\"-%$intG F&" }}}{EXCHG {PARA 350 "" 0 "" {TEXT -1 97 "Nejsou splneny podminky f und. theoremu -- v bode 0 ma zadana funkce neodstranitelnou nespojitos t." }}{PARA 351 "" 0 "" {TEXT -1 20 "Nevlastni integraly:" }}{PARA 352 "> " 0 "" {MPLTEXT 1 0 56 "Int(t^4*ln(t)^2/(1+3*t^2)^3, t=0..infin ity): %=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&*&)% \"tG\"\"%\"\"\")-%#lnG6#F*\"\"#F,F,*$),&\"\"\"F5*$)F*F1F,\"\"$\"\"$F,! \"\"/F*;\"\"!%)infinityG,**&-%%sqrtG6#F8F,%#PiGF5#F5\"$;#*&FAF,)FDF8F, #F5\"$w&*(FDF,FAF,-F/6#F8F5#!\"\"\"$3\"*(FDF,FAF,)FLF1F,FI" }}}{EXCHG {PARA 353 "" 0 "" {TEXT -1 97 "V pripade, ze Maple neni schopen nalezt symbolicke reseni, muzeme pouzit numerickeho integrovani:" }}{PARA 354 "> " 0 "" {MPLTEXT 1 0 28 "int(exp(arcsin(x)), x=0..1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%$intG6$-%$expG6#-%'arcsinG6#%\"xG/F,;\"\"! \"\"\"" }}}{EXCHG {PARA 355 "> " 0 "" {MPLTEXT 1 0 9 "evalf(%);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+!pQ_!>!\"*" }}}{EXCHG {PARA 356 " " 0 "" {TEXT -1 44 "Nekdy je vyhodne pri reseni Maplu asistovat:" }} {PARA 357 "> " 0 "" {MPLTEXT 1 0 14 "with(student):" }}}{EXCHG {PARA 358 "> " 0 "" {MPLTEXT 1 0 20 "Int(sqrt(9-x^2), x);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#-%$IntG6$*$-%%sqrtG6#,&\"\"*\"\"\"*$)%\"xG\"\"#\"\"\" !\"\"F1F/" }}}{EXCHG {PARA 359 "> " 0 "" {MPLTEXT 1 0 45 "changevar(x= 3*sin(t), Int(sqrt(9-x^2), x),t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#- %$IntG6$,$*&-%%sqrtG6#,&\"\"*\"\"\"*$)-%$sinG6#%\"tG\"\"#\"\"\"!\"*F5- %$cosGF2F-\"\"$F3" }}}{EXCHG {PARA 360 "> " 0 "" {MPLTEXT 1 0 9 "value (%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*&-%$sinG6#%\"tG\"\"\"-%%sqr tG6#,&F)F)*$)F%\"\"#\"\"\"!\"\"F1#\"\"*F0-%'arcsinG6#F%F3" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 24 "Pro metodu per - partes:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "i:=Int((x^2+1)*ln(x), x=1..2);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"iG-%$IntG6$*&,&*$)%\"xG\"\"#\"\"\" \"\"\"F/F/F/-%#lnG6#F,F//F,;F/F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "i=intparts(i, ln(x));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&,&*$)%\"xG\"\"#\"\"\"\"\"\"F.F.F.-%#lnG6#F+F./F+;F.F ,,&-F06#F,#\"#9\"\"$-F%6$*&,&*$)F+F9F-#F.F9F+F.F-F+!\"\"F2!\"\"" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "i=value(lhs(%));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&,&*$)%\"xG\"\"#\"\"\"\"\"\"F.F.F .-%#lnG6#F+F./F+;F.F,,&-F06#F,#\"#9\"\"$#!#;\"\"*F." }}}{EXCHG {PARA 0 "" 0 "" {URLLINK 17 "Postup vypoctu (od Maple 8)" 4 "http://cgi.math .muni.cz/~xsrot/int/uvod.cgi?cnt=yes" "" }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 361 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 362 "" 0 "" {TEXT -1 27 "Konecne a nekonecne soucty:" }}{PARA 363 "> " 0 "" {MPLTEXT 1 0 30 "Sum(k^7, k=1..20): %=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$SumG6$*$)%\"kG\"\"(\"\"\"/F);\"\"\"\"#?\"++nGxQ" }} }{EXCHG {PARA 364 "> " 0 "" {MPLTEXT 1 0 29 "Sum(k^7, k=1..n): %=value (%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$SumG6$*$)%\"kG\"\"(\"\"\"/ F);\"\"\"%\"nG,,*$),&F/F.F.F.\"\")F+#F.F4*$)F3F*F+#!\"\"\"\"#*$)F3\"\" 'F+#F*\"#7*$)F3\"\"%F+#!\"(\"#C*$)F3F:F+#F.F?" }}}{EXCHG {PARA 365 "> \+ " 0 "" {MPLTEXT 1 0 10 "factor(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# /-%$SumG6$*$)%\"kG\"\"(\"\"\"/F);\"\"\"%\"nG,$*()F/\"\"#F+,,*$)F/\"\"% F+\"\"$*$)F/F8F+\"\"'*$F2F+!\"\"F/!\"%F3F.F.),&F/F.F.F.F3F+#F.\"#C" }} }{EXCHG {PARA 366 "> " 0 "" {MPLTEXT 1 0 42 "Sum(1/(k^2-4), k=3..infin ity): %=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$SumG6$*&\"\" \"F(,&*$)%\"kG\"\"#F(\"\"\"!\"%F.!\"\"/F,;\"\"$%)infinityG#\"#D\"#[" } }}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 15 "Tayloruv rozvoj" }}{EXCHG {PARA 367 "" 0 "" {TEXT -1 0 "" }{MPLTEXT 1 0 41 "taylor(sin(tan(x))-t an(sin(x)), x=0, 25);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#+7%\"xG#!\"\" \"#I\"\"(#!#H\"$c(\"\"*#!%8>\"&+c(\"#6#!#&*\"%#R(\"#8#!*p)[6J\",+?V'[a \"#:#!)2K>5\"+gX\"*eV\"#<#!+j$3Tm\"\".+[Ooa!>\"#>#!.,+Ybv4#\"1+?bv(=Gg (\"#@#!0$)[2DYpu$\"4++w&[A0[!p'\"#B-%\"OG6#\"\"\"\"#D" }}}{EXCHG {PARA 368 "> " 0 "" {MPLTEXT 1 0 12 "whattype(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%'seriesG" }}}{EXCHG {PARA 369 "> " 0 "" {MPLTEXT 1 0 10 "order(%%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"#D" }}}{EXCHG {PARA 370 "> " 0 "" {MPLTEXT 1 0 6 "Order;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"'" }}}{EXCHG {PARA 371 "> " 0 "" {MPLTEXT 1 0 28 "O rder:=3: taylor(f(x), x=a);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#++,&%\" xG\"\"\"%\"aG!\"\"-%\"fG6#F'\"\"!--%\"DG6#F*F+\"\"\",$---%#@@G6$F/\"\" #F0F+#F&F8\"\"#-%\"OG6#F&\"\"$" }}}{EXCHG {PARA 372 "> " 0 "" {MPLTEXT 1 0 35 "sin_series:=taylor(sin(x), x=0, 6);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%+sin_seriesG++%\"xG\"\"\"\"\"\"#!\"\"\"\"'\"\"$#F' \"$?\"\"\"&-%\"OG6#F'\"\"(" }}}{EXCHG {PARA 373 "" 0 "" {TEXT -1 84 "I kdyz struktura rozvoje nam pripomina polynom, interni datova reprezen tace je jina:" }}{PARA 374 "> " 0 "" {MPLTEXT 1 0 22 "subs(x=2, sin_se ries);" }}{PARA 8 "" 1 "" {TEXT -1 37 "Error, invalid substitution in \+ series" }}}{EXCHG {PARA 375 "> " 0 "" {MPLTEXT 1 0 15 "op(sin_series); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6*\"\"\"F##!\"\"\"\"'\"\"$#F#\"$?\" \"\"&-%\"OG6#F#\"\"(" }}}{EXCHG {PARA 376 "> " 0 "" {MPLTEXT 1 0 22 "s in_series*sin_series;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*$)++%\"xG\" \"\"\"\"\"#!\"\"\"\"'\"\"$#F'\"$?\"\"\"&-%\"OG6#F'\"\"(\"\"#\"\"\"" }} }{EXCHG {PARA 377 "> " 0 "" {MPLTEXT 1 0 10 "expand(%);" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#*$)++%\"xG\"\"\"\"\"\"#!\"\"\"\"'\"\"$#F'\"$?\" \"\"&-%\"OG6#F'\"\"(\"\"#\"\"\"" }}}{EXCHG {PARA 378 "> " 0 "" {MPLTEXT 1 0 12 "taylor(%,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#+'%\" xG\"\"\"\"\"#-%\"OG6#F%\"\"%" }}}{EXCHG {PARA 379 "> " 0 "" {MPLTEXT 1 0 17 "readlib(mtaylor);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#R6\"6*%\" fG%\"kG%\"vG%\"mG%\"nG%\"sG%\"tG%\"wG6#%aoCopyright~(c)~1991~by~the~Un iversity~of~Waterloo.~All~rights~reserved.GF$C2>8$&9\"6#\"\"\">8&&F46# \"\"#@&-%%typeG6$F8%$setG>F87#-%#opG6#F84-F>6$F8%%listG>F87#F8@$4-F>6$ F8-FI6#<$%%nameG/FS%*algebraicG-%&ERRORG6#%Ginvalid~2nd~argument~(expa nsion~point)G>8)-%$mapG6$R6#%\"xGF$F$F$@%-F>6$9$%\"=G-%$rhsG6#F_o\"\"! F$F$F$F8>F8-Fgn6$RFjnF$F$F$@%F]o-%$lhsGFcoF_oF$F$F$F8>8'-%%nopsGFE@$0F ]p-F_p6#<#FC-FW6#%Hvariables~(2nd~argument)~must~be~uniqueG@%/9#F;>8( \"\"'>F\\q&F46#\"\"$@%/Fjp\"\"%>8+&F46#Fdq>Ffq7#-%\"$G6$F6F]p@$4-F>6$F 8<$-FI6#FS-F@Fdr-FW6#%O2nd~argument~(the~variable(s))~must~be~a~namesG @$34-F>6$F\\q%*nonnegintG0F\\q%)infinityG-FW6#%X3rd~argument~(the~orde r)~must~be~a~non-negative~integerG@$54-F>6$Ffq-FI6#%'posintG0-F_p6#Ffq F]p-FW6#%en4th~argument~(weights)~must~be~a~list~of~positive~integersG >F2-%%subsG6$7#-%$seqG6$/&F86#8%,&*&F[uF6)8*&FfqF\\uF6F6&FenF\\uF6/F]u ;F6F]pF2>F2-Fgn6&%(collectG-Fdt6$/-%\"OGF5Fdo-%'taylorG6%F2FauF\\qF8.% ,distributedG>F2-Fdt6$7#-Fht6$/F[u,&F[uF6Fcu!\"\"Fdu-Fdt6$/FauF6F2F$F$ F$" }}}{EXCHG {PARA 380 "" 0 "" {TEXT -1 85 "mtaylor pocita Taylorovy \+ rozvoje i pro funkce vice promennych a vysledkem je polynom." }}{PARA 381 "> " 0 "" {MPLTEXT 1 0 23 "mtaylor(sin(x), x=0,6);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(%\"xG\"\"\"*$)F$\"\"$\"\"\"#!\"\"\"\"'*$)F$\"\"& F)#F%\"$?\"" }}}{EXCHG {PARA 382 "> " 0 "" {MPLTEXT 1 0 13 "subs(x=2, \+ %);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"#9\"#:" }}}{EXCHG {PARA 383 "> " 0 "" {MPLTEXT 1 0 13 "whattype(%%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%\"+G" }}}{EXCHG {PARA 384 "" 0 "" {TEXT -1 76 "Muzeme urcit koe ficienty u danych mocnin x bez nutnosti pocitat cely rozvoj:" }}{PARA 385 "> " 0 "" {MPLTEXT 1 0 18 "readlib(coeftayl);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#R6%%\"eG%$eqnG%\"kG6(%\"iG%\"xG%&alphaG%\"cG%\"rG%#mtG6 #%aoCopyright~(c)~1990~by~the~University~of~Waterloo.~All~rights~reser ved.G6\"@)509#\"\"$4-%%typeG6$9%%\"=G-%&ERRORG6#%Ewrong~number~(or~typ e)~of~parametersG33-F96$-%#opG6$\"\"\"F;%%nameG-F96$9&%(integerG1\"\"! FLC%@%/FLFO>8'9$>FT-%%diffG6$FU-%\"$G6$FEFL>8(-%*traperrorG6#*&-%%subs G6$F;FT\"\"\"-%*factorialG6#FL!\"\"@%0Fhn%*lasterrorG-%%evalG6#Fhn*&-% &limitG6$FTF;F`oFaoFdo333333-F96$FE%%listG-F96$-FF6$\"\"#F;Fgp-F96$FLF gp/-%%nopsG6#FE-FaqFco/-Faq6#FjpFcq2FOFcq4-%$hasG6$-%$mapG6$R6#%\"nGF1 F1F13-F96$FUFM1FOFUF1F1F1FL%&falseGC)>FTFU>8%FE>8&Fjp@$0-%(convertG6$F L%\"+GFO?(8$FHFHFcq%%trueG?(F1FHFH&FL6#FdsFes>FT-FX6$FT&FjrFhs>Fhn-Fjn 6#-F^o6$<#-Fen6$./F\\t&F\\sFhs/.Fds;FHFcqFT@%/FhnFgoC$>Fhn-F]p6$FTFbt@ $5/Fhn.%*undefinedG-Fjq6$Fhn.F]pC'-%(readlibG6#.%(mtaylorG>8)-Fjn6#-F^ v6$FU7#-%$seqG6$/-FF6$Fds-%$lhsG6#F;-FF6$Fds-%$rhsGF^w/Fds;FH-Faq6#F\\ w@$/F`vFgo-F>6#%0unable~to~do~itG?(FdsFHFHFcqFes>F`v-%&coeffG6%F`vF\\w -FF6$FdsFL>FhnF`v>FhnFho@%/FhnFOFhn*&FhnF`o-%(productG6$.-Fbo6#FgsFhtF do-F>6#%9wrong~type~of~parametersGF1F1F1" }}}{EXCHG {PARA 386 "> " 0 " " {MPLTEXT 1 0 26 "coeftayl(sin(x), x=0, 19);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##!\"\"\"3+?$)3/5X;7" }}}{EXCHG {PARA 387 "> " 0 "" {MPLTEXT 1 0 11 "sin_series;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#++%\"x G\"\"\"\"\"\"#!\"\"\"\"'\"\"$#F%\"$?\"\"\"&-%\"OG6#F%\"\"(" }}}{EXCHG {PARA 388 "> " 0 "" {MPLTEXT 1 0 20 "diff(sin_series, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#++%\"xG\"\"\"\"\"!#!\"\"\"\"#\"\"##F%\"#C\"\"%- %\"OG6#F%\"\"'" }}}{EXCHG {PARA 389 "> " 0 "" {MPLTEXT 1 0 25 "integra te(sin_series, x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#++%\"xG#\"\"\"\" \"#\"\"##!\"\"\"#C\"\"%#F&\"$?(\"\"'-%\"OG6#F&\"\")" }}}{EXCHG {PARA 390 "> " 0 "" {MPLTEXT 1 0 31 "convert(sin_series, 'polynom');" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#,(%\"xG\"\"\"*$)F$\"\"$\"\"\"#!\"\"\" \"'*$)F$\"\"&F)#F%\"$?\"" }}}{EXCHG {PARA 391 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 392 "> " 0 "" {MPLTEXT 1 0 65 "with(powse ries); #procedury, slouzici k praci s mocninnymi radami" }}{PARA 12 " " 1 "" {XPPMATH 20 "6#77%(composeG%(evalpowG%(inverseG%*multconstG%)mu ltiplyG%)negativeG%'powaddG%'powcosG%*powcreateG%(powdiffG%'powexpG%'p owintG%'powlogG%(powpolyG%'powsinG%)powsolveG%(powsqrtG%)quotientG%*re versionG%)subtractG%(tpsformG" }}}{EXCHG {PARA 393 "> " 0 "" {MPLTEXT 1 0 23 "powcreate(f(n)=a^n/n!);" }}}{EXCHG {PARA 394 "> " 0 "" {MPLTEXT 1 0 36 "powcreate(g(n)=(-1)^(n+1)/n,g(0)=0);" }}}{EXCHG {PARA 395 "> " 0 "" {MPLTEXT 1 0 5 "f(2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*$)%\"aG\"\"#\"\"\"#\"\"\"F'" }}}{EXCHG {PARA 396 "> \+ " 0 "" {MPLTEXT 1 0 25 "f_series:=tpsform(f,x,5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%)f_seriesG+/%\"xG\"\"\"\"\"!%\"aG\"\"\",$*$)F)\"\"#\" \"\"#F'F.\"\"#,$*$)F)\"\"$F/#F'\"\"'\"\"$,$*$)F)\"\"%F/#F'\"#C\"\"%-% \"OG6#F'\"\"&" }}}{EXCHG {PARA 397 "> " 0 "" {MPLTEXT 1 0 25 "g_series :=tpsform(g,x,5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%)g_seriesG+-%\" xG\"\"\"\"\"\"#!\"\"\"\"#\"\"##F'\"\"$\"\"$#F*\"\"%\"\"%-%\"OG6#F'\"\" &" }}}{EXCHG {PARA 398 "> " 0 "" {MPLTEXT 1 0 31 "s:=powadd(f,g): tpsf orm(s,x,3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#++%\"xG\"\"\"\"\"!,&%\" aGF%F%F%\"\"\",&*$)F(\"\"#\"\"\"#F%F-#!\"\"F-F%\"\"#-%\"OG6#F%\"\"$" } }}{EXCHG {PARA 399 "> " 0 "" {MPLTEXT 1 0 33 "p:=multiply(f,g): tpsfor m(p,x,4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#++%\"xG\"\"\"\"\"\",&#!\" \"\"\"#F%%\"aGF%\"\"#,(#F%\"\"$F%F+F(*$)F+F*\"\"\"#F%F*\"\"$-%\"OG6#F% \"\"%" }}}{EXCHG {PARA 400 "> " 0 "" {MPLTEXT 1 0 30 "d:=powdiff(f): t psform(d,x,4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#+-%\"xG%\"aG\"\"!*$) F%\"\"#\"\"\"\"\"\",$*$)F%\"\"$F*#\"\"\"F)\"\"#,$*$)F%\"\"%F*#F1\"\"' \"\"$-%\"OG6#F1\"\"%" }}}{EXCHG {PARA 401 "> " 0 "" {MPLTEXT 1 0 29 "i :=powint(f): tpsform(i,x,4);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#++%\"x G\"\"\"\"\"\",$%\"aG#F%\"\"#\"\"#,$*$)F(F*\"\"\"#F%\"\"'\"\"$-%\"OG6#F %\"\"%" }}}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 13 "Vypocty limit" }} {EXCHG {PARA 402 "" 0 "" {TEXT -1 0 "" }{MPLTEXT 1 0 40 "Limit( cos(x) ^(1/x^3), x=0): %=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%&Lim itG6$)-%$cosG6#%\"xG*&\"\"\"F-*$)F+\"\"$F-!\"\"/F+\"\"!%*undefinedG" } }}{EXCHG {PARA 403 "" 0 "" {TEXT -1 20 "Jednostranne limity:" }}{PARA 404 "> " 0 "" {MPLTEXT 1 0 37 "Limit(cos(x)^(1/x^3), x=0, 'right'): " }}}{EXCHG {PARA 405 "> " 0 "" {MPLTEXT 1 0 11 "%=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%&LimitG6%)-%$cosG6#%\"xG*&\"\"\"F-*$)F+\" \"$F-!\"\"/F+\"\"!%&rightGF3" }}}{EXCHG {PARA 406 "> " 0 "" {MPLTEXT 1 0 36 "Limit(cos(x)^(1/x^3), x=0, 'left'): " }}}{EXCHG {PARA 407 "> \+ " 0 "" {MPLTEXT 1 0 11 "%=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #/-%&LimitG6%)-%$cosG6#%\"xG*&\"\"\"F-*$)F+\"\"$F-!\"\"/F+\"\"!%%leftG %)infinityG" }}}{EXCHG {PARA 408 "> " 0 "" {MPLTEXT 1 0 21 "y:=exp(a*x )*cos(b*x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"yG*&-%$expG6#*&%\"a G\"\"\"%\"xGF+F+-%$cosG6#*&%\"bGF+F,\"\"\"F+" }}}{EXCHG {PARA 409 "> \+ " 0 "" {MPLTEXT 1 0 22 "limit(y, x=-infinity);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%&limitG6$*&-%$expG6#*&%\"aG\"\"\"%\"xGF,F,-%$cosG6#*& %\"bGF,F-\"\"\"F,/F-,$%)infinityG!\"\"" }}}{EXCHG {PARA 410 "> " 0 "" {MPLTEXT 1 0 12 "assume(a>0):" }}}{EXCHG {PARA 411 "> " 0 "" {MPLTEXT 1 0 22 "limit(y, x=-infinity);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\" !" }}}{EXCHG {PARA 412 "> " 0 "" {MPLTEXT 1 0 41 "expr:=(exp(x)-sum(x^ k/k!, k=0..11))/x^12;" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%%exprG*&,<- %$expG6#%\"xG\"\"\"!\"\"F+F*F,*$)F*\"\"#\"\"\"#F,F/*$)F*\"\"$F0#F,\"\" '*$)F*\"\"%F0#F,\"#C*$)F*\"\"&F0#F,\"$?\"*$)F*F6F0#F,\"$?(*$)F*\"\"(F0 #F,\"%S]*$)F*\"\")F0#F,\"&?.%*$)F*\"\"*F0#F,\"'!)GO*$)F*\"#5F0#F,\"(+) GO*$)F*\"#6F0#F,\")+o\"*RF0*$)F*\"#7F0!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "limit(expr, x=0);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#-%&limitG6$*&,<-%$expG6#%\"xG\"\"\"!\"\"F,F+F-*$)F+\"\"#\"\"\"#F-F0 *$)F+\"\"$F1#F-\"\"'*$)F+\"\"%F1#F-\"#C*$)F+\"\"&F1#F-\"$?\"*$)F+F7F1# F-\"$?(*$)F+\"\"(F1#F-\"%S]*$)F+\"\")F1#F-\"&?.%*$)F+\"\"*F1#F-\"'!)GO *$)F+\"#5F1#F-\"(+)GO*$)F+\"#6F1#F-\")+o\"*RF1*$)F+\"#7F1!\"\"/F+\"\"! " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "Order:=13;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&OrderG\"#8" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "limit(expr, x=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# #\"\"\"\"*+;+z%" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}} {SECT 1 {PARA 3 "" 0 "" {TEXT -1 24 "Student Calculus Package" }} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 414 "> " 0 "" {MPLTEXT 1 0 14 "with(student):" }}}{EXCHG {PARA 415 "> \+ " 0 "" {MPLTEXT 1 0 17 "f:=x->-2/3*x^2+x;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fGR6#%\"xG6\"6$%)operatorG%&arrowGF(,&*$)9$\"\"#\" \"\"#!\"#\"\"$F/\"\"\"F(F(F(" }}}{EXCHG {PARA 416 "> " 0 "" {MPLTEXT 1 0 16 "(f(x+h)-f(x))/h;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,(*$),&% \"xG\"\"\"%\"hGF)\"\"#\"\"\"#!\"#\"\"$F*F)*$)F(F+F,#F+F/F,F*!\"\"" }}} {EXCHG {PARA 417 "> " 0 "" {MPLTEXT 1 0 13 "Limit(%,h=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%&LimitG6$*&,(*$),&%\"xG\"\"\"%\"hGF,\"\"#\"\" \"#!\"#\"\"$F-F,*$)F+F.F/#F.F2F/F-!\"\"/F-\"\"!" }}}{EXCHG {PARA 418 " > " 0 "" {MPLTEXT 1 0 9 "value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# ,&%\"xG#!\"%\"\"$\"\"\"F(" }}}{EXCHG {PARA 419 "> " 0 "" {MPLTEXT 1 0 13 "eval(%, x=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"\"" }}} {EXCHG {PARA 420 "> " 0 "" {MPLTEXT 1 0 23 "showtangent(f(x), x=0);" } }{PARA 13 "" 1 "" {INLPLOT "6'-%'CURVESG6$7S7$$!#5\"\"!F(7$$!1nmm;p0k& *!#:F,7$$!1LL$3s%HaF.FK7$$!1******\\$*4 )*\\F.FN7$$!1+++]_&\\c%F.FQ7$$!1+++]1aZTF.FT7$$!1mm;/#)[oPF.FW7$$!1LLL $=exJ$F.FZ7$$!1LLLL2$f$HF.Fgn7$$!1++]PYx\"\\#F.Fjn7$$!1MLLL7i)4#F.F]o7 $$!1****\\P'psm\"F.F`o7$$!1****\\74_c7F.Fco7$$!1:LL$3x%z#)!#;Ffo7$$!1I LL3s$QM%FhoFjo7$$!1^omm;zr)*!#=F]p7$$\"1WLLezw5VFhoFap7$$\"1.++v$Q#\\ \")FhoFdp7$$\"1NLLe\"*[H7F.Fgp7$$\"1++++dxd;F.Fjp7$$\"1,++D0xw?F.F]q7$ $\"1,+]i&p@[#F.F`q7$$\"1+++vgHKHF.Fcq7$$\"1lmmmZvOLF.Ffq7$$\"1,++]2goP F.Fiq7$$\"1KL$eR<*fTF.F\\r7$$\"1-++])Hxe%F.F_r7$$\"1mm;H!o-*\\F.Fbr7$$ \"1,+]7k.6aF.Fer7$$\"1mmm;WTAeF.Fhr7$$\"1****\\i!*3`iF.F[s7$$\"1NLLL*z ym'F.F^s7$$\"1OLL3N1#4(F.Fas7$$\"1pm;HYt7vF.Fds7$$\"1-+++xG**yF.Fgs7$$ \"1qmmT6KU$)F.Fjs7$$\"1OLLLbdQ()F.F]t7$$\"1++]i`1h\"*F.F`t7$$\"1-+]P?W l&*F.Fct7$$\"#5F*Fft-%'COLOURG6&%$RGBG$Fgt!\"\"F*F*-F$6$7S7$F($!1mmmmm mmw!#97$F,$!1nf,sY[aqFdu7$F0$!1#3$H2TWUlFdu7$F3$!1(eHa2>&*)fFdu7$F6$!1 j(zk\"HVdaFdu7$F9$!1TXqScG_\\Fdu7$F<$!1$\\2h3/d]%Fdu7$F?$!1?vV>FNlSFdu 7$FB$!1E7)o?ZNj$Fdu7$FE$!1t5CcX,FKFdu7$FH$!1eQ,(=HP$GFdu7$FK$!1Ua]/^A3 DFdu7$FN$!1G!)\\U(4_;#Fdu7$FQ$!1Po'R&*\\d%=Fdu7$FT$!1h,c%Hg:c\"Fdu7$FW $!1`&z+r:OK\"Fdu7$FZ$!1`$QDW5c1\"Fdu7$Fgn$!1luGZ-R#o)F.7$Fjn$!1O)eN`o5 j'F.7$F]o$!1[$)*R&>wM]F.7$F`o$!1$e>pmh/_$F.7$Fco$!1`l'[6%34BF.7$Ffo$!1 vi:!)f%\\G\"F.7$Fjo$!1On;@`w,cFho7$F]p$!1L-9Z)fn$**F_p7$Fap$\"1#y$HK*> >2$Fho7$Fdp$\"1C=;-$**=s$Fho7$Fgp$\"1,'Qpkns@#Fho7$Fjp$!1+mtw9rVys>e6;\"Fdu7$Fer$!1f+\"fp]3T\"Fdu7$Fhr$!1bQHMDzx;Fdu7$F[s$!1v /K:EV\")>Fdu7$F^s$!1!HBq_`sH#Fdu7$Fas$!1cb\"HI^Rk#Fdu7$Fds$!1O`jx>Z6IF du7$Fgs$!1(3e6k()*pLFdu7$Fjs$!1ylaa$*Q0QFdu7$F]t$!1L\"=,F*)p@%Fdu7$F`t $!1%[;)o8!*yYFdu7$Fct$!1y95@7IV^Fdu7$Fft$!1mmmmmmmcFdu-Fit6&F[uF*F\\uF *-%+AXESLABELSG6$Q\"x6\"%!G-%%VIEWG6$;F(Fft%(DEFAULTG-F$6$7$7$F*F*Fe_l -Fit6&F[uF\\uF\\uF*" 2 403 403 403 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 421 "> " 0 "" {MPLTEXT 1 0 23 "intercept(y=f (x), y=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$<$/%\"yG\"\"!/%\"xGF&<$F $/F(#\"\"$\"\"#" }}}{EXCHG {PARA 422 "> " 0 "" {MPLTEXT 1 0 26 "middle box(f(x), x=0..3/2);" }}{PARA 13 "" 1 "" {INLPLOT "6)-%)POLYGONSG6$7&7 $\"\"!F(7$F($\"++]iS;!#57$$\"++++]PF,F*7$F.F(-%&COLORG6&%$RGBG$\"\"(! \"\"$\"\"*F7F5-F$6$7&F07$F.$\"++]i:NF,7$$\"+++++vF,F>7$FAF(F1-F$6$7&FC F@7$$\"++++D6!\"*F>7$FHF(F1-F$6$7&FK7$FHF*7$$\"+++++:FJF*7$FQF(F1-%'CU RVESG6&7SF'7$$\"1+++DJdpK!#<$\"1&=Nbt0$)>$Fen7$$\"1++v=7T9hFen$\"1h,2b 50)H&Feo$\"1!3SBlhnU$Feo7$$\"1+](=-p6j&Feo$\"1!pY$=Z;Lz!p$Feo7$$\"1++v=#R!zoFeo$\"1g*4s%QHCPFeo7$$\" 1+]P4A@urFeo$\"17`OaT#Hu$Feo7$$\"1++Dchf#\\(Feo$\"1\\)RbM'**\\PFeo7$$ \"1+](of2L#yFeo$\"1GN&)z9.VPFeo7$$\"1+]7yG>6\")Feo$\"1'G:x@'4DPFeo7$$ \"1++voo6A%)Feo$\"1!yd`O8Lp$Feo7$$\"1*****\\xJLu)Feo$\"1d$=)R<%pk$Feo7 $$\"1++v$*ydd!*Feo$\"1AM*pSj#)e$Feo7$$\"1+](=1\"Fbx$\"1?TCsd1,JFeo7$$\"1+ +vQ(zS4\"Fbx$\"17#yebF2'HFeo7$$\"1+v=-,FC6Fbx$\"1!R!RPf9;GFeo7$$\"1+v$ 4tFe:\"Fbx$\"1ouM&oD?l#Feo7$$\"1++D\"3\"o'=\"Fbx$\"12A_))3tyCFeo7$$\"1 +voz;)*=7Fbx$\"13m6%*yq$G#Feo7$$\"1+++&*44]7Fbx$\"1+%*zWms#3#Feo7$$\"1 +]7jZ!>G\"Fbx$\"1_iw>)[Q'=Feo7$$\"1+v=(4bMJ\"Fbx$\"1+&*o*obMj\"Feo7$$ \"1++]xlWU8Fbx$\"1xNs=q/59Feo7$$\"1+]i&3ucP\"Fbx$\"1+)[Q#H@S6Feo7$$\"1 +++lJR09Fbx$\"1=b3=m)R'))Fen7$$\"1+v=-*zqV\"Fbx$\"1N5+M03GgFen7$$\"1+D \"G:3uY\"Fbx$\"1j/@&[p$)=$Fen7$$\"1+++++++:FbxF(-%'COLOURG6&F4$\"*++++ \"!\")F(F(-%*THICKNESSG6#\"\"#-%&STYLEG6#%%LINEG-%+AXESLABELSG6$Q\"x6 \"%!G-%%VIEWG6$;F(FQ%(DEFAULTG" 2 403 403 403 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2143 0 0 0 0 0 0 0 }}}{EXCHG {PARA 423 "> " 0 "" {MPLTEXT 1 0 30 " middlebox(f(x), x=0..3/2, 10);" }}{PARA 13 "" 1 "" {INLPLOT "6/-%)POLY GONSG6$7&7$\"\"!F(7$F($\"++++Dr!#67$$\"+++++:!#5F*7$F.F(-%&COLORG6&%$R GBG$\"\"(!\"\"$\"\"*F8F6-F$6$7&F17$F.$\"+++]7>F07$$\"+++++IF0F?7$FBF(F 2-F$6$7&FD7$FB$\"+++]7GF07$$\"+++++XF0FI7$FLF(F2-F$6$7&FN7$FL$\"+++]7M F07$$\"+++++gF0FS7$FVF(F2-F$6$7&FX7$FV$\"+++]7PF07$$\"+++++vF0Fgn7$Fjn F(F2-F$6$7&F\\oFin7$$\"+++++!*F0Fgn7$FaoF(F2-F$6$7&Fco7$FaoFS7$$\"++++ ]5!\"*FS7$FioF(F2-F$6$7&F\\p7$FioFI7$$\"+++++7F[pFI7$FbpF(F2-F$6$7&Fdp 7$FbpF?7$$\"++++]8F[pF?7$FjpF(F2-F$6$7&F\\q7$FjpF*7$$F/F[pF*7$FbqF(F2- %'CURVESG6&7SF'7$$\"1+++DJdpK!#<$\"1&=Nbt0$)>$F[r7$$\"1++v=7T9hF[r$\"1 h,2b50)H&F[s$\"1!3SBlhnU$F[s7$$\"1+](=-p6j&F[s$\"1!pY$=Z;Lz!p$F[s7$$\"1++v=#R!zoF[s$\"1g*4s%QHCPF[s7$$ \"1+]P4A@urF[s$\"17`OaT#Hu$F[s7$$\"1++Dchf#\\(F[s$\"1\\)RbM'**\\PF[s7$ $\"1+](of2L#yF[s$\"1GN&)z9.VPF[s7$$\"1+]7yG>6\")F[s$\"1'G:x@'4DPF[s7$$ \"1++voo6A%)F[s$\"1!yd`O8Lp$F[s7$$\"1*****\\xJLu)F[s$\"1d$=)R<%pk$F[s7 $$\"1++v$*ydd!*F[s$\"1AM*pSj#)e$F[s7$$\"1+](=1\"Fh[l$\"1?TCsd1,JF[s7$$\" 1++vQ(zS4\"Fh[l$\"17#yebF2'HF[s7$$\"1+v=-,FC6Fh[l$\"1!R!RPf9;GF[s7$$\" 1+v$4tFe:\"Fh[l$\"1ouM&oD?l#F[s7$$\"1++D\"3\"o'=\"Fh[l$\"12A_))3tyCF[s 7$$\"1+voz;)*=7Fh[l$\"13m6%*yq$G#F[s7$$\"1+++&*44]7Fh[l$\"1+%*zWms#3#F [s7$$\"1+]7jZ!>G\"Fh[l$\"1_iw>)[Q'=F[s7$$\"1+v=(4bMJ\"Fh[l$\"1+&*o*obM j\"F[s7$$\"1++]xlWU8Fh[l$\"1xNs=q/59F[s7$$\"1+]i&3ucP\"Fh[l$\"1+)[Q#H@ S6F[s7$$\"1+++lJR09Fh[l$\"1=b3=m)R'))F[r7$$\"1+v=-*zqV\"Fh[l$\"1N5+M03 GgF[r7$$\"1+D\"G:3uY\"Fh[l$\"1j/@&[p$)=$F[r7$$\"1+++++++:Fh[lF(-%'COLO URG6&F5$\"*++++\"!\")F(F(-%*THICKNESSG6#\"\"#-%&STYLEG6#%%LINEG-%+AXES LABELSG6$Q\"x6\"%!G-%%VIEWG6$;F(Fbq%(DEFAULTG" 2 403 403 403 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 3752 0 0 0 0 0 0 }}}{EXCHG {PARA 424 "> " 0 "" {MPLTEXT 1 0 30 "middlesum(f(x), x=0..3/2, 10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$-%$SumG6$,(*$),&%\"iG#\"\"$\"#?#F-\"#S\"\"\"\"\"#\"\" \"#!\"#F-F+F,F/F1/F+;\"\"!\"\"*F," }}}{EXCHG {PARA 425 "> " 0 "" {MPLTEXT 1 0 9 "value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"$.'\"% +;" }}}{EXCHG {PARA 426 "> " 0 "" {MPLTEXT 1 0 29 "middlesum(f(x), x=0 ..3/2, n);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&-%$SumG6$,&*&*$),&% \"iG\"\"\"#F.\"\"#F.F0\"\"\"F1*$)%\"nG\"\"#F1!\"\"#!\"$F0*&F,F1F4F6#\" \"$F0/F-;\"\"!,&F4F.!\"\"F.F1F4F6F:" }}}{EXCHG {PARA 427 "> " 0 "" {MPLTEXT 1 0 21 "Limit(%, n=infinity);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%&LimitG6$,$*&-%$SumG6$,&*&*$),&%\"iG\"\"\"#F1\"\"#F1F3\"\"\"F4 *$)%\"nG\"\"#F4!\"\"#!\"$F3*&F/F4F7F9#\"\"$F3/F0;\"\"!,&F7F1!\"\"F1F4F 7F9F=/F7%)infinityG" }}}{EXCHG {PARA 428 "> " 0 "" {MPLTEXT 1 0 9 "val ue(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"\"$\"\")" }}}{EXCHG {PARA 429 "> " 0 "" {MPLTEXT 1 0 20 "Int(f(x), x=0..3/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%$IntG6$,&*$)%\"xG\"\"#\"\"\"#!\"#\"\"$F)\"\" \"/F);\"\"!#F.F*" }}}{EXCHG {PARA 430 "> " 0 "" {MPLTEXT 1 0 9 "value( %);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"\"$\"\")" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}}{MARK "5" 0 }{VIEWOPTS 1 1 0 1 1 1803 }