{VERSION 6 0 "IBM INTEL NT" "6.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "Hyperlink" -1 17 "" 0 1 0 128 128 1 2 0 1 0 0 0 0 0 0 1 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 1 16 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 1 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 261 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 263 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 264 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 265 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 267 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 268 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 270 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 271 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 272 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 273 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 275 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 276 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 277 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 278 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 1" -1 3 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 4 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 2" -1 4 1 {CSTYLE "" -1 -1 "Times " 1 14 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 2 1 0 1 0 2 2 0 1 } {PSTYLE "Bullet Item" -1 15 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 3 3 1 0 1 0 2 2 15 2 }{PSTYLE "Normal" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Normal" -1 257 1 {CSTYLE "" -1 -1 "T imes" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "Maple Output" -1 258 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Normal" -1 259 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 256 "" 0 "" {TEXT 257 6 "MB001c" }}{PARA 256 "" 0 "" {TEXT 256 40 "Matematick\341 \+ anal\375za II - cvi\350en\355 s Maple" }}{PARA 256 "" 0 "" {TEXT 258 10 "3. semin\341\370" }}}{SECT 1 {PARA 4 "" 0 "" {TEXT 259 42 " Vy\232 et\370ov\341n\355 pr\371b\354hu funkce jedn\351 prom\354nn\351" }} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 260 8 "P\370\355klad." } {TEXT -1 24 " Vy\232et\370ete pr\371b\354h funkce" }}{PARA 0 "> " 0 " " {MPLTEXT 1 0 23 "f:=x->(x-2)*exp(-1/x); " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 261 17 "1. Defini\350n\355 obor" }{TEXT -1 0 "" } }{PARA 0 "" 0 "" {TEXT -1 29 "Defini\350n\355 obor funkce f: D = " } {TEXT 262 1 "R" }{TEXT -1 6 " - \{0\}" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 263 20 "2. Pr\371se \350\355ky s osami" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "solve(f(x)=0, x);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 15 "Ov\354\370\355m zkou\232k ou" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "f(2);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 264 18 "3. Sudo st, lichost" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "f(-x); -f(x);" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 32 "Funkce f nen\355 ani sud\341 ani l ich\341" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 265 18 "4. Lok\341ln\355 extr\351 my" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 51 "Pro v\375po\350et extr\351m \371 funkce jsou k dispozici funkce " }{HYPERLNK 17 "minimize" 2 "mini mize" "" }{TEXT -1 3 " a " }{HYPERLNK 17 "maximize" 2 "maximize" "" } {TEXT -1 1 " " }}{PARA 0 "" 0 "" {TEXT -1 42 "Pro hled\341n\355 extr \351m\371 Maple nab\355z\355 i funkci " }{HYPERLNK 17 "extrema" 2 "ext rema" "" }}{PARA 0 "" 0 "" {TEXT -1 14 "viz 3. semin\341\370" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 60 "Vhodn\351 n\341stroje pro \370e\232en\355 pr\371b\354hu f unkce obsahuje knihovna " }{HYPERLNK 17 "Student[Calculus1]" 2 "Studen t[Calculus1]" "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "with(Student[Cal culus1]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 37 "Pro v\375po\350et extr\351m\371 pou\236ij eme funkci " }{HYPERLNK 17 "ExtremePoints" 2 "ExtremePoints" "" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "X:=ExtremePoints(f(x), x);" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 63 "Seznam obsahuje body x = -2 a x = 1, ve kter\375ch nast\341v\341 extr\351m" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 34 "Spo\350teme si jejich funk\350n\355 hodnoty" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "Y:=map(f, %);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 37 "V\375sledek m\371\236eme ov\354\370it funkc\355 extrema" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "extrema(f(x), \{\}, x);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "extremy:=[X[1],Y[1]], [X[2], Y[2]];" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 267 41 "5. Inflexn\355 body, k onk\341vnost, konvexnost " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 2 " " } {TEXT 276 16 "a) inflexn\355 body" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "dff:=(D@@2)(f);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "solve(dff(x), x);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 38 "Seznam inflexn\355ch bod\371 vrac\355 i funkce " }{HYPERLNK 17 "InflectionPoints" 2 "InflectionPoints" "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "InflectionPoints(f(x), x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "inflexniBod:=[2/5, evalf(f(2/5))];" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 2 " " }{TEXT 275 13 "b) konk\341vnost" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "solve(dff<0);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 277 15 " c) konvexnost" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "solve(dff>0);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 268 12 "6. Asymptoty" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 270 17 " a) bez sm\354rnice" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 67 "Pro x = 0 (funkce zde nen\355 definovan\341) spo\350teme jednostrann\351 limity" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "limit(f(x), x=0, right);" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "limit(f(x), x=0, left);" }} }{EXCHG {PARA 0 "" 0 "" {TEXT -1 78 "Vzhledek k tomu, \236e alespo\362 jedna limita je nevlastn\355, m\371\236eme \370\355ct, \236e p\370 \355mka " }{TEXT 271 32 "x = 0 je asymptotou bez sm\354rnice" }{TEXT -1 1 " " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "as:=x=0;" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 272 16 " b) se sm\354rnic\355" }{TEXT -1 11 " y = kx + q" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 64 "k1:=limit(f(x)/x, x=infinity ); q1:=limit(f(x)-k1*x, x=infinity);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 64 "k2:=limit(f(x)/x, x=infinity); q2:=limit(f(x)-k2*x, x =infinity);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "y:=k1*x+q1; " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 32 " c) V\375po\350et ov\354\370 \355me procedurou " }{HYPERLNK 17 "Asymptotes" 2 "Asymptotes" "" } {TEXT -1 12 " z knihovny " }{HYPERLNK 17 "Student[Calculus1]" 2 "Stude nt[Calculus1]" "" }{TEXT -1 1 " " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "Asymptotes(f(x), x);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 273 14 "7. Graf funkce" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "with(plots):" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "asymptota1:=plot(y, x=-10.. 10, -10..6):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 41 "asymptota2: =plot([rhs(as), t, t=-10..6]):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "body:=plot([extremy, inflexniBod], x=-10..10, style=point):" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "funkce:=plot(f(x), x=-10.. 10):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "display(funkce, bod y, asymptota1, asymptota2);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 19 "\332lohy k vypracov\341n \355" }}{EXCHG {PARA 15 "" 0 "" {TEXT -1 24 "Vy\232et\370ete pr\371b \354h funkce " }{XPPEDIT 18 0 "(x-1)^3/(x+1)^2" "6#*&,&%\"xG\"\"\"F&! \"\"\"\"$*$,&F%F&F&F&\"\"#F'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 11 " Procedura " }{MPLTEXT 1 0 13 "FunctionChart" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 18 "Sou\350\341st\355 knihovny " }{HYPERLNK 17 "Student[ Calculus1]" 2 "Student[Calculus1]" "" }{TEXT -1 18 " je i procedura \+ " }{HYPERLNK 17 "FunctionChart" 2 "FunctionChart" "" }{TEXT -1 86 ", k ter\341 vykresluje graf funkce a v\375znamn\351 body z\355sken\351 p \370i vy\232et\370ov\341n\355 pr\371b\354hu funkce." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "g:=x->x*exp(x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "FunctionChart(g(x), x, view=[-5..3, -1..2], " }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 " sign=[thickness(2,2)] , " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 39 " slope=[color(re d, blue)]," }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 47 " concavi ty=[filled(yellow, green)]" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 15 " \+ );" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 36 "Procedura FunctionC hart neum\355 v\232e..." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "h:=x->x^ 3*(x-1)^(2/3);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "FunctionC hart(g(x), x);" }}}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 11 " Procedura " }{MPLTEXT 1 0 6 "Prubeh" }}{EXCHG {PARA 0 "" 0 "" {TEXT 278 10 "Refere nce:" }}{PARA 0 "" 0 "" {TEXT -1 37 "Titul - Diferenci\341ln\355 po \350et v Maple 7" }}{PARA 0 "" 0 "" {TEXT -1 72 "Auto\370i - Ing. Jana H\370eb\355\350kov, Mgr. Jaroslav R\341\350ek, Ing. Jana Slab\354\362 \341kov\341" }}{PARA 0 "" 0 "" {TEXT -1 6 "URL - " }{URLLINK 17 "http: //math.fce.vutbr.cz/vyuka/matematika/diferencialni_pocet/index.html" 4 "http://math.fce.vutbr.cz/vyuka/matematika/diferencialni_pocet/index .html" "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 39 "changes:=proc(f::anything,n::nonnegint)" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "local sing,a,i,s,nezn,j,k,vyr,mn,m;" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "sing:=[singular(f)];" }}{PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 6 "a:=\{\};" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "m :=\{\};" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "for i from 1 to nops(sin g) do" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "nezn:=indets(op(2,op(1,op( i,sing))));" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "if nops(nezn) = 0 th en" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "if abs(op(2,op(1,op(i,sing))) ) < infinity then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "a:=a union op( i,sing);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "m:=m union \{op(2,op(1, op(i,sing)))\};" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "else" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "for j from 1 to n do" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "mn:=\{\};" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "for k from 1 to nops(nezn) do" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "mn:=mn union \{nezn[k]=j\};" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end do;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "vyr:=evalf(subs(mn,op(i,sing)));" }}{PARA 0 "> " 0 " " {MPLTEXT 1 0 15 "a:=a union vyr;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "m:=m union \{op(2,op(1,vyr))\};" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end do;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 7 "end do;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "f or i from 1 to n do" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 47 "vyr:=fsolve( f,x=i,avoid=a,maxsols=1,-100..100);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "if type(vyr,'float') then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "a: =a union \{x=vyr\};" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "else" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "return [a,m];" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end do;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "return [a,m];" }}{PARA 0 "> " 0 " " {MPLTEXT 1 0 9 "end proc:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 38 "prubeh:=proc(f::anyt hing,n::nonnegint)" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "local g,h,l,s ,a,p,q,m,r;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "g:=diff(f(x),x);" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "r:=changes(g,n);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "a:=r[1];m:=r[2];" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 47 "s:=sort([seq(op(2,op(i,a)),i=1..nops(a))],`<`);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "if nops(s) = 0 then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "if subs(x=0,g)>0 then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "printf(\"Rostouci na definicnim oboru\");" }}{PARA 0 "> " 0 " " {MPLTEXT 1 0 4 "else" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "printf(\" Klesajici na definicnim oboru\");" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "else" }}{PARA 0 "> " 0 " " {MPLTEXT 1 0 27 "p:=evalf(subs(x=s[1]-1,g));" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "if p>0 then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "pri ntf(\"Rostouci do bodu %f\\n\",s[1]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "else" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 38 "printf(\"Klesajici do \+ bodu %f\\n\",s[1]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "for l from 1 to nops(s)-1 do" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "q:=evalf(subs(x=(s[l]+s[l+1])/2,g)) ;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "if p*q < 0 and nops(\{s[l]\} i ntersect m) = 0 then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "if p>0 then " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "printf(\"Lokalni maximum v bode %f\\n\",s[l]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "else" }}{PARA 0 " > " 0 "" {MPLTEXT 1 0 43 "printf(\"Lokalni minimum v bode %f\\n\",s[l] );" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "if q>0 t hen" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 55 "printf(\"Rostouci na interva lu (%f, %f)\\n\",s[l],s[l+1]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "el se" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 56 "printf(\"Klesajici na interva lu (%f, %f)\\n\",s[l],s[l+1]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "en d if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "p:=q;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end do;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "q:=evalf (subs(x=s[nops(s)]+1,g));" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 54 "if p*q < 0 and nops(\{s[nops(s)]\} intersect m) = 0 then" }}{PARA 0 "> " 0 " " {MPLTEXT 1 0 11 "if p>0 then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "p rintf(\"Lokalni maximum v bode %f\\n\",s[nops(s)]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "else" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "printf( \"Lokalni minimum v bode %f\\n\",s[nops(s)]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "if q>0 then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "printf(\"Rostouci od bodu %f\\n\",s[nops(s)]);" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "else" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "printf(\"Klesajici od bodu %f\\n\",s[nops(s)]);" }}{PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "en d if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "h:=diff(g,x);" }}{PARA 0 " > " 0 "" {MPLTEXT 1 0 16 "r:=changes(h,n);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "a:=r[1];m:=r[2];" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 47 "s:=sort([seq(op(2,op(i,a)),i=1..nops(a))],`<`);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "if nops(s) = 0 then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "if subs(x=0,h)>0 then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "pr intf(\"Konvexni na definicnim oboru\");" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "else" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "printf(\"Konkavni na definicnim oboru\");" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "else" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "p:=evalf(subs(x=s[1]-1,h));" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "if p>0 then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "printf(\"Konvexn i do bodu %f\\n\",s[1]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "else" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "printf(\"Konkavni do bodu %f\\n\",s [1]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 " " {MPLTEXT 1 0 28 "for l from 1 to nops(s)-1 do" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "q:=evalf(subs(x=(s[l]+s[l+1])/2,h));" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "if p*q < 0 and nops(\{s[l]\} intersect m) = 0 th en" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "printf(\"Inflexe v bode %f\\n \",s[l]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 11 "if q>0 then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 55 "printf(\"Konvexni na intervalu (%f, %f)\\n\",s[l],s[l+1]);" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "else" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 55 "printf(\"Konkavni na intervalu (%f, %f)\\n\",s[l],s[l+1]);" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "p:=q;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end do;" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "q:=evalf(subs(x=s[nops(s)]+1,h));" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 54 "if p*q < 0 and nops(\{s[nops(s)] \} intersect m) = 0 then" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 41 "printf( \"Inflexe v bode %f\\n\",s[nops(s)]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "if q>0 then" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "printf(\"Konvexni od bodu %f\\n\",s [nops(s)]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "else" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "printf(\"Konkavni od bodu %f\\n\",s[nops(s)]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "end if;" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "end proc: " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 59 "prubeh(x->x*exp(x),5); plot(x*exp(x), x=-10..1 0, y=-1..10);" }}}}}{MARK "1" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 } {PAGENUMBERS 0 1 2 33 1 1 }