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Influence of Nitrogen Loading and Species
Composition on the Carbon Balance of
Grasslands

David A. Wedin* and David Tilman

In a 12-year experimental study of nitrogen (N) deposition on Minnesota grasslands, plots
dominated by native warm-season grasses shifted to low-diversity mixtures dominated
by cool-season grasses at all but the lowest N addition rates. This shift was associated
with decreased biomass carbon (C):N ratios, increased N mineralization, increased soil
nitrate, high N losses, and low C storage. In addition, plots originally dominated by
nonnative cool-season grasses retained little added N and stored little C, even at low N
input rates. Thus, grasslands with high N retention and C storage rates were the most
vulnerable to species losses and major shifts in C and N cycling.

Humans have dramatically altered the cy-
cling of nitrogen on Earth, doubling the
natural rate of N fixation and causing at-
mospheric N deposition rates to increase
more than tenfold over the last 40 years to
current values of 0.5 to 2.5 g N m~? year™!
in eastern North America and 0.5 t0 6.0 g
N m~? year™! in northern Europe (1). Be-
cause N 1s the primary nutrient limiting
terrestrial plant production, N addition is
causing shifts in plant species composition,
decreases in species diversity, and changes
in food-web structure in terrestrial ecosys-
tems (2-5). This N-driven terrestrial eu-
trophication parallels phosphorus-driven
eutrophication in lakes. Increased N depo-
sition may lead to greater C storage in soil
organic matter and vegetation, thus provid-
ing a sink for CO, and potentially explain-
ing the globally “missing C" (6). Despite
this, almost no experimental dara exist on
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changes in ecosystem C 1n response to long-
term N addition in nonagricultural ecosys-
tems; rather, effects on C stores have been
estimated from models, giving divergent
predictions (6).

We present results ot 12 years of exper-
imental N addition to 162 grassland plots in
three N-limited Minnesota grasslands that
varied in successional age, total soil C, and
plant species composition (7, 8). The
youngest field (Field A) was dominated by
vegetation with the C; photosynchetic
pathway, primarily nonnative “cool-season”
grasses and forbs, whereas the two older
fields (Fields B and C) were dominated by
native C, “warm-season” prairie grasses. Be-
cause other potentially limiting nurrients
were supplied and soil pH was controlled,
our study addresses the eutrophication ef-
fects of N loading while controlling for
acidification and related biogeochemical ef-
fects that might also affect natural ecosys-
tems (9, 10).

Nitrogen loading dramatically changed
plant species composition, decreased species
diversity, and increased aboveground pro-

ductivity in these plots (2, 7, 11). After 12
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years of N addidon, species richness de-
clined by more than 50% across the N
addition gradient (Fig. 1A), with the great-
est losses at 1 to 5 g N m™? year™'—levels
spanning current atmospheric deposition
rates in eastern North America and north-
ern Europe (1). This loss of diversity was
accompanied by major shifts in composi-
tion, with C, grasses (predominantly the
native bunchgrass Schizachyrium scoparium)
declining and the weedy Eurasian C; grass
Agropyron repens becoming dominant at
high N addition rates (Fig. 1B) (2, 7, 11).

As the vegetation shifted with increas-
ing N inputs from C, species to C; species,
the C:N ratios of aboveground and below-
ground plant tissues decreased (Fig. 1, C
and D) (12). Two analyses indicate that
interspecific differences in tissue chemistry
together with the observed species shifts
can account for most of this shift in biomass
C:N ranios across the experimental N gra-
dient. First, nitrogen-use efficiency (NUE),
the ratio of plant production to N use [es-
timated following (I13)], averaged 203
across the N addition gradient for S. scopa-
rium (14). The hugh NUE of S. scoparium
and other perennial C, grasses is well doc-
umented (15, 16). In contrast, Poa pratensis
and A. repens, the dominant C, grasses, had
mean NUE values of 107 and 78, respec-
tively. Intraspecific plasticity for NUE—the
shift in tissue chemistry within species
across the N addition gradient—was small
relative to the large interspecific differences
among the three species (14). In addition,
multiple regression showed that the best
correlace, after the rate of N fertilization, for
the C:N rauo of dead biomass in a plot was
the S. scoparium abundance in the plot
(17).

At N addicion rates of <5 g N m™?
year™!, soil NO; ™~ concentrarions were sig-

nificantly lower in the older fields dominat-
ed by S. scoparium (Fields B and C) than in
the C;-dominared youngest field (Field A)
(Fig. 2A) (18, 19). This parallels results
from experimental monocultures of these
prairte and old-field grasses (20). Soil NO,~
did not respond significantly to N addition
at rates <5 g N -m~2 year ' (19), but NO;~
concentrations increased by a factor of ten
at higher N addition rates (Fig. ZA). With
the exception of two treatments in Field B,
annual net N mineralization rates also
showed relatively little change at low N
addition rates, but increased linearly with
increased N addition at rates >5 g N m™2
year~! (Fig. 2B).

At low N addition rates (1 to 2 g N m™2
year™!), the two C,-dominated fields re-
tained approximately all of the N puts
after 12 years (Fig. 2C) (21). Nitrogen re-
tention in these fields dropped as N addi-
tion increased, converging on an N reten-
tion of 35% of N inputs at the two highest
N addition rates. Similar results are report-
ed for N-loading studies in European forests,
where, on average, 43% of N inputs were
retained at N inputs ranging from 2.5 wo
75 g N m™ year™! (22) However, N
retention varied greatly from site to site in
those studies, supporting the conclusion of
Aber et al. (23) that “N retention will vary
non-linearly depending on the internal
state of the system.” In contrast to the two
older fields, the C;-dominated Field A re-
tained essentially none of the added N at
low input rates (Fig. 2C) (24). Although
the mechanisms of N loss in Field A are
unresolved, our grassland result contrasts
with that of forest research, where early
successional stands are hypothesized to
have higher nutrient retention (25, 26).

On a plot-by-plot basis, net N losses (as
g N m™2) (21) were highly correlated with
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the average growing-season concentration
of soil NO; ~ (Fig- 3A). Soil NO; ™ is highly
mobile, and hugh soil NO,~ concentrations
frequently lead to large leaching losses of N,
as presumably happened in this study (10,
27). We cannot parution N losses, howev-
er, because N leaching, ammonia volatiliza-
tion, dissolved organic N losses, and deni-
trification were not measured (28).

Soil NO,~ concentrations were highly
correlated with biomass C:N ratios (Fig. 3B)
(29). A comparable relationship existed be-
tween soil NO; ™ and the C:N ratio of either
belowground biomass or aboveground litter.
At biomass C:N ratios greater than 30, soil
NO,~ concentrations were low (<1 mg/kg).
As C:N ratios dropped below 30, the immo-
bilization sink for mineral N provided by
dead organic matrer disappeared, rates of net
N mineralizanion increased, soil NO;~ -
creased sharply, and overall N retention
rates decreased (Fig. 2). Thus, our results
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Fig. 2. Nitrogen dynamics after 12 years of N
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eralization, and (C) net N retention after 12 years
estimated as the change in total system N {relative
to controls) dwvided by the sum of experimental N
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support the conclusion that microbial immo-
bilization ot mineral N is a major factor
repulating N retention (10, 23, 25, 30).

Qur analyses indicate another potential-
ly mmportant factor regulating soil NO,~
pools in these grasslands. Plant species di-
versity remained a significant negative cor-
telate of soil NO, ™ in a multiple regression
maodel that accounted tor the effects of litter
C:N ratio and N addition rate (29, 31).
This suggests that complementary spatial
and temporal patterns of nutrient uptake
associated with high plant-species diversity
or tunctional group diversity alw play a
significant role in ecosystem N retention
(32).

We conclude that the shife from N im-
mobilization to mineralization, a threshold
determined by microbial resource require-
ments and the C:N ratio of an ecosystem’s
detrital biomass, creates an inherent non-
lincarity in the response of these grasslands
to chronic N loading. In our study, species
shifes in the vepetation at low levels of N
loading appear to be driving such a nonlin-
car response of the N oceyele (4, 15). In
addition to shifts in species compusition,
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Fig. 3. (A) The relationship betwesn net N losses
or gains (the change In total system N minus the
sum of experimental N additions) and seasonal
average soil NO., concentrations in 162 experi-
mental plots. The equation for the fitted curve
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log{NQ )] (B} The relationship betwsen soil NO., -
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the loss of diversity, per se¢, during eutrophi-
cation may contribute to decreased N re-
tention in prassland ecosystems subjected to
atmospheric N deposition (31).

Two patterns emerged  for the  net
change in total ecosystem C stores after 12
years (12, 21). Firat, although total C stores
differed significantly among the three fields
acrows the experimental N gradient, difer-
ences were greater at the low end of the
gradient (33). At the high end of the N
addition gradient, all fields were converging
on total C stores of roughly 4000 to 5000 g
C m~% Second, total C stores increased
sipnificantly at low N addition rates in the
C,-dominated fields (Ficlds B and C) bur
not in the C,-duminated field. Averaging
across the three lowest N addition levels (1,
2,and 3.4 g N m~? year™"), total ccosystem
C increased 219 (545 g C m™?) in Field B,
which had lower soil C initially, 10496 (445
gCm %) in Field C, and unly 1% (27 ¢ C
m~2) in Field A. In contrast, theoretical
estimates of C storage for humid temperate
graslands in response to climate change,
direct CO, enrichment, or both range from

9 to —3% (34). Carbon storage resulting
from anthropopenic N inputs, although
highly dependent on grassland type, may be
markedly greater than C storage in response
to other components of global chanee.

Finally, we determined the net long-
term change in total ecosystem C per unit
of added N over our [2-year study. In re-
pression analysis, there was significantly
Jower C storage (g Cfz N) ar N addition
rates <5 p N m™? year™ for Field A than
for Fields B and C, a» well as a sipgnificant
effeet of N addition rate and a significant
ficld-by-N-uddition  interaction  (Fig.  4)
(35). Without fickl as a categorical vari-
able, plot C, hiomass was the hest single
prcdicrnr nf C st UMY (35)

At the lowest Noaddition rates (Land 2 ¢
N m™ yeur ™ 1), the C storage rate averaued
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Fig. 4. Net C storage per unit experimentally add-
ed N after 12 years. Because C storage rates (g
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and C (34), overall treatment means for the two
C,-dorminated fields are precented.
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243 g Clg N (n = 24, SE = 7.6) in Fields
B and C (Fip. 4). Although we know of no
comparahle values from other long-term ex-
periments, our value of 24.3 g Clz N is low
compared to most model estimates of net C
storage in response to atmospheric N dep-
asition, which range from 17 to >100 g C/p
N (6). This difference probably relates to
ecosystem type. In our two Cy-dominated
prasslands, 639 of the long-term C storage
was in soils, which had a GN ratio of
roughly 11. Globally, wouody vegetation
with a higher C:N ratio becomes a more
sipniticant C sink.

Estimates of C storage in eesponse to N
Jonding are the product of ewo terms: net C
storage per unit N retained and the N re-
tention rate. In simulations with the CEN-
TURY madel of long-term C budgets for S.
seuparim monocultures in our soils and cli-
mate, we found a long-term C storage rate
uf 22 g Clg N input from atmospheric dep-
osition (36). Thus, our empirical and mod-
cling estimates of C storage (g Cfg N) were
very similar for low N addition plots in
Ficlds B and C, where N retention rares
were ~100%.

In contrast, the model (36) did a rela-
tively poor job of predicting C storage rates
for Fields B and C at medium to high N
inputs and Field A across the N gradient.
CENTURY simulations predicted a long-
term C storage rate of 10 ¢ Cfg N for A.
repens monacultures, the dominant C; grass
in Field A and in high-N plots. However,
no net C storage was observed for Field A at
low N inputs, and at the high end of the
gradient, net long-term C starage across all
fields converged on roughly 4 ¢ Cfe N (Fip.
4). These results underscore the need for
clearer understanding of why N retention
rates differ among ccosystems it ceologists
are to make ressonable estimares, whether
on local or plobal scales, of C sequestration
in response to N louding,

The prasshind rypes best uble 1o retain
added N and sequester C were also the types
most vulnerable o N cutrophication
through losses of diversity, changes in plant
species  composition, and  the  resultint
changes in C and N cycling. Thus, N-
caused shifes in species compuosition limic
the ability of temperate grasslands o serve
as significant long-term C stores. In our
fields dominated by C; prairie grasses, shifts
in species compuosition at relatively low N
addition rates led to decreased biomass CGN
rarios and decreased N immaobilization po-
tentinl, and, consequently, increased soil
NQ, concentrations, high N loss rates,
and low C sequestration rates (g Clg N).
The nonlinear or threshold-dependent re-
sponse that we observed in response
chronic N loading appears to have two
causes: species shifts in response ta N cu-



trophication and an N minerali-ation or
immobilization threshold for the decompo-
sition of litter and so1l organic matter. Our
results show that N loading is a major threat
to grassland ecosystems, causing loss of di-
versity, increased abundance of nonnative
species, and the disruption of ecosystem

fu

nctioning, and that these responses are

tightly linked.
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D. 8. Schimel et al., Global Biogeochem. Cycles 8,
279 (1994)

In GLM analyses predicting C storage per unit M
nput (Fig. 4), the efiects of field (categorical variable,
F = 7.04, P = 0.0013), N addition rate (in trans-
formed, F = 6.99, P = 0.009), and the field-by-N-
addition interacuon (F = 3 48, P = 0.034) were sig-
nificant {2 = 0.16, n = 1286). In a GLM model pre-
dicting C sterage per unit N without the field effect,
the effects or C, aboveground biomass (F = 18.15,
P < 0.0001), sol C:N ratio (F = 12 39, P = 0.00086),
and root biomass (In transformed, F = 11.13, P =
0.0011) were significant (> = 0.332, n = 126). Al F
values are partal Fs ~
CENTURY 1s a grassland simulation mode! of pro-
ductivity and soil organic matter dynamics that has
been used extensively and is described in {W. J.
Parton, D. S Schimel, C. V. Cole, D. S Opma, Scif
Sci. Soc. Am. J. 51, 1173 (1987), sze also (34)]. The
long-term monoculture simulations for S. scoparium
and A. repens used species-level data on productiv-
ity, allocation, and Itter quality from (15, 20).
Supported by NSF (BSR-8811834 and BSR-8807881)
and the Natural Sciences and Engineering Research
Council of Canada. We thank S. Finley and E. Willam-
son forassistance and J Aber, W Cume, H Peat, and
W. Schlesinger for comments

23 July 1996, accepted 27 September 1995

1723





