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1 Introduction

Basic studies of efficacy of allelochemicals, all other things being equal, require knowledge of
the relationship between plant response and dose from no effect at small doses, to complete
kill at high doses. The control of weeds is determined by the size of the dose. The term
‘size of a dose’, however, is rather vague in that for some compounds, only little is needed
to control weeds (e.g., many sulfonylureas herbicides) whereas for others we must apply
several kg to obtain the same level of control (e.g., phenoxy acids). Whilst the size of a
dose is rather well defined for herbicides this is not the case for allelochemicals, except
when working with pure isolated compounds. The term toxicity is also rather vague in
that it is essentially a relative term. Therefore, issuing any statement about the toxicity
requires a standard compound against which a test compound can be compared.

The objective of this paper is to illustrate how the principles of assessing potency (toxic
strength) of compounds in applied toxicology and pharmacology can be used in herbicide
research and development and in allelopathy in that we compare potencies of compounds
at some a priori response levels, say 50% reduction in biomass (ED50). This requires the
use of dose-response relationships.

In order to facilitate the use of widely accepted dose-response relationships, without
being entangled in the hassle of programming, we have developed software capable of
carrying out simultaneous non-linear regression analyzes on several bioassay dose-response
curves. We will demonstrate the use of the software package drc for analysis of series
of dose-response curves. The package drc is an add-on package for the language and
environment R which is open source and freely available. In order to take advantage of
the drc package we advise the reader to familiarize him/herself with the basics of R,
particularly how to get data in shape and be read into R (R Development Core Team,
2005). The functionality of drc is illustrated by means of examples, where the function
calls in R and the resulting output are interwoven into the text together with the biological
interpretation. The rationale behind developing this package is that a model is fitted only
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once to data, and then all relevant information is extracted from this single model fit. A
more comprehensive description of drc can be found elsewhere (Ritz & Streibig, 2005).

2 Vertical and horizontal assessment

Vertical assessment compares plant response at some preset dose levels (Fig. 1, a). This
is the most common method for evaluating allelochemicals. If doses were chosen close to
the upper or lower limit of the curves, differences between treatments would be less than if
they were chosen in the middle part of the curve. If we are only working at dose-ranges in
the middle part of the curves then, in this particular instance, differences would be almost
independent of dose-levels. Consequently, the middle region is obviously the optimal part
of the curve to obtain information about differences of effects.

Usually, allelochemicals are tested in two to three doses and their efficacy is compared
with either the untreated control or with some standard chemicals. The nonlinear rela-
tionships in Fig. 1 show that if biologically active compounds are tested in a factorial
experiment, we may get significant interactions, because the differences of effects are not
constant. As this interaction is dose dependent due to the S-shaped curves, it may be
considered trivial and of little biological significance when we appraise the action of the
compounds. If we choose only dose-ranges in the middle part of the curves, then differences
are constant and independent of dose-levels and the interaction would disappear, i.e. the
effects are additive.

Figure 1: Vertical a) and horizontal b) comparison of dose-response curves for two biological
active compounds in a plant species.

Doses of compounds giving the same response can also be compared (Fig. 1, b). This
is called horizontal assessment In this case the difference in horizontal displacement of
the two curves is important. As the dose rates are on a logarithmic scale, the horizontal
displacement expresses the ratio between doses yielding the same response. This ratio is
also called the relative potency, R, and can be defined as
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R =
zs

zt

, (1)

where zs and zt denote the dose of two compounds, a standard, Hs, and a test, Ht, having
the same effect (equipotent doses). The relative potency tells us how much more or less
test compound Ht must be used to obtain the same effect as for the dose zs for a standard
compound, Hs. If R=1 then the two compounds have the same potency; if R>1 then the
test compounds, Ht, is more potent than the standard compound, Hs, and vice versa if
R<1. We could consider the relative potency as being a measure of the biological exchange
rate between compounds, analogous to the more common practice of exchanging curren-
cies from say Euro to Danish Kroner (DKK). In this paper we only consider horizontal
assessment.

3 The logistic dose-response curve

When plants are treated with a biologically active compound, the observed effects are
mostly of two different types, graded or quantal. The response is graded or quantitative,
if the results are changes in plant biomass, height, content of metabolites, photosynthetic
capture of CO2 etc. A quantal or qualitative response, also called ‘all-or-none’ response, is
used if the individual plants can be classified killed/not killed, germinated/not germinated
etc. With graded response each dose yields a response on a continuous scale and thus carries
more information than the ‘all-or-none’ response. We only consider graded response.

Experience has shown that in most instances a logistic dose-response curve describes
reasonably well what happens in the crop and weeds in response to dose of a herbicide or
allelochemical. The logistic curve can be expressed as follows (Streibig et al. 1993):

y = c +
d− c

1 +
(

x
e

)b . (2)

This curve is the four-parameter logistic curve, which is denoted l4 and is default in
drc (an example is given in section 4).

y = c +
d− c

1 + exp [b (log(x) − log(e))]
. (3)

sometimes the lower limit, c, can be omitted if the responses at high doses are close to zero,
and then we have the three parameter logistic model, denoted l3 in drc (see section 4):

y =
d

1 + exp [b (log(x) − log(e))]
. (4)

The parameters and variables in the models (2), (3) and (4) are defined in Table 1.
The shape of a logistic curve is shown in Fig. 2. One of the properties of the logistic curve
is that it is symmetrical curve around the parameter e (ED50).
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Table 1: Interpretation of variables and parameters in the logistic dose-response curve
models

Parameter/ Interpretation
variable
b The proportional slope of the curve around the

point of inflexion (e)
c Lower limit of response (lower asymptote)
d Upper limit of response (upper asymptote)
e The dose reducing the response 50 % (ED50) between

d and c, i.e, point of inflexion
x Dose
y Plant response (e.g. biomass)
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Figure 2: The logistic dose-response curve a) on non-logarithmic dose scale; b) on loga-
rithmic dose scale. The parameters in this example are: b=2, c=2, d=50, e=1.
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In contrast to linear regression, which essentially has an analytical solution, the non-
linear regression only has a numerical solution. Therefore it is necessary to give some
initial guesses for the non-linear regression parameters. For the less experienced researcher
it may be difficult to guess the parameters and therefore the package drc provides self
starter facilities by default. This means that the experimental data are used to obtain the
initial parameter guesses. For the logistic curve this is done by using the maximum (initial
d) and minimum (initial c) value of y and make a logit transformation of data as seen in
equation (5) below

log

(
d− y

y − c

)
= b(log(x) − log(e)) . (5)

This requires, however, that the lower limit, c, and the upper limit, d, are well described
by data. If the dose-range is distributed so the response ranges from untreated control (d)
to high doses, where the response is almost 0 (c), the initial guess of the slope, b, and e
(ED50), are obtained by fitting a straight line to the points ( log(x), log((d− y)/(y − c))).

4 Fitting a single dose-response curve

To get started we need to load the package drc. This is done using the library function

> library(drc)

We will use the data set, page215, (see page 21) to illustrate our point about the assessment
of potency. The data originate from Tables 3 and 4 in Gong et al. (2004) and the objective
was to assess the inhibitory effect on plant growth. The data set page215 contains a total
of four individual response curves from the two tables, one for each of the two test species,
oat and Echinochlora crus-galli, and the two secalonic acids denoted SAH and SAI :

> page215 <- read.table("page 215.txt", header = TRUE)

The main function in drc for fitting dose-response curves is the multdrc function which
can be used to fit data from one or more bioassays. By default a four-parameter logistic
model, model (3), is fitted to the data. In order to keep the example simple we first look
at one dose-response curve, viz. that of oat and SAH,

> onecurve <- subset(page215, Species.Compound == "Oat-SAH")

which has a total of 7 observations. The subset function allows you to manipulate the
data set page215. In this particular instance you select the observations being identified
by the Species.Compound variable of Oat-SAH (see page 21). The data is displayed in
the Appendix. A logistic curve fit is done:

> Oat.SAH.Fit <- multdrc(Root ~ Dose, data = onecurve)
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Note that the multdrc does not produce any output, all the information of the logistic fit is
saved in Oat.SAH.Fit. A summary of the fit, including estimated parameters, is obtained
issuing the call

> summary(Oat.SAH.Fit)

A 'logistic' model was fitted.

Parameter estimates:

Estimate Std. Error t-value p-value

b:(Intercept) 2.6541799 0.6962051 3.8123535 0.0317

c:(Intercept) 0.0917716 0.3747035 0.2449180 0.8223

d:(Intercept) 5.5297540 0.2010299 27.5071241 0.0001

e:(Intercept) 0.0803548 0.0078816 10.1951964 0.0020

Estimate of residual variance: 0.08746787

While Estimate and Std. Error are self-explanatory, the t-value and p-value indicate
whether a parameter is significantly different from zero. Furthermore the phrases also
found in the output are:

• A 'logistic' model was fit. The logistic model has been used.

• Estimate of residual variance: 0.0875 gives the estimated residual variance.

If you wish to have special explanation for the parameters then there is a naming facility
in multdrc. The line

Oat.SAH.Fit <- multdrc(Dose, Root, fct=l4(names=c("Slope","Lower Limit",

"Upper Limit", "ED50 ")))

will produce the same fit, but with more informative names for the parameters. A plot of
the observations and the fitted dose-response curve is displayed in Fig. 3.

Let us return to the parameter estimates in the above summary. The parameter esti-
mate of the lower limit, c, is not significantly different from zero (p-value = 0.82). Fig. 3
illustrates that the responses are describing the upper and middle of the curve, whilst the
lower limit is less well described by experimental data (only one observation). This illus-
trates one of the very problems with the distribution of responses, they should be evenly
distributed so both the upper and lower limits are defined as well at the middle of the
curve.
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> plot(Oat.SAH.Fit, xlab = "Concentration (mM)", ylab = "Root length(mm)")
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Figure 3: Non-linear regression fit for one dose-response curve for the Oat-SAH treatment
(Gong et al. (2004))
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Since the lower limit is not significantly different from zero we could use model (4), that
is the three-parameter logistic model:

> Oat.SAH.Fit.l3 <- multdrc(Root ~ Dose, fct = l3(), data = onecurve)

> summary(Oat.SAH.Fit.l3)

A 'logistic' model was fitted.

Parameter estimates:

Estimate Std. Error t-value p-value

b:(Intercept) 2.5454687 0.4257559 5.9787052 0.0039

d:(Intercept) 5.5440543 0.1692710 32.7525264 5.182e-06

e:(Intercept) 0.0814925 0.0057292 14.2241282 0.0001

Estimate of residual variance: 0.06684133

Omitting the lower limit did not seriously affect the parameter estimates. Perhaps the
ED50 value is not interesting because the compound should be used to control weeds, we
would be more interested in say ED80 or ED90. As the EDy is a function of the slope, b,
and e we can easily get the desired ED-levels with its associated standard error

> ED(Oat.SAH.Fit.l3, c(80, 90))

Estimate Std. Error

1:80 0.14049 0.0133

1:90 0.19320 0.0267

Whether or not a four- or three-parameter logistic model is appropriate for this data set,
cannot be assessed by means of a lack-of-fit test, because we only have mean response
values for each dose and not the original response values.

5 Fitting several dose-response curves

As mentioned earlier one dose-response curve confers little information as to toxicity. Con-
sequently, we usually run more than one dose-response curve as did Gong et al. (2004).
Therefore we now wish to simultaneously fit all the response curves in the dataset page215.
This is done by defining which data belong to which curve. The variable to identify the
curves is Species.Compound and this is the second argument in the specification below.

> All.Fit <- multdrc(Root ~ Dose, Species.Compound, data = page215)

> summary(All.Fit)
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A 'logistic' model was fitted.

Parameter estimates:

Estimate Std. Error t-value p-value

b:Echin-SAI 2.9170340 0.8346208 3.4950411 0.0044

b:Oat-SAI 2.1005321 0.8655565 2.4267995 0.0319

b:Echin-SAH 4.6226801 1.8448293 2.5057495 0.0276

b:Oat-SAH 2.6541745 0.6630468 4.0029971 0.0018

c:Echin-SAI -0.0010076 0.2251025 -0.0044760 0.9965

c:Oat-SAI 0.0564096 0.4967026 0.1135682 0.9115

c:Echin-SAH -0.0009999 0.2231904 -0.0044801 0.9965

c:Oat-SAH 0.0917725 0.3568584 0.2571678 0.8014

d:Echin-SAI 4.0206187 0.2120884 18.9572804 2.604e-10

d:Oat-SAI 5.0098909 0.2829490 17.7059847 5.755e-10

d:Echin-SAH 4.0730072 0.1669232 24.4004862 1.353e-11

d:Oat-SAH 5.5297590 0.1914563 28.8826104 1.846e-12

e:Echin-SAI 0.0423292 0.0046071 9.1877956 8.873e-07

e:Oat-SAI 0.0633375 0.0082370 7.6893854 5.626e-06

e:Echin-SAH 0.0667753 0.0052008 12.8394723 2.269e-08

e:Oat-SAH 0.0803547 0.0075063 10.7050086 1.707e-07

Estimate of residual variance: 0.07933503
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> plot(All.Fit, ylim = c(0, 7))
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Figure 4: Non-linear regression fit of all four dose-response curves from Gong et al. (2004).
Note that the argument ylim=c(0,7) is defining the response axis so the legends are
separated from the curves.
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The regression model seemed to describe the response curves within reasonable limits,
judged by the fit in Fig. 4. In section 6 we will demonstrate that when working on original
data we have some strong tools to statistically assess how well a dose-response model
describes the data.

It is obvious from the parameters and the Fig. 4 that oat generally had higher upper
limits than did Echinochlora crus-galli. The parameters for the lower limits, however, are
not significantly different from zero and even c:Echin-SAI has an illogically negative lower
limit.

Apparently the data can be described by a model with zero as lower limit, model (4):

> All.Fit.l3 <- multdrc(Root ~ Dose, Species.Compound, fct = l3(),

+ data = page215)

> summary(All.Fit.l3)

A 'logistic' model was fitted.

Parameter estimates:

Estimate Std. Error t-value p-value

b:Echin-SAI 2.9188467 0.6295943 4.6360756 3e-04

b:Oat-SAI 2.0202678 0.3807812 5.3055873 1e-04

b:Echin-SAH 4.6257211 1.4955810 3.0929258 7e-03

b:Oat-SAH 2.5454721 0.4029956 6.3163777 1.026e-05

d:Echin-SAI 4.0204546 0.1813394 22.1708781 1.943e-13

d:Oat-SAI 5.0292574 0.2004656 25.0878807 2.838e-14

d:Echin-SAH 4.0729025 0.1438160 28.3202289 4.231e-15

d:Oat-SAH 5.5440520 0.1602216 34.6024065 2.013e-16

e:Echin-SAI 0.0423206 0.0036547 11.5797752 3.442e-09

e:Oat-SAI 0.0639121 0.0058326 10.9577190 7.584e-09

e:Echin-SAH 0.0667688 0.0043446 15.3683145 5.308e-11

e:Oat-SAH 0.0814925 0.0054229 15.0275289 7.434e-11

Estimate of residual variance: 0.05988557

Fixing the lower limits at zero did not change the parameter estimates much.
The question is now how to compare the potencies of the two compounds in the two

species. We could, for example compare the relative potencies, as defined by equation (1),
among compounds and species at the ED50 response level. The comparisons are given by
means of the selectivity index (SI)

> SI(All.Fit.l3, c(50, 50))

Estimate Std. Error t-value p-value

Oat-SAH/Echin-SAH:50/50 1.22052 0.11359 1.94127 0.0701
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Oat-SAH/Oat-SAI:50/50 1.27507 0.14401 1.91005 0.0742

Oat-SAH/Echin-SAI:50/50 1.92560 0.20993 4.40903 0.0004

Echin-SAH/Oat-SAI:50/50 1.04470 0.11709 0.38173 0.7077

Echin-SAH/Echin-SAI:50/50 1.57769 0.17059 3.38639 0.0038

Oat-SAI/Echin-SAI:50/50 1.51019 0.18974 2.68883 0.0161

In contrast to the output from summary, where the p-value indicates if a parameter is
different from zero, the p-value in the output from SI indicates whether the relative potency
is different from 1. In other words it tests whether two compounds have the same potency
at the ED50 level.

However, the relative differences are not dramatically large. From a weed management
point of view, the ED50 might not be the best response level to consider when looking for
allelopathic potential. ED90 might be a more appropriate response level to consider. The
SI function can calculate selectivity indices for any EDy levels, for instance at ED90 levels:

> SI(All.Fit.l3, c(90, 90))

Estimate Std. Error t-value p-value

Oat-SAH/Echin-SAH:90/90 1.79942 0.33605 2.37885 0.0302

Oat-SAH/Oat-SAI:90/90 1.01877 0.22915 0.08193 0.9357

Oat-SAH/Echin-SAI:90/90 2.15040 0.44136 2.60651 0.0191

Echin-SAH/Oat-SAI:90/90 0.56617 0.12825 -3.38264 0.0038

Echin-SAH/Echin-SAI:90/90 1.19506 0.24737 0.78852 0.4419

Oat-SAI/Echin-SAI:90/90 2.11077 0.51080 2.17459 0.0450

At the ED90 response level, there are now four relative potencies that are significantly
different from 1. The difference in the results between ED50 and ED90 levels is caused
by the shape of the response curves. At high effect levels the intrinsic differences among
curves may be change in comparison to lower effect levels (see also Fig. 4).

6 Fitting bioassays and statistics

Until now we have only had the mean values taken from Gong et al. (2004). As pointed out
in section 4, we could not statistically test whether the logistic model was a appropriate
model to use.

From Inderjit et al. (2002) we have original data and we can statistically assess whether
the response fit is appropriate and the data follow the logistic curve as illustrated by Streibig
et al. (1993). The selected data are the effect of p-hydroxybensoic acid (HBA) or ferulic
acid (FA) on perennial ryegrass root and shoot length. The objective of the bioassays was
to study the joint action of various phenolic acid mixtures on plant growth. Only the pure
compounds are used here. We consider root length as response.

> Inderjit <- read.table("inderjit.txt", header = TRUE, , dec = ",")
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The structure of the data is seen in the Appendix. The bioassay was a completely random-
ized design with five doses of each of the two compounds. There was three replications for
each compound and dose and six replications for the untreated control, which was common
for both compounds. LR denotes root length and LS shoot length. The fit of the four
parameter logistic curves with common upper limit is obtained as follows:

> Inderjit.ls <- multdrc(LR ~ Dose, TRT, collapse = data.frame(TRT,

+ TRT, 1, TRT), data = Inderjit)

Control measurements detected for level: control

> summary(Inderjit.ls)

A 'logistic' model was fitted.

Parameter estimates:

Estimate Std. Error t-value p-value

b:FA 2.88210 0.52355 5.50488 3.472e-06

b:HBA 1.08500 0.19671 5.51580 3.359e-06

c:FA 0.38636 0.22538 1.71430 0.0953

c:HBA -0.93911 1.03596 -0.90651 0.3709

d:(Intercept) 6.93485 0.16627 41.70853 9.813e-32

e:FA 3.81129 0.24574 15.50963 1.484e-17

e:HBA 7.59854 2.30085 3.30248 0.0022

Estimate of residual variance: 0.2319723

In order to let the response curves share a common upper limit, the

collapse=data.frame(TRT,TRT,1,TRT)

argument instructs multdrc to let the d-parameter be a common parameter for both curves.
The data.frame reflects which parameters are being shared among response curves and it
takes the parameters in alphabetic order (b, c, d, e). From the summary it is obvious that
the two lower limits are not significantly different from zero, and the parameter estimate
for c:HBA is even negative. A test for lack of fit below (anova(Inderjit.ls)), is not
significant. The test for lack of fit supports the idea that the logistic model is describing
the data appropriately. This is also supported by the distribution of data and regression
lines in Fig. 5.

> anova(Inderjit.ls)

Lack-of-fit test

ModelDf RSS Df F value p value

Two-way ANOVA 29 7.3429

DRC model 35 8.1190 6 0.5108 0.7951
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> plot(Inderjit.ls, ylim = c(0, 8))
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Figure 5: Non-linear regression fit of root length on p-hydroxybensoic acid (HBA) or ferulic
acid (FA) (Inderjit et al., 2002).
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But a closer look at the variation in data shows that the variation is much more pro-
nounced at low doses than at high doses; that is the variance of responses is not homoge-
neous. Briefly, it means that the assumption of constant variance cannot be entertained.
It might have an impact on the parameter estimates and the estimated standard errors
in particular and also affect various statistical tests. We can in drc make a graphical vi-
sualization of the variation of the residuals. A plot of the predicted versus the residuals
illustrated in Fig. 6 shows heterogenic variance.

> plot(fitted(Inderjit.ls), residuals(Inderjit.ls))

> abline(h = 0)
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Figure 6: Plot of residuals versus predicted (fitted) values. It is obvious that the variance
at low predicted values (high doses) are lower that the high predicted values (low doses).
This is often the case when we have large differences between the maximum and minimum
responses.
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The problem of heterogeneous variances is common in biology but it can be dealt with
by using the Box-Cox transformation in a so-called transform both sides technique (Streibig
et al., 1993). Consequently, we could re-fit the model with a Box-Cox transformation before
further analysis, notice the argument boxcox=T:

> Inderjit.boxcox <- multdrc(LR ~ Dose, TRT, boxcox = T, collapse = data.frame(TRT,

+ TRT, 1, TRT), data = Inderjit)

Control measurements detected for level: control

> summary(Inderjit.boxcox)

A 'logistic' model was fitted.

Parameter estimates:

Estimate Std. Error t-value p-value

b:FA 2.668026 0.340567 7.834069 3.314e-09

b:HBA 1.164271 0.200003 5.821256 1.328e-06

c:FA 0.317887 0.085675 3.710380 0.0007

c:HBA -0.558914 0.561421 -0.995534 0.3263

d:(Intercept) 6.935612 0.216204 32.078967 7.619e-28

e:FA 3.837436 0.231875 16.549620 1.995e-18

e:HBA 6.723966 1.137844 5.909391 1.016e-06

Estimate of residual variance: 0.06039547

Heterogeneity adjustment: Box-Cox transformation

Estimated lambda: 0.5

Confidence interval for lambda: [0.299,0.674]

> anova(Inderjit.boxcox)

Lack-of-fit test

ModelDf RSS Df F value p value

Two-way ANOVA 29 1.8015

DRC model 35 2.1138 6 0.8380 0.5509

The Box-Cox transformation was justified in that the optimal λ was 0.5 and the confi-
dence interval for λ was between 0.299 and 0.674. It means that a square root transforma-
tion is required. Furthermore, the lower limits for the two compounds are now different;
c:HBA is taking a rather large negative value (-0.56) but it is not different from zero. As
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mentioned previously a negative lower limit is in this case illogical. The lower limit of FA,
c:FA is positive and definitely different from zero. In order to get rid of the negative lower
limit we assumes that both curves have a common lower limit

> Inderjit.boxcox.common <- multdrc(LR ~ Dose, TRT, boxcox = T,

+ collapse = data.frame(TRT, 1, 1, TRT), data = Inderjit)

Control measurements detected for level: control

> summary(Inderjit.boxcox.common)

A 'logistic' model was fitted.

Parameter estimates:

Estimate Std. Error t-value p-value

b:FA 2.610883 0.350012 7.459408 8.273e-09

b:HBA 1.541319 0.163085 9.451014 2.747e-11

c:(Intercept) 0.273100 0.084313 3.239139 0.0026

d:(Intercept) 6.827802 0.219320 31.131758 6.313e-28

e:FA 3.927215 0.245507 15.996379 3.065e-18

e:HBA 5.538348 0.553478 10.006445 6.106e-12

Estimate of residual variance: 0.06681839

Heterogeneity adjustment: Box-Cox transformation

Estimated lambda: 0.5

Confidence interval for lambda: [0.299,0.674]

Also it is notable that the Std. Errors have changed for some of the parameters and
perhaps more importantly the estimate e:HBA dropped from 7.60 to 6.72 and a bit further
to 5.54. The drop in e:HBA is caused by the relative large change in the lower limit of
-0.56 to 0.27. e:FA did not change dramatically. Finally, the test for lack of fit is not
significant so we can tentatively entertain the idea that, after transformation, the four
parameter logistic model with common upper and lower limits describes the dose-response
data within acceptable limits.

The only thing left to do is to find out if there is any difference in potency between the
two compounds. As was the case in section 4 we wish to look at the ED50 effect level but
also the ED90 as the objective of the study was to find some allelochemicals that can help
control weeds:

> SI(Inderjit.boxcox.common, c(50, 50))
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Estimate Std. Error t-value p-value

HBA/FA:50/50 1.41025 0.23811 1.72293 0.0935

> SI(Inderjit.boxcox.common, c(90, 90))

Estimate Std. Error t-value p-value

HBA/FA:90/90 2.52881 0.69592 2.19681 0.0346

Only at the ED90 response level the relative potency between the compounds is slightly,
significantly different from 1.

An analysis for shoot length (LS) follows the same lines as for root length. There was,
however, no reason to do a Box-Cox transformation (analysis not shown) on the basis of
the distribution of the responses.

> Inderjit.shoot <- multdrc(LS ~ Dose, TRT, collapse = data.frame(TRT,

+ TRT, 1, TRT), data = Inderjit)

Control measurements detected for level: control

> summary(Inderjit.shoot)

A 'logistic' model was fitted.

Parameter estimates:

Estimate Std. Error t-value p-value

b:FA 1.461031 0.499500 2.924984 0.0060

b:HBA 0.884817 0.499899 1.769991 0.0854

c:FA 0.434604 1.520977 0.285740 0.7768

c:HBA 0.475426 6.541076 0.072683 0.9425

d:(Intercept) 5.777982 0.169843 34.019457 1.038e-28

e:FA 13.037960 6.154547 2.118427 0.0413

e:HBA 31.184933 82.065223 0.380002 0.7062

Estimate of residual variance: 0.2471985

> anova(Inderjit.shoot)

Lack-of-fit test

ModelDf RSS Df F value p value

Two-way ANOVA 29 7.9551

DRC model 35 8.6519 6 0.4234 0.8573
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The test for lack of fit is not significant. The ED50 for shoot length is much higher
than for root length. Furthermore, the Std. Error for e:HBA, ED50, is so large that it is
not significantly from zero. The same applies to the lower limits for both compounds. The
reason for the large variation is illustrated in Fig. 7; the dose-range was not wide enough
to describe the whole curve. It is conveniently reflected in the very high Std. Error for the
e:HBA and e:FA, that is for the ED50 values.

> plot(Inderjit.shoot, conName = "Control", xlim = c(0, 100),

+ ylim = c(0, 8))
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Figure 7: Non-linear regression fit of shoot length on p-hydroxybensoic acid (HBA) or
ferulic acid (FA) Inderjit et al. (2002).

For the same reason the lower limit is also rather indeterminate, we have no observations
to support any of the lower limits. Therefore we could as well fit the model without lower
limit, model (4),
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> Inderjit.shoot.no.c <- multdrc(LS ~ Dose, TRT, fct = l3(),

+ collapse = data.frame(TRT, 1, TRT), data = Inderjit)

Control measurements detected for level: control

> summary(Inderjit.shoot.no.c)

A 'logistic' model was fitted.

Parameter estimates:

Estimate Std. Error t-value p-value

b:FA 1.35081 0.19443 6.94757 3.330e-08

b:HBA 0.84809 0.17650 4.80494 2.573e-05

d:(Intercept) 5.79275 0.15521 37.32174 2.869e-31

e:FA 14.83638 1.54631 9.59468 1.400e-11

e:HBA 37.34556 8.42995 4.43011 1e-04

Estimate of residual variance: 0.2342373

> anova(Inderjit.shoot.no.c)

Lack-of-fit test

ModelDf RSS Df F value p value

Two-way ANOVA 29 7.9551

DRC model 37 8.6668 8 0.3243 0.9500

The ED50 value for HBA is now significantly different from zero and with a much lower
Std. Error than when including the lower limit. The ED50 for FA did not change as
dramatically as did HBA, but its Std. Error was also considerably reduced. This example
clearly shows that routine fitting without taking into account the distribution of responses
may lead to dubious conclusions. The relative potency:

> SI(Inderjit.shoot.no.c, c(50, 50))

Estimate Std. Error t-value p-value

HBA/FA:50/50 2.5172 1.4314 1.0599 0.2961

> SI(Inderjit.shoot.no.c, c(90, 90))

Estimate Std. Error t-value p-value

HBA/FA:90/90 6.6017 3.1667 1.7689 0.0852

is not significant at the ED50 level. At the ED90 level the relative potency is also not
significant, as there is in fact no data to substantiate the HBA curve at this very response
level.
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7 Concluding remarks

The package drc contains several other facilities, for example alternative regression models
that are not symmetrical. The collapse() argument is flexible in that we can reduce
parameters and test whether common parameters can be shared among dose-response
curves. This has been shown for the four-parameter and three-parameter logistic models. In
the examples given here the biological lesson learnt is that fitting non-linear dose response
curves is not a trivial matter and cannot be run routinely without proper statistical tests
and a close look at the parameter estimates and their biological meaning (see Table 1).

The great advantage of using regression model to describe dose-response curves in
bioassay with allelochemicals or any other biologically active compounds is that we can test
various hypotheses about the action of the compounds; and on the basis of few statistical
tests perhaps reduce parameters and thereby in a parsimonious way present experimental
data in a biologically meaningful way, independent of pre-set doses. Last but not least
we can tell the reader how far our experimental data can take us without compromising
scientific principles. That said, the experienced experimenter knows that any response
curve is just a crude and simplified way of looking at biological variation, and in several
instances the regression models do not always fit. Whether the models fit or not, by
choosing a response function on the basis of biologically knowledge of how a system operates
is far better than denying the sound use of statistical methods.

Appendix

Dataset used in the chapter:

> page215

Species.Compound Dose Root

1 Oat-SAH 0.000 5.5

2 Oat-SAH 0.010 5.7

3 Oat-SAH 0.019 5.4

4 Oat-SAH 0.038 4.6

5 Oat-SAH 0.075 3.3

6 Oat-SAH 0.150 0.7

7 Oat-SAH 0.300 0.4

8 Echin-SAH 0.000 4.0

9 Echin-SAH 0.010 4.2

10 Echin-SAH 0.019 4.0

11 Echin-SAH 0.038 3.8

12 Echin-SAH 0.075 1.5

13 Echin-SAH 0.150 0.1

14 Echin-SAH 0.300 0.0

15 Oat-SAI 0.000 5.5

21



16 Oat-SAI 0.010 4.4

17 Oat-SAI 0.019 4.5

18 Oat-SAI 0.038 4.0

19 Oat-SAI 0.075 2.0

20 Oat-SAI 0.150 0.7

21 Oat-SAI 0.300 0.3

22 Echin-SAI 0.000 4.0

23 Echin-SAI 0.010 4.1

24 Echin-SAI 0.019 3.5

25 Echin-SAI 0.038 2.4

26 Echin-SAI 0.075 0.6

27 Echin-SAI 0.150 0.0

28 Echin-SAI 0.300 0.0

> onecurve

Species.Compound Dose Root

1 Oat-SAH 0.000 5.5

2 Oat-SAH 0.010 5.7

3 Oat-SAH 0.019 5.4

4 Oat-SAH 0.038 4.6

5 Oat-SAH 0.075 3.3

6 Oat-SAH 0.150 0.7

7 Oat-SAH 0.300 0.4

> Inderjit

TRT Dose LR LS

1 control 0.00 7.31 5.64

2 control 0.00 7.21 5.63

3 control 0.00 7.60 7.10

4 control 0.00 6.80 4.88

5 control 0.00 6.10 5.33

6 control 0.00 6.80 5.94

7 HBA 0.94 5.50 5.34

8 HBA 0.94 6.34 5.44

9 HBA 0.94 7.14 6.19

10 HBA 1.88 5.97 5.47

11 HBA 1.88 5.94 5.45

12 HBA 1.88 4.23 5.59

13 HBA 3.75 4.75 4.71

14 HBA 3.75 3.86 4.05
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15 HBA 3.75 4.39 5.54

16 HBA 7.50 2.78 4.66

17 HBA 7.50 3.48 4.94

18 HBA 7.50 3.69 4.57

19 HBA 15.00 1.37 4.21

20 HBA 15.00 1.18 3.74

21 HBA 15.00 1.54 4.00

22 HBA 30.00 0.51 3.32

23 HBA 30.00 0.66 3.11

24 HBA 30.00 0.60 3.03

25 FA 0.94 6.12 5.35

26 FA 0.94 6.44 5.86

27 FA 0.94 7.38 5.28

28 FA 1.88 5.91 5.67

29 FA 1.88 6.50 5.22

30 FA 1.88 6.49 6.24

31 FA 3.75 4.00 5.90

32 FA 3.75 3.87 4.02

33 FA 3.75 3.16 5.05

34 FA 7.50 1.43 4.13

35 FA 7.50 1.24 4.04

36 FA 7.50 1.07 4.00

37 FA 15.00 0.75 2.69

38 FA 15.00 0.46 2.88

39 FA 15.00 0.48 3.13

40 FA 30.00 0.55 1.10

41 FA 30.00 0.30 1.50

42 FA 30.00 0.14 2.30
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