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The frequency distribution of species abundances [the species
abundance distribution (SAD)] is considered to be a fundamental
characteristic of community structure. It is almost invariably
strongly right-skewed, with most species being rare. There has
been much debate as to its exact properties and the processes from
which it results. Here, we contend that an SAD for a study plot must
be viewed as spliced from the SADs of many smaller nonoverlap-
ping subplots covering that plot. We show that this splicing, if
applied repeatedly to produce subplots of progressively larger size,
leads to the observed shape of the SAD for the whole plot
regardless of that of the SADs of those subplots. The widely
reported shape of an SAD is thus likely to be driven by a spatial
parallel of the central limit theorem, a statistically convergent
process through which the SAD arises from small to large scales.
Exact properties of the SAD are driven by species spatial turnover
and the spatial autocorrelation of abundances, and can be pre-
dicted using this information. The theory therefore provides a
direct link between SADs and the spatial correlation structure of
species distributions, and thus between several fundamental de-
scriptors of community structure. Moreover, the statistical process
described may lie behind similar frequency distributions observed
in many other scientific fields.

log-normal distribution � spatial autocorrelation � spatial turnover

Many models have been proposed to explain the general
observation that the majority of species are rare, and to

predict the major properties of the species abundance distribu-
tion (SAD) (1). Some assume a particular biological process,
such as sequential niche division among species (2), stochastic
population dynamics driven by simple rules and constraints (3,
4), or spatial rules imposed on species geographic distributions
(5–7). These models can produce quite realistic SADs, often
close to lognormal distributions. However, the ubiquity of the
SAD pattern (i.e., its independence of particular taxon specifics
and other biological settings) indicates that the processes re-
sponsible are much more general, and perhaps of a statistical
rather than a biological nature (7). Indeed, similar patterns have
also been observed in many nonbiological systems (8).

It has been suggested (9) that the approximately log-normal
shape of the SAD might result from a random multiplicative
process acting on abundances (i.e., an additive process acting on
their logarithms). Purely multiplicative processes cannot, how-
ever, be responsible for the multiple SADs that are observed
simultaneously at several spatial scales (10). The reason is that
the SAD of an assemblage on a study plot (whose bounds may
be arbitrary or ecological) is necessarily spliced from the SADs
of subassemblages occurring in nonoverlapping subplots cover-
ing that plot (6, 11, 12). Because abundances for the whole plot
arise by summing the abundances of the subassemblages across
all of the subplots, an additive process acting on abundances must
also play a role. In fact, many models of the SAD explicitly or
implicitly comprise additive processes (4, 13, 14). However, this
has never been clearly identified as the major mechanism
responsible for the shape of the SAD. Here, we show that it is

the additive process itself that represents the clue to understand-
ing the universally reported shape of SADs, regardless of any
model-specific dynamics.

Suppose that the SAD for an assemblage on a plot (SADp) is
comprised from those of the subassemblages on nonoverlapping
subplots (SADs-p). We can ask how the properties of the SADp
depend on the properties of the SADs-p, and to what extent it
is affected solely by the process through which the SADp arises.
We will explore the possibility that the SADp is independent of
the SADs-p for the smallest subplots (initial-SADs-p), because
the statistical process giving rise to the SADp outweighs the
contribution of the particular initial-SADs-p. This situation
would be similar to the process that lies behind the central limit
theorem (CLT) [introduced in 1733 by de Moivre and proved in
1901 by Lyapunov (15)]. According to the CLT, the normal
(Gaussian) distribution arises by addition of many mutually
independent variables with finite variances regardless of their
original distribution.

The process through which an SADp arises, being spliced (see
Materials and Methods) from many initial-SADs-p, is, however,
different, because it is necessarily spatially determined. This
means that the abundances of each of two adjacent subplots to
be joined are dependent on each other, and that some species are
missing from some subplots. The SAD then arises by summing
pairs of abundances of the species common to both joined
subplots, and appending abundances of the species missing from
one subplot at each recurrent step. The resulting distribution is
thus shaped by the spatial correlation structure, which is exem-
plified by species spatial turnover and the spatial autocorrelation
of abundances. Positive correlation between the abundances of
given species in neighbouring subplots leads to elongation of the
right-hand tail of the SAD, because eventual high abundance in
one subplot is probably added to similarly high abundance in
another. This elongation occurs even if abundances are not
correlated (for abundances are positive and thus only the
right-hand tail can grow), but the stronger is the autocorrelation
the faster the tail grows, regardless of the exact nature of that
autocorrelation (Fig. 1). However, species spatial turnover leads
to the addition of species occurring in only one of two joined
subplots, which produces a prevalence of rare species in the
spliced SAD. These two effects combined thus lead to a right-
skewed abundance distribution.

Results
We simulated the process described above (for details, see
Materials and Methods), varying its inputs in terms of the shape
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of the initial-SADs-p, and using observed levels of species spatial
turnover (measured as the proportion of species common to both
neighbouring subplots, i.e., the Jaccard index, J) and of spatial
autocorrelation of abundances (determined by Pearson’s corre-
lation coefficient, r) (see Materials and Methods). We proceeded
in a step-by-step manner, splicing pairs of neighbouring initial-
SADs-p in the first step, then (the second step) splicing pairs of
neighbouring SADs-p that resulted from the first step, and so on
up to the SADp of the whole plot.

Three different simulation experiments were performed, each
beginning with a differently shaped initial-SADs-p (left-skewed,
regular, right-skewed). We checked whether all of the simula-
tions had reached a particular shape of the distribution, whether
these shapes were the same regardless of initial-SADs-ps, and
ultimately compared the resulting distributions from each of the
3 simulations with the observed SADp of 2 well-resolved spatial
datasets. These latter comprised (i) trees within a tropical study
plot on Barro Colorado Island (ref. 16 and 17 and http://ctfs.si/
edu/datasets/bci) (see Materials and Methods), and (ii) central
European birds mapped on a transect through the whole of the
Czech Republic (7) (see Materials and Methods). All of the
observed and simulated SADp and SADs-p to be compared were
standardized to the same mean abundance (i.e., ast � a/a� , where
ast is the standardized abundance, a is a raw abundance, and a�
is mean abundance), and veiled by minimum observed values.
The SADs-p to be spliced were neither standardized nor veiled.

Both datasets revealed close similarity to the respective
SADs-p resulting from the convergent processes (Figs. 2 and 3).
None of (i) a rank plot (Figs. 2 bottom row and 3C), (ii) the
maximum distance between simulated and observed cumulative
distributions [Kolmogorov–Smirnov statistics (KS)] (see SI Ap-
pendix, Fig. S1) or (iii) the skewness of the SADp of log-
transformed abundances (Fig. 3 A and B) revealed disagreement
between observation and the SADp resulting from the simulated
splicing from the 200th step on. Visually, the simulations fol-
lowed the usually reported shape (i.e., sigmoid and almost
symmetric rank-log-abundance plot) from the 20th step on (for

steps of 50 and 100 see Fig. 2, second and third rows). A
nonparametric DKW test (18) based on Kolmogorov–Smirnov
statistics could not reject agreement between modeled and
observed SADp in any case, whereas for the earlier steps the
agreement was rejected at P � 0.01 (see Materials and Methods).
The difference between SADp for tropical trees and central
European birds (Fig. 3C) was accurately predicted by the
difference in species spatial turnover, J, and spatial autocorre-
lation of abundances, r. The probabilistic process of splicing of
SADs-p in neighbouring subplots, modeled by our simulations,
thus represents a realistic mechanism for the emergence of
observed SADs.

Discussion
We have demonstrated a universal principle that inevitably
applies if summing variables irregularly distributed in space or
time, and thus inevitably affects the SAD. This principle is
similar to the CLT, which states that sums of the same numbers
of mutually independent variables approach a bell-shaped dis-
tribution. We argue that sums of various numbers of mutually
independent or dependent, positive variables approach a right-
skewed distribution, which is more or less symmetric on a
logarithmic scale. The crucial difference between the CLT and
our principle, i.e., ‘‘various numbers of variables,’’ corresponds
to the fact that some species are missing in some samples,
whereas the potential mutual dependence of variables corre-
sponds to spatial intraspecific correlation between abundances
of two adjacent plots. The mutual dependence is not, however,
necessary, because it only determines how heavy is the right tail
of the distribution (Fig. 1). Applying this simple principle to
abundance data, we get realistic SADs. Because missing obser-
vations (either really missing or missing because of the limita-
tions of the method of observation) and/or their mutual depen-
dence is rather common across all fields of science, we would not
be surprised if this principle governed many other asymmetric
distributions observed there (8).

Fig. 1. Probability density functions presented as histograms of distributions arising through the splicing (above: abundance classes on arithmetic scale; below:
abundance classes on logarithmic scale). Distributions of uncorrelated (A and C) and autocorrelated (B and D) abundances for high (black) and low (white) spatial
turnovers (for Settings see Materials and Methods). Low correlation and turnover (white plot in A) approach the standard Central Limit Theorem and produces
a nearly Gaussian distribution. High correlation and turnover (black plot in B) elongates the right tail, producing a right-skewed, almost lognormal (black plot
in D), distribution. The positive skewness of the distribution is thus promoted by spatial turnover and autocorrelation.
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The fit of our prediction was obtained using the simplified
assumption that both of the spatial parameters are constant over
all steps (i.e., all spatial scales). This is clearly unrealistic, because
at least spatial turnover has been reported to be scale dependent
(19). However, by parameterizing the process using measure-
ments extracted from the whole plot, we set the process by the
parameters crucial for the final convergent stage. If considering
only a small part of the transect data, we should not assume that
the observed SAD has yet converged, but we might still assume
agreement between the observed abundance distribution and
simulated SADs-p at some particular step of the process. That is
exactly what happened for all of the initial-SADs-p and, surpris-
ingly, for various settings (see Materials and Methods) of the
parameters (Fig. 4 and SI Appendix, Fig. S2). The process is thus
so pervasive that it predicts the observed shape, whatever the

initial-SADs-p, even for smaller areas with an SADs-p that does
not represent a complete convergent stage.

Having demonstrated this universal principle, it is possible to
see why so many models that have been proposed (1) produce
quite realistic SADs. All of the spatial models include the
existence of species spatial turnover and most of them spatial
autocorrelation. Various mechanisms then only tune their exact
values to fit a model to data. For instance, manipulating the
proportion of newly arriving individuals (13, 20) or the propor-
tion of newly established species (21) effectively leads to specific
levels of species turnover and spatial autocorrelation, and so it
is not surprising that it affects the shapes of resulting SADs.
Many similar processes effectively produce species turnover at
several spatial scales, which is, according to our theory, the
proximate driver of observed SADs.

Importantly, we need not assume that SADs for real assem-
blages have actually emerged because of the large number of
steps of the process described above. However, we argue that this
process encapsulates the major feature of the emergence of
observed SADp, which is the splicing of SADs-p in neighbouring
subplots. In reality, the spatial scale of the initial-SADs-p may
correspond to the spatial requirements of an individual, i.e.,
home range of an animal or the spatial requirement of a plant.
The shape of such an initial-SADs-p may be driven by that of the
species-body size distribution (22), and thus may be much less
extreme (i.e., closer to the shape resulting from the convergent
process) than those used in our simulations. The process thus
might actually require a much smaller number of steps to reach
full convergence.

Another possibility is that an SAD really originates from many
steps of splicing, starting with initial-SADs-ps for extremely
small patches. The ‘‘abundance’’ of a species in these small
patches would then be represented by the probability of species
occurrence, and the ‘‘true’’ SAD would be a frequency distri-
bution of these probabilities. Because the probability of occur-
rence corresponds to the reciprocal of the size of a species’ home
range, the SADs might still be linked with the species-body size
distribution. Both interpretations of the initial-SADs-p have the
potential to link our theory with the factors that affect landscape
properties enabling species coexistence (productivity and habitat
complexity) and species energetic and resource requirements at
very local scales. According to our theory, only at the very local
scale are biologically important processes taking place, whereas
the patterns observed at large scales are dominated by a statis-
tical process. The theory thus has the potential to separate
statistical and biological effects. Importantly, we do not need to
assume any particular ‘‘fundamental’’ scale (comprising initial-
SADs-p) from which the patterns on other scales are derived; the
convergent process leads to the observed SAD shape regardless
of the scale we begin with, given a sufficient number of splicing
steps.

Fig. 2. Comparison of observed (full line) and simulated (gray circles)
rank-log-abundance plots for tropical trees. Simulations are shown for 3
different initial-SADs-p (left-skewed, regular, right-skewed) (columns) and for
various steps of SADs-p and SADp (rows - steps 0, 50, 100, and 200–500). The
observed SADp is apparently indistinguishable from the fully converged sim-
ulated distributions, regardless of the initial-SADs-p. Plotted distributions are
standardized (mean abundance � 1) and veiled by minimum observed values
for comparison.

Fig. 3. Convergence of the shape of the SAD. (A and B) Convergent series of skewnesses of SADs-p of log-transformed abundances starting with left-skewed
(bold line), regular (thin line), and right skewed (dotted line) initial-SADs-p. Each series is parameterized by species spatial turnover and spatial autocorrelation
of (A) tropical tree and (B) central European bird data. Dashed lines show the observed skewnesses. (C) Rank-log-abundance plots of the central European bird
data (thin line), and a result of the respective convergent series (gray circles; steps 300–500), which started as the regular initial-SADs-p (dashed). For contrast
see the tropical tree data (dotted line). SADs are standardized (mean abundance � 1), and veiled by minimum observed values.
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Our approach comprises purely bottom-up processes leading
from SADs at local scales to convergent SAD at large spatial
scales. This approach is in contrast to the top-down attempts to
derive particular shapes of SADs by spatial sampling of given
regional SAD (23), and to prevailing macroecological consider-
ation of regional patterns as those determining local ones (24).
Biologically relevant processes may actually act at regional scales
or rather at many scales interacting together. Even then, the
purely statistical bottom-up process we describe has in most cases
an overwhelming influence on the shapes of regional SADs,
because it acts whenever there are particular local distributions
(of any shape), and nonzero spatial species turnover between
subplots.

Our theory provides a direct link between SADs on the one
hand and species spatial turnover and autocorrelation on the
other, i.e., between several fundamental descriptors of commu-
nity structure. Many such links have already been determined
(7), and the mathematical connections to other macroecological
patterns have been demonstrated (e.g., the species-area rela-
tionship) (25). Here, we have shown that abundance patterns can
be derived using three assumptions: (i) that most species do not
occur everywhere, (ii) that species abundances are positive (a
trivial, but critical detail), and (iii) that these abundances are
spatially autocorrelated. These assumptions represent quite uni-
versal biological observations, and thus it is understandable that
they universally lead to the observed shape of the SAD.

According to our theory, the approximately log-normal shape
of SADs, universally found in species assemblages, is a conse-
quence of a purely statistical limiting process parameterized by
species spatial turnover. The exact parameters of each particular
SAD are then given by the structure of species’ spatial distribu-
tions, and an SAD thus reflects the spatial distribution of
habitats and (meta)population and metacommunity dynamics.
Therefore, as in the case of other macroecological patterns (7),
the overall shape reflects a universal statistical process, but the
details and particular parameters reveal biology and can bring
important information about the structure and dynamics of
ecological communities.

Materials and Methods
Splicing. This is a newly introduced term for an operation over probability
distribution functions, which comprises summing and concatenating (ap-
pending) mutually dependent variables; the standard term “convolution” is
related only to summation of (mutually independent) variables. The analytical
expansion of the splicing is “f1 spliced with f2”' �1f1 � �2f2 � Jf1*cf2, where
�1 � �2� J � 1, and *c is a correlated convolution.

Simulation. It was a step-by-step process, each step with 3 inputs ((i) a pair
of identical distributions given by S real positive numbers; (ii) Jaccard index,
J; and (iii) a pair of real numbers {�min; �max}, which set up the spatial
autocorrelation of abundances), and one output (a distribution given by S
real positive numbers). Each step consisted of (i) drawing two sets of S � J
abundances (those for species common to the two subplots) from the
distributions input; (ii) making random pairs of these abundances {a1,a2} so
that �mina1 � a2 � �maxa1 (if the inequality cannot be met, the a2 that is
nearest to the constraints �mina1 and �maxa1 is attributed to the a1) and
appending a1 � a2 to the distribution in the output; (iii) drawing S � (1 �
J) abundances (those for species that occur only in one of two subplots)
from a distribution input, and appending them to the distribution in the
output. The parameter S � 5,000. Note that drawing from a distribution
given by a set of particular values does not mean that only those values can
be drawn. (For procedure and picture guide see SI Appendix, Guide and
Procedures). For utility to run the procedure, see www.cts.cuni.cz/wiki/
ecology:start.

Extracting of the Parameters. The J � Scom/Stot, where Scom is the number of
species common to the two (East and West in this case) halves of the observed
plot, and Stot is the number of species within the whole observed plot. The �min

and �max were chosen empirically to meet the observed r when running
simulations; the r is a Pearson’s correlation coefficient between abundances of
the two halves of the observed region; the species occurring in only one-half
were excluded. This applies to both the datasets.

BCI 1983 Data. Data on 307 tropical tree species from the plot of 50 ha on Barro
Colorado Island, Panama; all of the dead trees and the trees labeled as ‘‘which
not yet entered census’’ were excluded.

Transect (April–June) 2004–2005 data. Data on 144 temperate bird species
censused within 150m distance around each of 768 points along a linear
East–West transect in south Bohemia and Moravia; points were separated by
between 300 and 500 m.

Test. A test using the Dvoretzky–Kiefer–Wolfowitz inequality (P(KS��) �

2Exp(�2n�2); � � 0; P is the probability that KS oversteps the � by chance; n is
a number of samples from the tested distribution; if both the assumed and
tested distributions are given by a sample, which is the case, the inequality is
an even stronger criterion). KS takes values of 0.07 and 0.1 for steps from 200
on in cases of tropical tree and central European bird data, respectively. If we
wanted to reject the agreement of data and simulation using these values, we
would need significance levels P � 0.09 (n � 307) and P � 0.1 (n � 144),
respectively. However, the values KS �0.14 that hold for all of the steps �50
in both cases, are easy to reject at level P �� 0.01. The KS � 0.1 and level needed
for rejection P � 0.37 (n � 84) in test for the Fig. 4.

Settings. Fig. 1: Full bars J � 60%, empty bars J � 90%, regular initial-SAD,
histograms show stages 450–500; Fig. 1 A and C: {�min; �max} � {0;1099}, which
produces r� � 0; Fig. 1. B and D: {�min; �max} � {0.9;1.1}, which produces r� �
0.953; Figs. 2 and 3A: J � 88.1%, {�min; �max} � {0.9;1.11}, which produces r� �
0.95 (observed values are: J � 88.1%, r� � 0.97); Fig. 3 B and C: J � 77%, {�min;
�max} � {0.5;1.7}, which produces r� � 0.84 (observed values are: J � 76.4%, r� �
0.81); Fig. 4 A and C: J � 70%, {�min; �max} � {0.9;1.1}, r� � 0.95; Fig. 4 B and D:
J � 70%, {�min; �max} � {0.3;100}, r� � 0.195.

ACKNOWLEDGMENTS. We thank Tomáš Herben, Petr Keil, and Ethan White
for valuable comments to the text. This work was supported by Marie Curie
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