Simulace Poissonova procesu Zadání: V sobotu v době od 8 do 20 h sledujeme provoz v klidné ulici ve vilové čtvrti města. V tomto období vjíždějí auta do této ulice v průměru každých 8 minut. Předpokládejme, že intervaly mezi příjezdy aut se řídí exponenciálním rozložením. Pomocí MATLABu simulujte vjezd 20 aut do této ulice. a) Zjistěte celkovou dobu simulace. b) Vypočtěte průměrnou, maximální a minimální délku intervalu mezi vjezdy dvou aut. c) Vypočtěte směrodatnou odchylku délek intervalů. d) Porovnejte tvar histogramu délek intervalů (volte 5 třídicích intervalů) s tvarem hustoty exponenciálního rozložení s patřičným parametrem. e) Znázorněte nasimulovaný Poissonův proces graficky. Návod: Zavedeme Poissonův proces , kde , když v intervalu vjede do ulice právě j aut, j = 0, 1, 2, … Parametr . Pomocí funkce unifrnd vygenerujeme 20 náhodných čísel z intervalu (0,1): r = unifrnd(0,1,20,1); Proměnnou r transformujeme vztahem : x = -8*log(1-r); V proměnné x jsou nyní uloženy délky intervalů mezi vjezdy aut. Celková doba simulace: doba = sum(x) Průměrná délka intervalu: prumer = mean(x) Maximální délka intervalu: maximum = max(x) Minimální délka intervalu: minimum = min(x) Směrodatná odchylka délek intervalů: so = std(x) (Teoretická celková doba simulace by měla být 20.8 = 160 min, průměr = 8 min, směrodatná odchylka = 8 min.) Histogram délek intervalů s pěti třídicími intervaly znázorníme příkazem hist(x,5). Znázornění hustoty exponenciálního rozložení s parametrem 8: plot([0:0.01:maximum],exppdf([0:0.01:maximum],8)) Znázornění nasimulovaného Poissonova procesu: Do proměnné počet uložíme celkový počet aut: pocet = [1:20]’; Do proměnné t uložíme kumulované délky intervalů: t = cumsum(x); Pomocí funkce stairs znázorníme Poissonův proces: stairs(t,pocet) Celý postup můžeme zopakovat s větším počtem aut a sledovat, jak se zvyšujícím se počtem simulací se empirické charakteristiky procesu blíží teoretickým.