- H20 E°' = + 0.815 V b. NAD+ + 2H+ + 2 e - -» NADH + H+ E°» = - 0.315 V Subtracting reaction b from reaction a: Vi02 + NADH + H+ -> H20 + NAD+ AE°' = + 1.13 V AG0' = - nFAE0' = - 2(96485 Joules/Volt • mol)(1.13 V) = - 218 kJ/mol £-■■■> - :*a ■^ "i '• i íSíiSSKf-VSr ■:í.v. ".■■ . v. :..-.*? _ ■'S TL The solid metallic electrode q>M (Galvani potential) % (surface potential) \|/ (Volta potential)

.í..V- "-■: . V-:..'-^ ř-=.v ■», ' II... ŕ.- . . -il^-V-l.^.V"^ From without potential insertion on solid phase over / below Er more positive / more negative ^electrode polarization, overpotential F = F =F v __ i~r w-i p polarization polarizační =>77 = ED-Er P r F = F = F r equilibrium rovnovážny => begins lead an electrode process As well as each electrode process, it consists of more follow steps - levels rds - rate determining step a most slow step T] = overpotential = přepětí :;■■:: ■:-*i7ľf(.. ?->■ i -Vr ■ . ■ V íl^-V-.^.^.V^Í Electrode reactions steps Substance crossing from within of electrolyte to a level of maximal approximation => transport (diffusion) overpotential three transport mechanisms > migration - movement of ions through solution by electrostatic attraction to charged electrode > diffusion - motion of a species caused by a concentration gradient > convection - mechanical motion of the solution as a result of stirring or flow 2. Adsorption (localization) of ions or molecules in space of electric double layer 3. Dehydration (desolvation) > absolute > partial v^- none jj = overpotential = přepětí 4. Chemical reactions on a metal surface, coupled with making of intermediates capable of obtaining or losing of electrons => reaction overpotential 5. Electrode reaction - solitary electron crossing through interface => activation overpotential 6. Adsorption of primary product of electrochemical process on a metal surface 7. Desorption of a primary product 8. Transport of product from a metal surface a) Soluble product - by diffusion (the most used style) b) Gas products - by bubbling c) Products can be integrated to an electrode crystal lattice => crystalization ( nucleation) overpotential g) By diffusion to inside of electrode (for ex. amalgam) - :*í Wt 41 ^1 r- *■ ■ ■ . DYNAMIC ELECTROCHEMISTRY O + ze - <* ^ desorption O' chemical reaction -► O R hydration desolv z.e~ adsorption O ads R Electron transfer ads^ adsorption chemical reaction *----------- R desorptio R' desolv " o dehydration sol v dehydration hydration R solv Electrode Electrode surface Bulk solution Electrode kinetics - can be controlled by electrode potential Velocity of electrode process dN v = Faraday: It= NnF=Q dt = for transformation of / mol of substance with a charge of z, charge of nF coulomb is consumed ; F = 96484 coulomb/mol For transformation of dn mol ö/substance at time dt, a current / is consumed ,AT I = nF----= nFv dt Heterogeneous reactions - velocity to surface unit: Current density . / ^ d N 1 A = area i = — = nF---------- A dt A Experimental dependences: T\ =f(j) j =f(T\) polarization curves current-potential curves h".- Activation overpotential Ox + we ( .rf(l) Red Kox Mz++e~^-^M(z-1)+ ox z+ Mz^+ne < Vrt) M 3+ FeJ++e"<-?aL>Fe 2+ ox ox ox ox red red red ox J red Z7 dNox Z7 =nF——=nFv dt red /* -nF —— = nFv J OX r j at - :*í ■^ W ■"ŕ/.v-Xv-"-'- íÄŕiSSKf-VSr h".- ■:í.v. ".■■ . v. :..-.*? _ ft An expression for the rate of electrode reaction Arrhenius r *rr*\ k = A'exp \ AH RT r *~#\ Ä= A exp J \ R J Gibbs-Helmholtz k =A exp ŕ AH*-TAS*^ \ RT J í ,^*\ =A exp \ AG RT J Ox + ne <■ >Red £-> " -:í;v;S£íHří^gP- ^SŘ?^ ^ &^lfe^j$!3S*' . .L-i&b An expression for the rate of electrode reaction a is a coefficient of charge transfer = symmetry coefficient a+ac=l a= a; a = 1 - a AG*c=AG:o+acnFE AGt=AG:o-aanFE A(p for reduction .... acE A(p for oxidation .... aa E = (1- ac) E Effect of a change in applied electrode potential on the reduction of Ox to Red G I AG/ AG * CO E = E(neg.) E = 0V AG/ AG * i a.o ..y... Reaction coordinate Reaction coordinate In many cases electrode processes involving the transfer of more than one electron take place in consecutive steps. The symmetry of the activation barrier referred to the rate-determining step. an = 1.5 =^> a=0.75 ľ US ......rate - determining step - ;■_ ¥ the observed current is proportional to the difference between the rate of the oxidation and reduction reactions at the electrode surface [Red] [Ox\ I=nFA(ka[Redl-kc[Oxl) concentrations of Red and Ox next to the electrode v = k [Redl - K [Ox] * ka[Red\ ; kc\Ox\ do not grow indefinitely - limited by the transport of species to electrode Id diffusion-limited current Polarization curves without overpotential Ja -E Red = Ox + e- E equilibrium potential J =Ja + ("A) Polarization curves with activati ion ( 2 )verpotential - 1 • Ja Red = Ox + e /" • j f^^' i ' Vi E ^ % -------w Je Ox + e" = Red Ratio dependence of current density and change current density on overpotential for different or values Ja ' h 0,75 / / °'5 ^— °'25 -V ^ ' Je 'U +TJ - process of oxidation In j = In j + \l-a)n F rj RT Tafel relations r/ = a + b ln\j rj = a' +b' log \j Tafel diagram for cathode and anode current density a = 0,25 j0 = 0,1 mA logy« E eq -n ■■■;í?7Bŕ -:\-'"-:V::v.'fí ŕ.. . ■;iS1ľ-.^:í^iľ TI = f(k) j: = 10-6A.cm- 2; n = 1; c0x= ImM; az = 0.5; T=298 K k' (cm.s"1) ío-3 io-4 io-6 jO-io io-14 ri(V) 0.0002 0.003 0.12 0.59 1.06 reversible x irreversible process/ current density /j 1 metal 'hydrogen V v / Moxygen (V) Ag 0.48 0.58 Au 0.24 0.67 Cu 0.48 0.42 Hg 0.88 - Ni 0.56 0.35 1 Pt( smoothed) 0.02 0.72 | Pt(platinized) 0.01 0.40 | j = 10"3A.cm-2 T = 298 K £-■■■> - :*a ■^ "i '• i íSíiSSKf-VSr ■:í.v. ".■■ . v. :..-.*? _ ■'S TL DIFFUSION: the natural movement of species in solution without the effects of the electrical field I. Fick law: the natural movement of species isolution without the effects of the electrical field dc. dx D J = -D dc dx dNi dct '- = -DA l- dt dx concentration gradient 6i, diffusion coefficient [cmV] ; 10~5- 10"6 in aqeous solutions II. Fick law: What is the variation of concentration with time ??? dc d2Ct = D----- D = const dt d x2 - - :*a ■^ "i '• i íSíiSSKf-VSr ■:í.v. ".■■ . v. :..-.*? _ ■'S TL For any coordinate system J = -DWc V Laplace operator 3c = DV2c Laplace transformation =LT LT for Fick's second law under conditions of pure diffusion control id ■* the potential is controlled, the current response and its variation in time is registrated chronoamperometry * the current is controlled and the variation of potential with time is registrated chronopotentiometry - :*í ■^ W ■"ŕ/.v-Xv-"-'- íÄŕiSSKf-VSr h".- ■:í.v. ".■■ . v. :..-.*? _ ft Diffusion-limited current: planar and spherical electrodes Mass transport No reaction Reaction of all species reaching the electrode I t Potential step to obtain a diffusion-limited current of the electroactive species t = 0 planar electrode.....semi-infinite linear diffusion / I = nFAD Boundary conditions t = 0 c0 = c^ t >0 lim c = c „ t > 0 and de dx \ x = 0 >- c0 = 0 no electrode reaction bulk solution diffusion-limited current I. dc _ d2c d t dx £-■■■> - :*a ■^ "i '• i íSíiSSKf-VSr ■:í.v. ".■■ . v. :..-.*? _ ■'S ft r c=c \\-erfc OO t/ ^ —I>V x x {D,r > J Cottrell equation 1/2 I(t)=Id(t) = nFAD> c OO (Kt) 1/2 to planar electrode linear diffusion I(t)=Id(t)= nFADc^ to spherical electrode spherical diffusion * Small t (spherical diffusion--------► linear diffusion) 4» large t (the spherical diffusion dominates, which represents a steady state current) Microelectrodes |Li-electrodes and ultra-(Li-electrodes * small size at least one dimension 0.1-0.5 |im * steady state nFAD C * high current density -lj : 2Kľlrľ0JJCc * low total current (% electrolysis is small) * interference from natural convection is negligible (supporting electrolyte) Diffusion overpotential Ci,0 1 ô solution CÍ,oo electrode / 1 Co distance from electrode x - r v-' r.- "Í ft Diffusion overpotential Solitary electrode process is in balance E. =E°+ — n.F C; lne (y=l ^d: = c,) E_n=E?+ — c „0 lne n:F i, 0 (E°s = standard potential) overpotential required for getting over of concentration difference nd=ECi>0-E =—- In^- n:F C: I. Fick law: dt dx Nernst diffusion layer ô in stationary state dN, 7 dN; ^ . c,. - c,. 0 1 =konst. => l =-DA- lA dx dt I 1 dN Faraday: 7 _^__„ F h A ' A dt i ___ n\FD - c, -c i, 0 ^Red nFD Red KOx - nFD Ox Red Ox - j 73 i -n cat m Jd,l,anod + j A/nr2 mV Jujim j-*--"--"-?-» ed + TJ J D, lim, o x "J A/nr2 + T| mV - :*í W •■-—■ ^V.v--: V.:..", ŕ.. . ■ii^ľ-.^:::^ ft Jaroslav Heyrovsky * Dec. 20,1890, Prague, Bohemia, Austro-Hungarian Empire [now Czech Rep.] f March 27,1967, Prague, Czechoslovakia ■ -i^k J ■ m >1 í __r-k j| /,%> .vv» ^ Jaroslav Heyrovsky was an inventor of the Polarographie method, father of electroanalytical chemistry, recipient of the Nobel Prize (1959). His contribution to electroanalytical chemistry can not be overestimated. All voltammetry methods used now in electroanalytical chemistry originate from polarography developed by him. £-■■■> - :*a v.v' • • — •. ■ _ - ■^.. .■.■■.■irVY-^ ■■■■■. Half-wave potential, limited diffusion current x.- DME ^ tune Mn+ + ne- +Hg = M(Hg) amalgam a) V2 wave potential (Ey2) characteristic of Mn+ % b) height of either average current maxima (i avg) or top current max (i max) is ~ analyte concentration c) size of i max is governed by rate of growth of DME > drop time (t, sec) rate of mercury flow (m, mg/s) diffusion coefficient of analyte (D, cm2/s) number of electrons in process (n) analyte concentration (c, mol/ml) Limiting diffusion current K.cs Jdu.il .ľuiiĽii: J_____j_____I J -ü.3 -n.ň -09 -L.2 ŕppliŕti panuji. V *«, SCE llkovič equation (id)max = 0.706nD1/2m2/3t1/6c (id)avg = 0.607nD1/2m2/3t1/6c ■m« . tr Instrumentation, common techniques Autolab Ecochemie Utrecht The Netherlands VA-Stand 663 Metrohm Zurich Switzerland Electrochemical analyzer AUTOLAB Autolab 30 |®§8Ü9III6<^ £-■■■> - :*a ■^ "i '• i íSíiSSKf-VSr ■:í.v. ".■■ . v. :..-.*? _ Sflří Thank you for your attention