52 3. Přehled interpolačních metod Metody analogové interpolace (line threading or eye balling) Jedná se o metody vytváření izolinií na základě spojování míst s obdobnými hodnotami jevu založené na expertním odhadu (geolog, synoptik). Dále využívají empirie, obecné teorie a znalosti místních zvláštností (budování expertních systémů). Základní omezení (s ohledem na počítačové zpracování): ˇ problém zpracování velkého množství bodů ˇ problém subjektivního přístupu ˇ problém časové náročnosti Globální interpolátory využívající klasifikačních modelů a ANOVA analýzy Jsou založeny na podmínce stacionarity výběru. To je předpoklad, že míry úrovně a variability výběrového souboru nezávisí na velikosti výběru a rozmístění jednotlivých měřených bodů. Za výše uvedeného předpokladu lze k interpolaci v rámci studovaného území využít externě definovaných prostorových jednotek (regionů). Klasifikace homogenními polygony předpokládá, že rozptyl hodnot interpolovaného atributu v rámci externě definovaného regionu je menší jak mezi dvěma regiony. Tohoto přístupu se často používá při mapování půd či landscape units, ekotopů, kde jednotlivé objekty (půdní jednotky, říční terasy, dílčí povodí, svahy, ...) jsou vhodné pro definování jiných (interpolovaných) atributů o daném území. ANOVAR model: ( )z x k0 = + + z - hodnota atributu v lokalitě x0 - celkový průměr atributu na zpracovávaném území k - odchylka mezi a průměrem v regionu k - reziduum, šum Model předpokládá, že v rámci každého regionu (třídy) k mají hodnoty interpolovaného atributu normální rozdělení. Průměrný atribut pro třídu k je roven: + k a je určen z výběrových měření v rámci třídy k. Uvedený přístup vychází z několika předpokladů: ˇ kolísání hodnot z v rámci jednotlivých tříd je náhodné ˇ měřená hodnota v rámci každé mapované třídy se vyznačuje stejně velikou náhodnou složkou ˇ studované atributy mají normální rozdělení ˇ veškeré prostorové změny se dějí na hranicích mezi jednotlivými třídami, změny se dějí skokem, ne postupně Nevýhody: hodnoty mohou v rámci jedné třídy kolísat více (měně) jak v rámci jiné třídy. Nelze mapovat prostorové změny ve větším měřítku. Data často nemají normální rozdělení. Potom je nutná normalizace např. pomocí transformace přirozenými logaritmy. 53 Globální interpolátory využívající analýzy trendu Jestliže se určitá vlastnost v prostoru mění kontinuálně a je spojitá (teplota , nadmořská výška, apod.), lze body z tohoto povrchu interpolovat polynomickou funkcí. Body v neměřených lokalitách lze vypočítat z koeficientů, vypočtených na základě bodů měřených a souřadnic bodů neměřených (interpolovaných). Nejjednodušší způsob - mnohonásobná regrese hodnot atributu vs. geografické souřadnice. Metodou nejmenších čtverců lze nalézt nejvhodnější koeficienty pro daný polynom n-tého řádu. Předpokládá se normální rozdělení. Předpokládejme měření studované veličiny v transektu (profilu). Jestliže hodnoty obecně rostou či klesají (zanedbáme-li náhodná kolísání) - lze hodnoty interpolovat pomocí lineárního regresního modelu: z(x) = b0 + b1x + b0 a b1 - koeficienty - náhodný šum - nezávislý na hodnotách x s normálním rozdělením Není-li povrch rovinou, ale složitějším tvarem - lze ho interpolovat polynomem vyššího řádu, např. kvadrátem: z(x) = b0 + b1x + b2x2 + Zvyšováním stupně polynomu lze vystihnout složitější tvary a redukuje se náhodná složka. Uvedené rovnice platí pro 1D, ve dvourozměrném prostoru budou v rovnici začleněny obě souřadnice x, y: lineární trend: z = b0 +b1x + b2y kvadratický trend: z = b0 + b1x+ b2y + b3x2 + b4xy + b5y2 kubický trend: z = b0+ b1x + b2y + b3x2 + b4xy+ b5y2 + b6x3 + b7x2 y+ b8xy2 + b9y3 Obr.5 Proložení polynomu 1 až 3 stupně množinou měřených bodů 54 Obr. 6 Interpolace trendové složky polynomy 1 až 5 stupně Trendový povrch prezentovaný polynomem vyššího řádu vykazuje značné chyby na okrajích zpracovávaného povrchu (edge effects). Mimo zpracovávané území může nabývat extrémních či dokonce záporných hodnot interpolované vlastnosti (nemajících fyzikální význam- např. záporná hodnota atmosférických srážek). Jde o globální interpolátor, který zřídka prochází měřenými body a který shlazuje lokální odchylky. Protože lokální odchylky jsou prostorově závislé, často se tohoto postupu využívá k definování částí povrchu, které se významně odlišují od obecného trendu. Druhý častý způsob využití je odfiltrování obecného trendu a aplikace lokálních interpolátorů na reziduální složku prostorových změn studovaného jevu. Vypočtený trend lze testovat z hlediska jeho významnosti. Globální interpolátory využívající regresní analýzy V řadě případů existuje zřejmá vazba mezi hodnotami interpolované veličiny a vybranými jinými atributy studovaného prostoru (teplota a nadmořská výška, srážky a vzdálenost od moře, koncentrace znečištění a vzdálenost od zdroje apod.). Lze tedy sestavit empirický model závislosti interpolované veličiny na hodnotách jedné či několika veličin nezávislých. Tento model má následující obecnou formu: z(x) = b0 + b1P1 + b2P2 + b0 ...bn - regresní koeficienty P1 ... Pn - nezávisle proměnné Sestavení regresní závislosti je založeno na metodě nejmenších čtverců, výsledný model může být lineární i nelineární a jako nezávisle proměnné lze kombinovat geografické souřadnice s jinými atributy. Obr. 7 Příklad sestavení regresního modelu závislosti teplotních sum na nadmořské výšce, zápis modelu v prostředí ArcView Map Calculator a vytvořená mapa teplotních sum pro ČR 55 Metody lokální interpolace (lokální interpolátory) Výše uvedené globální interpolátory považovaly lokální efekty za náhodný šum. Lokální interpolátory využívají k výpočtu hledané hodnoty pouze určitého počtu měření z předem definovaného okolí počítaného bodu. Obecný postup se sestává z následujících kroků: 1. definování velikosti a tvaru zájmového okolí 2. nalezení měřených bodů v tomto okolí 3. nalezení matematické funkce vystihující kolísání hodnot nacházejících se v okolí daného bodu 4. výpočet hodnoty pro uzly regulérní sítě (grid) Uvedený postup je opakován do té doby, dokud nejsou vypočteny hodnoty interpolované veličiny pro všechny uzly (buňky) gridu. Pro každý konkrétní postup lokální interpolace jsou důležité následující skutečnosti: ˇ druh použité interpolační funkce ˇ velikost, tvar a orientace okolí ˇ počet bodů v okolí zahrnutých do výpočtu ˇ rozložení uvažovaných bodů (regulérní či nepravidelné) ˇ možné začlenění externí informace např. o obecném trendu Většina lokálních interpolátorů pracuje na principu ,,filtrovacího okénka", do jisté míry počítají průměrnou hodnotu z bodů v okolí či v definované vzdálenosti. Metoda nejbližšího souseda (thiessenovy polygony) Hodnoty atributů v neměřených místech jsou určeny z hodnot nejbližšího místa měřeného. Podle schématu uvedeného na obrázku je zpracovávané území rozděleno na nepravidelné trojúhelníky (Delaunay triangulace). Z nich jsou poté definovány tzv. thiessenovy polygony. V závislosti na rozmístění měřených dat mohou tyto polygony být pravidelné či nepravidelné. V GIS se často využívají jako rychlý prostředek pro vztažení bodu k určitému okolí. Celá metoda je založena na předpokladu např., že meteorologická data z určité oblasti mohou být určena z nejbližší meteorologické stanice. Tato metoda je nevhodná pro spojitě se měnící jevy (srážky, teplota, ...). Obr. 8. Konstrukce thiessenových polygonů na pravidelně rozmístěných bodech 56 Obr. 9 Příklady interpolace množiny nepravidelně rozmístěných bodů v ploše metodou thiessenových polygonů Lokální, exaktní metoda interpolace. Metoda původě využívaná pro plošné odhady srážek. Je to metoda robustní, vždy produkuje stejný povrch ze stejné množiny vstupních dat. Nelze při ní však použít externí informace o faktorech, které mohou ovlivňovat hodnoty v místech měření. Je vhodná k vymezování teritoria (oblasti vlivu). Forma výsledného povrchu (mapy) je determinována rozdělením původních měřených bodů. Změny v hodnotách atributů se dějí skokem, na hranicích každého polygonu. Postup však lze použít na kvalitativní data. Metody konstrukce sítě nepravidelných trojúhelníků (TIN) Exaktní metoda vhodná pro nepravidelně rozmístěné body měření. Tyto body jsou spojeny liniemi a vytváří síť nepravidelných trojúhelníků. Protože hodnoty v bodech na počátku a konci linií jsou známy, lze použít jednoduchou lineární závislost k interpolaci bodů mezi dvěma body na linie. TIN je metoda interpolace i způsob vizualizace spojitých povrchů. Pro některé druhy povrchů je vhodná ­ obecně pro povrchy které se vyznačují náhlými změnami spádu (fluviálně erodované povrchy). Proces vytváření spojitého povrchu metodou nepravidelné trojúhelníkové sítě zahrnuje: ˇ výběr charakteristických bodů (ne z jakékoliv množiny nepravidelně rozmístěných bodů lze vytvořit TIN) ˇ způsob propojení bodů do trojúhelníkové sítě ˇ způsob modelování povrchu uvnitř trojúhelníků Výběr bodů ­ body by především měly reprezentovat významné rysy terénu ­ zlomy, údolnice, hřbetnice. V závislosti na komplexnosti terénu může být hustota bodů značně proměnlivá. Algoritmy pro výběr bodů: ˇ algoritmus Fowler and Little ˇ VIP algoritmus ˇ Drop heuristic algoritmus Princip algoritmů ­ viz http://www.ncgia.ucsb.edu/giscc/units/u056/ Způsob propojení bodů do trojúhelníkové sítě se řeší metodou Delaunay triangulace: Tři body tvoří tzv. Delaunay trojúhelník pouze v případě, pokud kružnice, která je těmto třem bodům opsaná neobsahuje žádný další bod. Tato podmínka zaručuje, že trojúhelníky jsou 57 přibližně rovnostranné a jakýkoliv vnitřní bod trojúhelníka je co možná nejblíže jednomu z vrcholů ­ tedy bodu měření. Delaunaly triangulace může být také vytvořena z thiessenových polygonů (viz. výše). Obr. 10 Podmínka tzv. Delaunay triangulace TIN je model vhodný k následné konstrukci izolinií. Nejprve se zvolí krok, se kterým budou izolinie interpolovány, poté jsou identifikovány všechny linie, které bude protínat izolinie s danou hodnotou. Poté se podél všech těchto linií vypočtou souřadnice x, y bodu ,,přechodu" izočáry. Následně se body spojí. Pro ,,hladký" průběh izolinií se body spojují nelineární funkcí. Metody není možné použít k extrapolaci ­ výsledný povrch má plochu, která vznikne spojením vnějších měřených bodů (,,hull"). Obr. 11 Vytvoření TIN a konstrukce izolinií Obr. 12 Příklad povrchu vytvořeného metodou TIN Metoda inverzní vzdálenosti Tato metoda kombinuje ideu vzdálenosti využívanou v thiessenových polygonech a ideu postupných změn trendových povrchů. Je založena na předpokladu, že hodnota atributu v určitém bodě je váženým aritmetickým průměrem hodnot okolních měřených bodů. Váhy jsou určeny pro každý bod například jako inverzní vzdálenost měřeného bodu od bodu interpolovaného (čím bližší bod, tím má větší váhu). Nejjednodušším je lineární interpolátor. Jde většinou o exaktní interpolátor. Forma výsledného interpolovaného povrchu závisí na shlucích bodů a na odlehlých měřeních. Dává nejlepší výsledky při dostatečném množství měřených bodů pravidelně rozmístěných v interpolovaném prostoru. Obecný vzorec pro odhad hodnoty Z: 58 = = = n i i n i ii w zw Z 1 1^ kde váhy se nejčastěji určují ze vztahu k d w 1 = a nebo kd ew - = hodnoty vah wi představují funkci vzdálenosti d. Hodnota exponentu k se nejčastěji volí 1 či 2 a ovlivňuje, v jakém poměru klesá hodnota váhy měřeného bodu s rostoucí vzdáleností od bodu interpolovaného. Obr. 13 Odhad hodnoty v bodě metodou inverzní vzdálenosti Obr. 14 Příklad interpolace metodou inverzní vzdálenosti Metoda IDW často produkuje povrch, který je charakteristický koncentrickými strukturami kolem interpolovaných bodů (tzv. ,,bulls eyes"). Protože IDW je založena na lokálním průměrování, neposkytuje odhady mimo rozsah hodnot měřených bodů. Výsledkem jsou často nereálné tvary výsledného povrchu (viz. následující obr). Obr. Metoda inverzní vzdálenosti efekt ,,průměrování"- potlačení lokálních extrémů 59 Modifikace metody inverzní vzdálenosti implementovaná např. v ArcGIS je založena na následujícím modelu: Obr. 15 Modifikace metody inverzní vzdálenosti- způsob odhadu optimální hodnoty exponentu vah p výpočtem RMSPE. Závislost mezi hodnotou váhy () a vzdáleností bodu měřeného bodu od bodu interpolovaného pro různé hodnoty exponentu p Váhy () jsou v tomto případě definovány podle výše uvedeného vzorce, ve kterém exponent p vyjadřuje jejich změnu v závislosti na vzdálenosti interpolovaného bodu od bodu měřeného. Tuto závislost ukazuje obr. vlevo. Metoda dále umožňuje prostřednictvím minimalizace tzv. RMSPE ­ root mean square prediction error ­nalézt optimální hodnotu p. Způsob definování velikosti okolí ­ ve většině případů se uvažuje kruhové okolí interpolovaného bodu a pro odhad hodnoty se berou všechny body bez ohledu na směr, ve kterém se nachází (povrch se považuje za izotropní). Pokud však existuje reálný předpoklad, že body v jistém směru mohou mít na interpolovanou hodnotu jinou váhu než ve směru jiném, potom může mít okolí tvar elipsy. Je-li například takovýmto vlivem převládající směr větru, potom okolí interpolovaného bodu je definováno jako elipsa, jejíž hlavní osa je rovnoběžná s tímto směrem. Předpokládáme, že v tomto směru si budou hodnoty interpolované veličiny více podobné na větší vzdálenost než ve směru kolmém. Dále je řešena otázka počtu bodů (minimální a maximální počet bodů uvažovaných pro výpočet nové hodnoty) a také jejich rozmístění v rámci definovaného okolí. To bývá děleno na kvadranty či oktanty a takovém případě je min. a max. počet vztažen k těmto sektorům. Metoda IDW je senzitivní na shluky měřených bodů a také na odlehlé hodnoty. Jistou nevýhodou také je, že minimální a maximální hodnota interpolované veličiny se může nacházet pouze v bodech měření (viz. dále - porovnání s metodami RBF). Jistou modifikací výše popsané metody je tzv. Shepardova metoda. Ta navíc provádí vyrovnání interpolovaných hodnot metodou nemenších čtverců. Výsledkem je potlačení efektu koncentrických izolinií. Prostorové klouzavé průměry Za modifikaci metody inverzní vzdálenosti lze považovat metodu prostorových klouzavých průměrů. Nová hodnota může být prostým průměrem či váženým průměrem ale též např. modální hodnotou. Stěžejní úlohou této metody je definování velikosti, tvaru a charakteru 60 okolí. Okolí je nejčastěji navrhováno ve tvaru kruhu či pravoúhelníka. Jako váhy se nejčastěji využívá vzdálenosti od středu definovaného okolí a váhy se mohu měnit lineárně i nelineárně. Vzhledem k často omezenému počtu bodů měření je vedle velkosti okolí důležitá otázka také počtu bodů v okolí (minimálního i maximálního). Borrough (1986) navrhuje použít 4 až 12 bodů s optimem 6 až 8 bodů. Větší počet bodů produkuje značně shlazený povrch, u malého počtu bodů dominují extrémní hodnoty. Obr. 16 Příklad interpolace metodou prostorových klouzavých průměrů Metody je vhodné použít za těchto podmínek: ˇ existuje nejistota s ohledem na reprodukovatelnost výsledků opakovaných měření v daném bodě (vlastní proměnlivost pole hodnot měření) ˇ samotná technická stránka měření je zatížena jistou chybou ˇ je známo, že skutečné prostorové pole daného jevu vykazuje kromě obecného trendu také lokální variabilitu. Příkladem může být měření rychlosti větru. Interpolace metodou lokálních polynomů Polynom n-tého stupně je aplikován ne na celý interpolovaný povrch, ale vždy na část povrchu definovanou jako okolí interpolovaného bodu přičemž tato okolí se překrývají. Stejně jako v případě IDW je specifikován tvar okolí, min. a max. počet bodů v okolí resp. rozdělení okolí na sektory. Body definovaného okolí je proložen polynom n-tého stupně a interpolovaná hodnota je použita pro střední bod okolí. V následném kroku se okolí posouvá po interpolované ploše stejně jako v případě klouzavých průměrů. Jedná se o aproximativní metodu interpolace, která však více zohledňuje lokální vlivy než metoda ,,globálních" polynomů. Obrázek ukazuje v transektu čtyři kroky postupného prokládání přímky třemi nejbližšími body. 61 Obr. 17 Interpolace metodou lokálních polynomů Model lokálních polynomů je optimalizován výpočtem RMSPE a může počítat s efektem anizotropie stejně jako v případě metody inverzní vzdálenosti. Metoda je závislá na správné volbě velikosti okolí interpolovaného bodu. Lokální interpolátory využívající regresní analýzy Spočívají v sestavení empirického modelu závislosti interpolované veličiny na hodnotách jedné či několika veličin nezávislých a to pro jisté okolí interpolovaného bodu. Regresní vztah je tedy na rozdíl od globální varianty této metody sestaven pouze pro body v předem definovaném okolí bodu. Interpolovaná hodnota je použita pro střední bod okolí, které se posouvá stejně jako v případě klouzavých průměrů. Splinové funkce (piece wise polynomial function) Splinové funkce jsou matematicky definované křivky, které po částech interpolují jednotlivé body povrchu a to exaktně, přitom navíc zajišťují kontinuální spojení jednotlivých částí interpolovaného povrchu. Se spliny lze modifikovat část povrchu aniž bychom museli přepočítávat celý povrch (toto například neumožňují trendy). Pro interpolování linií se používá tzv. kubických splinů, pro interpolování povrchů se využívá jejich 2D analogie označované jako ,,thin plate splines" Obr. 18 Interpolace splinovými funkcemi Kubické spliny používané ke shlazování čar dávají v případě interpolovaných povrchů značný počet chyb (výrazně malých či velkých hodnot), ať již v důsledku chyb měření či v důsledku komplexnosti interpolovaného povrchu. V tomto případě se na místo přesných splinů používá tzv. ,,thin plate splines". Ty nahrazují části povrchů interpolované přesným splinem lokálně shlazenou průměrnou hodnotou. Povrch je interpolován tak, aby procházel co nejblíže měřeným bodům a také aby zachoval podmínku minimální křivosti. Spliny jsou tedy 62 lokálním interpolátorem - používají v daném čase pouze několika málo bodů, na rozdíl od trendových funkcí a povrchů interpolovaných metodou vážené inverzní vzdálenosti spliny zachovávají řadu lokálních rysů interpolované proměnné. Spliny interpolované povrchy jsou často značně shlazené a jsou tedy vhodné pro interpolaci jevů, které se mění spojitě (např. tak vzduchu). Jistou nevýhodou splinových funkcí je, že produkují ,,falešná" lokální minima a maxima. Obr. 19 Příklad izolinií vytvořených interpolací gridových hodnot přízemního pole tlaku vzduchu splinovými funkcemi Následující stránka prezentuje názorně způsob interpolace metodou splinů: http://www.math.ucla.edu/~baker/java/hoefer/Spline.htm Metody radiálních funkcí (RBF) V prostředí ArcGIS jsou tyto metody interpolace označovány jako ,,radial basis functions" (RBF). Jedná se o skupinu pěti exaktních interpolátorů označovaných: thin plate splines, spliny s tenzí, regularizované spliny, multikvadratické spliny, inverzní multikvadratické spliny. Tyto postupy k interpolaci využívají m.j. umělých neuronových sítí za podmínky mimimalizování křivosti povrchu (analogie ,,přetažení" gumové membrány přes body v prostoru). Obr. XX uvádí porovnání RBF metod s metodou inverzní vzdálenosti. Jak je z obrázku patrné, výsledkem interpolace metodou inverzní vzdálenosti nikdy nejsou body, které by byly větší než maximální hodnota v měřeném bodě resp. menší než minimální hodnota v měřeném bodě. Obr. 20 Porovnání výsledků interpolace metodami splinových funkcí (RBW) a metodou inverzní vzdálenosti (IDW). Parametry konkrétní interpolující funkce jsou optimalizovány výpočtem RMSPE. RBF jsou exaktní metodou a jsou vhodné pro hladké povrchy generované z velkého počtu bodů (např. modely terénu). Naopak se nehodí pro interpolaci jevů, které se v prostoru mění skokem 63 (abrupt) a dále pro interpolaci jevů, u nichž existuje jistá míra nejistoty ohledně přesnosti měřených bodů. Obr. 21 Princip interpolace metodou multiquadric RBF (vysvětlivky viz text) RBF jsou funkce které se mění se vzdáleností od interpolovaného bodu. Jsou konstruovány pro každý měřený bod. Na obrázku jsou vykresleny různou barvou tři RBF funkce pro tři body v prostoru. V tomto případě jsou RBF jednoduchou funkcí vzdálenosti od měřeného bodu a mají tvar obráceného kužele. Budeme uvažovat řez v rovině os X a Z pro bod y = 5. Předpokládejme, že budeme interpolovat bod o souřadnicích x = 7 a y = 5. Hodnotu každé RBF v predikovaném bodě můžeme odečíst z grafu jako 1, 2, 3 . Prediktor má podobu váženého průměru, tedy: ...332211 +++ www Doposud nebylo využito hodnot v měřených bodech. Proto váhy w1, w2 w3 jsou nalezeny na základě podmínky, že pokud je odhadován bod v bodě měření, je interpolován přesně. Tato podmínka umožňuje sestavit soustavu N rovnic o N neznámých, která má jednoznačné řešení. Všechny metody interpolace využívající RBF dávají velmi podobné výsledky. Metody mají možnost nastavit parametr, který ovlivňuje shlazení výsledného povrchu. U všech metod RBF platí, že čím větší hodnota vyhlazovacího parametru, tím více shlazený je povrch. Opačně je tomu pouze pro tzv. inverzní multiquadric RBF. Nejčastěji využívanou je multikvadriková metoda (multiquadric RBF), která vychází z řešení následující rovnice: 22 ),(),( RyxdyxB ii += kde Bi(x,y) ­ radiální funkce vzdálenosti di(x,y) di(x,y) ­ relativní vzdálenost měřeného bodu v místě xi, yi od místa odhadu x, y R2 ­ vyhlazovací parametr Pro funkce Bi(x,y) jsou během výpočtu v každém interpolovaném bodě stanovovány váhy řešením soustavy lineárních rovnic. Kriging Je to lokální interpolátor, který optimalizuje výběr bodů okolí, ze kterých je odhadována nová hodnota. K této optimalizaci se provádí tzv. strukturní analýza založená na studiu tzv. semivariogramu a konstrukci teoretického modelu. Parametry tohoto modelu jsou použity ve vlastním krigování. Kriging je založen na odhadu závislosti průměrné změny v hodnotách 64 studované veličiny a vzdálenosti měřených bodů. Strukturní analýze a metodě korigování je věnována zvláštní kapitola. Metody prostorové interpolace ploch (area based) Mnoho jevů se vztahuje k plošným jednotkám spíše než k bodům (hustota obyvatelstva států, kvalita pitné vody...). Metody řeší způsob, jakým lze odhadnout hodnoty jistého jevu na základě hodnot jiného jevu vázaných na plošné jednotky. Přitom mohou nastat dvě situace: 1. plošné jednotky se shodují 2. zdrojové jednotky jsou podmnožinou (nested) jednotek výstupních Metody lze dělit do dvou skupin: 1. metody zachovávající objem studovaného jevu (volume preserving) 2. metody nezachovávající objem studovaného jevu (non-volume preserving) Metody nezachovávající objem studovaného jevu (non-volume preserving) Příklad ­ mapa A vyjadřuje celkový počet obyvatel ve čtyřech administrativních jednotkách určitého území. Mapa B potom záplavovou oblast kolem vodního toku. Cílem je zjistit, jaká je hustota obyvatelstva uvnitř záplavové zóny. Obr. 22 Princip metody prostorové interpolace ploch nezachovávající objem studovaného jevu Postup: 1) výpočet hustoty obyvatelstva pro každou plochu 2) určení centroidu každé plochy 3) interpolace hustoty obyvatelstva výše popsanými metodami 65 Metody zachovávající objem studovaného jevu (volume preserving) Provede se překrytí cílových zón (oblastí) přes oblasti zdrojové a určí se poměrná část cílové zóny, která spadá do zóny zdrojové. Celková hodnota atributu v cílové zóně je určena v závislosti na plošném zastoupení zón zdrojových. Pycnophylatic method Jeden z hlavních problémů metody thiessenových polygonů je, že měřený prvek se považuje za homogenní v rámci jedné třídy, veškeré prostorové změny jsou vázány na hranice. V případě spojitých či relativně spojitých prvků jde o naprosto nevhodný způsob interpolace. Modifikací je metoda, která v rámci každé třídy zachovává sumu studovaného prvku, avšak dovoluje kontinuální změnu směrem k hranicím každé třídy. Metoda bere v úvahu hodnotu atributu sousedních tříd. Nepředpokládá se existence bariér a hodnoty sousedních tříd jsou shlazeny bez skokových změn v hodnotách daného atributu pomocí pravděpodobnostní funkce (density function). Metoda byla použita na demografická data. Jde o neexaktní interpolátor. Minimální i maximální hodnoty vypočtené touto metodou jsou výrazně menší resp. větší než skutečně naměřené hodnoty. Obr. 23 Princip metody prostorové interpolace ploch zachovávající objem studovaného jevu