Poznámky k teorii rozptylu

Michal Lenc

Tento text obsahuje spíše než výklad soubor užívaných vzorečků. Není proto ani řazení kapitol nijak systematické. Text vznikl pro část přednášky Pokročilá kvantová mechanika v jarním semestru 2005 a byl mírně upraven na jaře 2008.

1	Difrakční integrál	2
2	Huygensův princip	3
3	Výpočet Fresnelova integrálu	4
4	Změna fáze při doteku kaustiky (Guyův fázový posuv)	5
5	Účinný průřez a optický teorém	6
6	Rozptyl v potenciálovém poli	7
7	Operátor Greenovy funkce	10
8	Užitečné zobecněné funkce	13
9	Užitečné ortonormální soustavy funkcí	15
9.1	Legendreovy polynomy	15
9.2	Sférické Besselovy funkce	17
10	Exaktní teorie rozptylu	18
11	Lippmanova – Schwingerova rovnice	20
12	Parciální vlny	24
13	Rozptyl při vysokých energiích	27
14	Více o parciálních vlnách	28
14.1	Bornova aproximace	29
14.2	Kvasiklasická aproximace	29
14.3	Rozptyl při vysokých energiích	31
14.4	Rozptyl při nízkých energiích	32
15	Nepružný rozptyl	33
15.1	Parciální vlny	33
15.2	Komplexní index lomu prostředí	34
16	Příklady	35
16.1	Rozptyl nukleonů	35
16.2	Rozptyl rychlých neutronů na jádře	36
16.3	Rozptyl rychlých elektronů na atomu	36
17	Rozptyl identických částic	38
18	Excitace atomu při srážce s částicí	39

Michal Lenc: Teorie rozptylu - 2 -

1 Difrakční integrál

Hledáme řešení Helmholtzovy rovnice

$$\Delta \psi(\vec{r}) + k^2 \psi(\vec{r}) = 0 \tag{1.1}$$

se zadanou hodnotou v rovině $z = z_0$ pro poloprostor $z \ge z_0$. Greenova funkce je

$$G(\vec{r}, \vec{r}_0) = \frac{\exp(ik|\vec{r} - \vec{r}_0|)}{|\vec{r} - \vec{r}_0|} \quad , \tag{1.2}$$

neboť pro $\vec{r} \neq \vec{r_0}$ je (1.2) řešením (1.1) a při integraci po kouli se středem v \vec{r} dostáváme

$$\lim_{\rho \to 0} \int_{S_{\rho}} \left(-\vec{e}_r \right) \cdot \vec{e}_r \left(\frac{ik}{\rho} - \frac{1}{\rho^2} \right) \exp\{ik\,\rho\} \rho^2 \, d\,\Omega = 4\pi \quad , \tag{1.3}$$

takže můžeme psát Greenovu větu ve tvaru

$$\psi(\vec{r}) = \frac{1}{4\pi} \int_{z \ge z_0} (G\Delta\psi - \psi\Delta G) dx_0 dy_0 dz_0 = \frac{1}{4\pi} \int_{z_0} \left(\psi \frac{\partial G}{\partial n} - G \frac{\partial \psi}{\partial n} \right) dx_0 dy_0 \quad , \quad \frac{\partial}{\partial n} = \frac{\partial}{\partial z_0} \quad .$$
(1.4)

Ve vztahu (1.4) jsme užili nikoliv vnější normálu (míří proti směru osy *z*), ale "normálu k vlnoploše" (ve směru osy *z*). Sommerfeld využil volnosti ve volbě Greenovy funkce:

$$G = \lim_{\zeta \to z_0} \left[\frac{\exp\{i \, k \, r_1\}}{r_1} - \frac{\exp\{i \, k \, r_2\}}{r_2} \right] , \qquad (1.5)$$

$$r_1 = \left[\left(x - x_0 \right)^2 + \left(y - y_0 \right)^2 + \left(z - \zeta \right)^2 \right]^{1/2} , \quad r_1 = \left[\left(x - x_0 \right)^2 + \left(y - y_0 \right)^2 + \left(z + \zeta - 2 \, z_0 \right)^2 \right]^{1/2} . \qquad (1.5)$$

$$\lim_{\zeta \to z_0} G = 0 , \quad \frac{\partial G}{\partial n} = \lim_{\zeta \to z_0} \left[\frac{\partial r_1}{\partial \zeta} \frac{d}{d \, r_1} \left(\frac{\exp\{i \, k \, r_1\}}{r_1} \right) - \frac{\partial r_2}{\partial \zeta} \frac{d}{d \, r_2} \left(\frac{\exp\{i \, k \, r_2\}}{r_2} \right) \right] , \qquad (1.6)$$

$$\lim_{\zeta \to z_0} \left(\frac{\partial r_1}{\partial \zeta} \right) = -\lim_{\zeta \to z_0} \left(\frac{\partial r_2}{\partial \zeta} \right) = \frac{z_0 - z}{\left[\left(x - x_0 \right)^2 + \left(y - y_0 \right)^2 + \left(z - z_0 \right)^2 \right]^{1/2}} = -\cos\left(\vec{n}, \vec{r} - \vec{r_0}\right) , \qquad (1.6)$$

Výsledek je tedy

$$\psi(\vec{r}) = \frac{k}{2\pi i} \int_{z_0} \left(1 - \frac{1}{i \, k \, R} \right) \frac{\exp\{i \, k \, R\}}{R} \psi(\vec{r}_0) \cos\left(\vec{n} \, , \vec{R}\right) d \, x_0 \, d \, y_0 \quad , \tag{1.7}$$

kde $\vec{R} = \vec{r} - \vec{r_0}$. Toto je exaktní výsledek. Druhý člen v první závorce integrandu je vždy zanedbáván. V dalším si ukážeme odvození difrakčního integrálu z Huygensova principu (podle Landaua a Lifšice).

2 Huygensův princip

Mějme element vlnoplochy df. Příspěvek tohoto elementu k poli v nějakém bodě P bude úměrný

- amplitudě pole *u* na uvažovaném elementu
- průmětu plochy elementu do normály ve směru paprsku, vedoucího k bodu *P* (paprsky, které budou přispívat nezávisí na tvaru plochy)
- přírůstku fáze a poklesu intensity

Celkem tedy máme

$$u(P) = a \int u \frac{\exp\{i k R\}}{R} df_n \quad . \tag{2.1}$$

Konstantu *a* určíme například pro rovinnou vlnu postupující podél osy *z*. Potom pro bod P(x,y,z) dostatečně vzdálený od roviny (ξ , η ,0) máme

$$u \approx a \frac{\exp\{ikz\}}{z} \int_{-\infty}^{\infty} \exp\left\{i\frac{k(x-\xi)^2}{2z}\right\} d\xi \int_{-\infty}^{\infty} \exp\left\{i\frac{k(y-\eta)^2}{2z}\right\} d\eta = \frac{2\pi i}{k} a \exp\{ikz\} \quad \Rightarrow \quad a = \frac{k}{2\pi i} \quad .$$

$$(2.2)$$

Máme tak výsledek v souladu s (1.7)

$$u(P) = \frac{k}{2\pi i} \int u(Q) \frac{\exp\{i k R\}}{R} \cos\left(\vec{n}_Q, \vec{R}\right) df_Q \quad .$$
(2.3)

Podívejme se, jak vypadá výpočet pro rovinnou vlnu podle (1.7). Pro bod na ose P(0,0,z) máme

$$u(P) = \frac{k}{2\pi i} \int_{0}^{2\pi} d\varphi \int_{0}^{R} \left(1 - \frac{1}{ik(\rho^{2} + z^{2})^{1/2}} \right) \frac{\exp\left\{ik(\rho^{2} + z^{2})^{1/2}\right\}}{(\rho^{2} + z^{2})^{1/2}} \frac{z}{(\rho^{2} + z^{2})^{1/2}} \rho d\rho =$$

$$-z \int_{0}^{R} \frac{d}{d\rho} \left(\frac{\exp\left\{ik(\rho^{2} + z^{2})^{1/2}\right\}}{(\rho^{2} + z^{2})^{1/2}} \right) d\rho = \exp\left\{ikz\right\} - \frac{z \exp\left\{ik(R^{2} + z^{2})^{1/2}\right\}}{(R^{2} + z^{2})^{1/2}} \quad .$$

$$(2.4)$$

Pro $R \rightarrow \infty$ máme opět rovinnou vlnu. Pozoruhodné chování, které bylo historicky velmi důležité pro uznání vlnové povahy světla vykazuje nenulová intenzita za neprostupným terčíkem, kterou z (2.4) dostaneme jako

Michal Lenc: Teorie rozptylu - 4 -

$$\int_{R}^{\infty} = \int_{0}^{\infty} -\int_{0}^{R} = \frac{z \exp\left\{i k \left(R^{2} + z^{2}\right)^{1/2}\right\}}{\left(R^{2} + z^{2}\right)^{1/2}} \quad .$$
(2.5)

3 Výpočet Fresnelova integrálu

Potřebujeme vypočítat integrál

$$F = \int_{0}^{\infty} \exp\{i x^{2}\} dx \quad .$$
 (3.1)

Cauchyova věta pro vhodnou křivku v komplexní rovině dává

$$\int_{0}^{R} \exp\{i\rho^{2}\}d\rho + \int_{0}^{\pi/4} \exp\{R^{2}(i\cos 2\theta - \sin 2\theta)\}d\theta + \exp\{i\frac{\pi}{4}\}\int_{R}^{0} \exp\{-\rho^{2}\}d\rho = 0 \quad . \quad (3.2)$$

V limitě $R \rightarrow \infty$ je

$$\int_{0}^{\infty} \exp\left\{i\,\rho^{2}\right\} d\,\rho = \exp\left\{i\frac{\pi}{4}\right\} \int_{0}^{\infty} \exp\left\{-\rho^{2}\right\} d\,\rho \tag{3.3}$$

Poissonův integrál se počítá například jako

$$\int_{0}^{\infty} \exp\{-x^{2}\} dx = \left[\int_{0}^{\infty} \exp\{-x^{2}\} dx \int_{0}^{\infty} \exp\{-y^{2}\} dy\right]^{1/2} = \left[\frac{\pi}{2}\int_{0}^{\infty} r \exp\{-r^{2}\} dr\right]^{1/2} = \frac{\pi^{1/2}}{2} \quad .$$
(3.4)

Konečný výsledek je

$$F = \int_{0}^{\infty} \exp\{i x^{2}\} dx = \frac{1}{2} \left(\frac{\pi}{2}\right)^{1/2} (1+i) \quad .$$
 (3.5)

Komplexně sdružený výraz k (3.5) je

$$F^* = \int_{0}^{\infty} \exp\{-ix^2\} dx = \frac{1}{2} \left(\frac{\pi}{2}\right)^{1/2} (1-i) \quad .$$
 (3.6)

4 Změna fáze při doteku kaustiky (Guyův fázový posuv)

Uvažujme body Q vlnoplochy z (2.3)

$$\zeta = \frac{\xi^2}{2R_1} + \frac{\eta^2}{2R_2} \tag{4.1}$$

a bod P(0,0,z) na ose. Máme tak

$$R = \left[\xi^{2} + \eta^{2} + \left(z - \frac{\xi^{2}}{2R_{1}} - \frac{\eta^{2}}{2R_{2}}\right)^{2}\right]^{\frac{1}{2}} \approx z + \left(\frac{1}{z} - \frac{1}{R_{1}}\right)\frac{\xi^{2}}{2} + \left(\frac{1}{z} - \frac{1}{R_{2}}\right)\frac{\eta^{2}}{2} \quad .$$
(4.2)

Po dosazení do (2.3)

$$u(P) \approx \frac{ku(O)}{2\pi i z} \exp\{i k z\} \int_{-\infty}^{\infty} \exp\{i \frac{k}{2} \left(\frac{1}{z} - \frac{1}{R_1}\right) \xi^2\} d\xi \int_{-\infty}^{\infty} \exp\{i \frac{k}{2} \left(\frac{1}{z} - \frac{1}{R_2}\right) \eta^2\} d\eta \quad . \quad (4.3)$$

Podle obrázku dostáváme

Vlnoplocha s kružnicemi hlavních křivostí a paprsky.

$$0 < z < R_2 \implies \frac{1}{2i} (1+i)(1+i) = 1 \implies u(P) \approx u(0) \quad ,$$

$$R_2 < z < R_1 \implies \frac{1}{2i} (1+i)(1-i) = \frac{1}{i} \implies u(P) \approx u(0) \exp\left\{-i\frac{\pi}{2}\right\} \quad , \qquad (4.4)$$

$$R_1 < z < \infty \implies \frac{1}{2i} (1-i)(1-i) = -1 \implies u(P) \approx u(0) \exp\{-i\pi\} \quad .$$

5 Účinný průřez a optický teorém

Rovinná vlna dopadající ve směru osy *z* je rozptýlena sféricky symetrickým potenciálem, takže se pak skládá z dopadající a rozptýlené vlny

$$\psi(\vec{r},t) = \psi_0 \left[\exp(ikz) + f(\theta) \frac{\exp(ikr)}{r} \right] \exp\left(-i\frac{E}{\hbar}t\right) \quad .$$
(5.1)

Tok počítáme jako

$$\vec{j} = \frac{\hbar}{2mi} \left(\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^* \right) \quad . \tag{5.2}$$

Tok v dopadající vlně je

$$\vec{j}_{in} = \frac{\hbar k}{m} |\psi_0|^2 \vec{e}_z \quad .$$
(5.3)

Tok v rozptýlené vlně je (gradient ve sférických souřadnicích $\vec{\nabla} = \vec{e}_r \partial/\partial r + \vec{e}_{\theta}/r \partial/\partial \theta + \vec{e}_{\varphi}/(r \sin \theta) \partial/\partial \varphi$)

$$\vec{j}_{sc} = \frac{\hbar k}{m} \frac{\left|f\left(\theta\right)\right|^2}{r^2} + O\left(\frac{1}{r^3}\right) \quad .$$
(5.4)

Účinný průřez je definován pomocí vztahu

$$\lim_{r \to \infty} \left| \vec{j}_{sc} \right| r^2 \, d\Omega = \left| \vec{j}_{in} \right| \, d\sigma \quad .$$
(5.5)

Na levé straně definice je tok v rozptýlené vlně do elementu prostorového úhlu $d\Omega$ ve velké vzdálenosti od rozptylového centra. Na pravé straně pak odpovídající element plochy, který přinutí tok v dopadající vlně přejít do toku v rozptýlené vlně. Dosazením (5.3) a (5.4) do (5.5) dostáváme

$$d\sigma = \left| f(\theta) \right|^2 d\Omega \quad . \tag{5.6}$$

Celkový účinný průřez je pak

$$\sigma = \int d\sigma = \int \left| f(\theta) \right|^2 d\Omega \quad . \tag{5.7}$$

Pozoruhodný vztah, který spojuje celkový učinný průřez a imaginární část amplitudy rozptylu ve směru dopadající vlny se nazývá optický teorém:

$$\Im\{f(0)\} = \frac{k}{4\pi}\sigma \quad , \tag{5.8}$$

Jednoduché odvození optického teorému pochází od van Hulsta. V dostatečné vzdálenosti za rozptylovým centrem je

- 7 -

$$\psi(\vec{r}) = \exp\{ikz\} + f(\theta)\frac{\exp\{ikr\}}{r} \quad . \tag{5.9}$$

Budeme počítat tok ploškou poloměru R, kdy jsou splněny nerovnosti

$$\frac{R}{z} \ll 1 \quad , \quad \frac{k R^2}{z} \gg 2\pi \quad , \tag{5.10}$$

což znamená, že úhlová velikost plošky (viděno z rozptylového centra) je malá, ale ploška obsahuje mnoho Fesnelových zón. Potom (polární souřadnice)

$$\left|\psi(\rho,z)\right|^2 \approx 1 + 2\Re\left\{f(0)\frac{1}{z}\exp\left\{ik\frac{\rho^2}{2z}\right\}\right\}$$
(5.11)

a tok procházející ploškou je

$$2\pi \int_{0}^{R} |\psi|^{2} \rho \, d\rho \approx \pi \, R^{2} - \frac{4\pi}{k} \Im\{f(0)\} \quad .$$
 (5.12)

Plocha je zmenšena o účinný průřez rozptylu.

6 Rozptyl v potenciálovém poli

Uvažujme o pohybu částice v potenciálovém poli. Pohyb volné částice je popsán Helmholtzovou rovnicí

$$\Delta \Psi^{(0)}(\vec{r}) + k^2 \Psi^{(0)}(\vec{r}) = 0 \quad , \quad k = \frac{p}{\hbar} = \frac{(2mE)^{1/2}}{\hbar} \quad . \tag{6.1}$$

Pohyb v potenciálovém poli potom stacionární Schrödingerovou rovnicí

$$\Delta \Psi(\vec{r}) + k^2 \Psi(\vec{r}) = \frac{2m}{\hbar^2} U(\vec{r}) \Psi(\vec{r}) \quad . \tag{6.2}$$

Řešení této rovnice můžeme napsat ve tvaru

$$\Psi(\vec{r}) = \Psi^{(0)}(\vec{r}) - \frac{2m}{\hbar^2} \int G(\vec{r} - \vec{r}_1) U(\vec{r}_1) \Psi(\vec{r}_1) d^s \vec{r}_1 \quad , \tag{6.3}$$

kde G je Greenova funkce Helmholtzovy rovnice

$$\Delta G(\vec{r} - \vec{r}_{1}) + k^{2} G(\vec{r} - \vec{r}_{1}) = -\delta^{(s)}(\vec{r} - \vec{r}_{1}) ,$$

$$G(\vec{r} - \vec{r}_{1}) = \frac{1}{4\pi} \frac{\exp\{i k |\vec{r} - \vec{r}|\}}{|\vec{r} - \vec{r}|} , \quad s = 3 ,$$

$$G(\vec{r} - \vec{r}_{1}) = \frac{i}{4} H_{0}^{(1)}\{k |\vec{r} - \vec{r}|\} , \quad s = 2 ,$$

$$G(\vec{r} - \vec{r}_{1}) = \frac{i}{2k} \exp\{i k |\vec{r} - \vec{r}|\} , \quad s = 1 .$$
(6.4)

Schrödingerovu rovnici (6.3) můžeme řešit iteračním postupem, tedy

$$\Psi^{(n+1)}(\vec{r}) = \Psi^{(0)}(\vec{r}) - \frac{2m}{\hbar^2} \int G(\vec{r} - \vec{r}_1) U(\vec{r}_1) \Psi^{(n)}(\vec{r}_1) d^s \vec{r}_1 \quad , \quad n = 0, 1, \dots \quad .$$
(6.5)

Zůstaneme-li pouze u základní iterace (n=0), nazývá se toto přibližné řešení pohybu v potenciálovém poli Bornova aproximace.

Při studiu rozptylu předpokládáme $\Psi^{(0)}(\vec{r})$ ve tvaru rovinné vlny a zajímáme se o vlnovou funkci daleko od oblasti působení potenciálu, tedy pro Greenovu funkci klademe

$$G(\vec{r}, \vec{r_{1}}) = \frac{\exp\{i \, k \, r\}}{4 \pi \, r} \exp\{-i \, k \, \vec{r_{1}} \cdot \vec{n_{f}}\} , \quad s = 3 ,$$

$$G(\vec{r}, \vec{r_{1}}) = \frac{(1+i) \exp\{i \, k \, r\}}{4 \sqrt{\pi \, k \, r}} \exp\{-i \, k \, \vec{r_{1}} \cdot \vec{n_{f}}\} , \quad s = 2 ,$$

$$G(\vec{r}, \vec{r_{1}}) = \frac{i \exp\{i \, k \, r\}}{2 \, k} \exp\{-i \, k \, \vec{r_{1}} \cdot \vec{n_{f}}\} , \quad s = 1 .$$
(6.6)

V exponentu jsme aproximovali

$$\left|\vec{r} - \vec{r_1}\right| = r \left(1 - 2\,\vec{n_f} \cdot \frac{\vec{r_1}}{r} + \frac{r_1^2}{r^2}\right)^{1/2} \approx r - \vec{n_f} \cdot \vec{r_1} \quad , \tag{6.7}$$

přičemž jsem označili jako $\vec{n}_f = \vec{r}/r$ jednotkový vektor ve směru pozorování. Dopadající rovinná vlna je pak

$$\Psi^{(0)}(\vec{r}) = \exp\{i\,\vec{k}\cdot\vec{r}\} = \exp\{i\,k\,r\,\vec{n}_i\cdot n_f\} \quad , \tag{6.8}$$

s označením jednotkového vektoru ve směru dopadu $\vec{n}_i = \vec{k}/k$. Vlnová funkce pak je

$$\Psi(\vec{r}) = \exp\{i\,k\,r\,\vec{n}_i\cdot\vec{n}_f\} + \frac{2\,\pi}{k} \left(\frac{k}{2\,\pi\,r}\right)^{(s-1)/2} f\left(\vec{n}_i,\vec{n}_f\right) \exp\{i\,k\,r\} \quad , \tag{6.9}$$

kde $f(\vec{n}_i, \vec{n}_f)$ je amplituda rozptylu

$$f(\vec{n}_{i},\vec{n}_{f}) = \frac{m}{2\pi\hbar^{2}} \exp\left\{-\frac{i(s+1)\pi}{4}\right\} \int \exp\{-ik\vec{r}_{1}\cdot\vec{n}_{f}\} U(\vec{r}_{1})\Psi(\vec{r}_{1})d^{s}\vec{r}_{1} \quad .$$
(6.10)

Amplituda rozptylu v Bornově aproximaci je

$$f_B(\vec{n}_i, \vec{n}_f) = \frac{m}{2\pi\hbar^2} \exp\left\{-\frac{i(s+1)\pi}{4}\right\} \int \exp\left\{ik\vec{r}_1 \cdot (\vec{n}_i - \vec{n}_f)\right\} U(\vec{r}_1) d^s\vec{r}_1 \quad .$$
(6.11)

V trojrozměrném případě dostáváme pro amplitudu rozptylu dopředu ($\bar{n}_i = \bar{n}_f$) výraz

$$f_B(\theta=0) = -\frac{m}{2\pi\hbar^2} \int U(\vec{r}_1) d^3 \vec{r}_1 \quad .$$
 (6.12)

To je reálná veličina, což je v rozporu s optickým teorémem a omezuje to platnost jinak velmi užitečné aproximace na případ velmi slabého rozptylu. Také v dalším se omezíme na trojrozměrný případ. Podíl pravděpodobnosti toho, že rozptýlená částice projde za jednotku času plošným elementem $dS = r^2 d\Omega$ a hustoty toku částic v dopadajícím svazku nazveme diferenciálním účinným průřezem $d\sigma$

$$d\sigma = \left| f\left(\vec{n}_i, \vec{n}_f \right) \right|^2 d\Omega_f \quad . \tag{6.13}$$

Vytvořme lineární kombinaci (klubko) dopadajících rovinných vln. Metoda asymptotického rozvoje vede pak k přibližnému vyjádření člene s rychle oscilujícím integrandem

$$\Psi(\vec{r}) = \int F(\vec{n}) \exp\{ikr\vec{n}\cdot\vec{n}_{f}\} d\Omega + \frac{\exp\{ikr\}}{r} \int F(\vec{n})f(\vec{n},\vec{n}_{f}) d\Omega = 2\pi i F(-\vec{n}_{f}) \frac{\exp\{-ikr\}}{kr} - 2\pi i F(\vec{n}_{f}) \frac{\exp\{ikr\}}{kr} + \frac{\exp\{ikr\}}{r} \int F(\vec{n})f(\vec{n},\vec{n}_{f}) d\Omega \quad .$$

$$(6.14)$$

Výraz přepíšeme na

$$\Psi(\vec{r}) = \frac{\exp\{-ikr\}}{kr} F(-\vec{n}_f) - \frac{\exp\{ikr\}}{kr} \hat{S} F(\vec{n}_f) ,$$

$$\hat{S} = \hat{1} + 2ik\hat{f} , \quad \hat{f} F(\vec{n}_f) = \frac{1}{4\pi} \int F(\vec{n}) f(\vec{n}, \vec{n}_f) d\Omega .$$
(6.15)

Poněvadž tok ve sbíhavé vlně musí být roven toku v rozbíhavé vlně, dostáváme pro operátory \hat{S} a \hat{f} podmínky

$$\hat{S}\hat{S}^{+} = \hat{1}$$
, $\hat{f} - \hat{f}^{+} = 2ik\hat{f}\hat{f}^{+}$. (6.16)

Rozepsáno v maticovém zápisu

$$f(\vec{n}_{i},\vec{n}_{f}) - f^{*}(\vec{n}_{f},\vec{n}_{i}) = \frac{ik}{2\pi} \int f(\vec{n}_{i},\vec{n}_{i}) f^{*}(\vec{n}_{f},\vec{n}_{i}) d\Omega_{1} \quad .$$
(6.17)

Ve vztahu (6.17) jsme použili vyjádření

$$\langle \vec{n}_a | \hat{f}^+ | \vec{n}_b \rangle = \langle \vec{n}_b | \hat{f} | \vec{n}_a \rangle^* , \quad \frac{1}{4\pi} \int | \vec{n} \rangle d\Omega \langle \vec{n} | = \hat{1} .$$
 (6.18)

Pro imaginární část amplitudy rozptylu ve směru dopadajícího svazku dostáváme optický teorém

$$\Im\{f(\vec{n}_i,\vec{n}_i)\} = \frac{k}{4\pi}\sigma \quad , \quad \sigma = \int |f(\vec{n}_i,\vec{n})|^2 d\Omega \quad . \tag{6.19}$$

Vzhledem k symetrii Schrödingerovy rovnice vůči časové inverzi musí být řešením také komplexně sdružená funkce

$$\Psi^{*}(\vec{r}) = \frac{\exp\{i k r\}}{k r} F^{*}(-\vec{n}_{f}) - \frac{\exp\{-i k r\}}{k r} \hat{S}^{*} F^{*}(\vec{n}_{f}) = \frac{\exp\{-i k r\}}{k r} \Phi(-\vec{n}_{f}) - \frac{\exp\{i k r\}}{k r} \hat{P} \hat{S}^{T} \hat{P} \Phi(\vec{n}_{f}) , \qquad (6.20)$$

kde

$$\Phi(-\vec{n}) = -\hat{S}^* F^*(\vec{n}) \quad , \quad F(-\vec{n}) = -\hat{P} F(\vec{n}) \quad . \tag{6.21}$$

Porovnáním (6.15) a (6.20) dostáváme relaci

$$\hat{P}\hat{S}^{T}\hat{P} = \hat{S}$$
, $\hat{P}\hat{f}^{T}\hat{P} = \hat{f}$, $f(\vec{n}_{i},\vec{n}_{f}) = f(-\vec{n}_{f},-\vec{n}_{i})$. (6.22)

7 Operátor Greenovy funkce

Operátor Greenovy funkce definujeme jako inversní operátor k operátoru vlastní hodnoty hamiltoniánu

$$\lim_{\varepsilon \to 0} \left(E - \hat{H} + i \varepsilon \right) \hat{G} = \hat{1} \quad , \quad \hat{G} = \lim_{\varepsilon \to 0} \frac{1}{E - \hat{H} + i \varepsilon} \quad . \tag{7.1}$$

Často budeme potřebovat větu: Buď f(z) funkce analytická pro $\Im\{z\} \ge 0$ s vyjímkou konečného počtu pólů, $f(z) \rightarrow 0$ pro $|z| \rightarrow \infty$ rovnoměrně. Potom pro hlavní hodnotu \mathscr{O} nevlastního integrálu dostáváme

$$\wp\left\{\int_{-\infty}^{\infty} f(x)dx\right\} = 2\pi i \sum R + \pi i \sum R_0 \quad , \tag{7.2}$$

kde *R* jsou residua v pólech v horní polorovině, R_0 residua v pólech na reálné ose (např. Whittaker a Watson, A Course of Modern Analysis). Důsledkem je, že pro funkci analytickou v horní polorovině (včetně reálné osy) nebo dolní polorovině (včetně reálné osy) můžeme psát (integrál vlevo můžeme doplněním křivky polokružnicí se středem v počátku a s poloměrem jdoucím k nekonečnu převést na sumu

residuí funkce *f* v horní nebo dolní polorovině, druhý výraz vpravo je záporně vzaté residuum (pro funkci analytickou v horní polorovině) nebo residuum (pro funkci analytickou v dolní polorovině) v pólu na reálné ose

$$\lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \frac{f(x)}{x - x_0 \pm i\varepsilon} dx = \wp \left\{ \int_{-\infty}^{\infty} \frac{f(x)}{x - x_0} dx \right\} \mp i\pi f(x_0) \quad ,$$

$$\lim_{\varepsilon \to 0} \frac{1}{x - x_0 \pm i\varepsilon} = \wp \left\{ \frac{1}{x - x_0} \right\} \mp i\pi \delta(x - x_0) \quad .$$
(7.3)

Specielně pro exponenciální funkci máme

$$\mathscr{D}\left\{\int_{-\infty}^{\infty} \frac{\exp\{ixt\}}{x-x_0} dx\right\} = i\pi \exp\{ix_0t\} \quad , \quad t > 0 \quad ,$$

$$\mathscr{D}\left\{\int_{-\infty}^{\infty} \frac{\exp\{ixt\}}{x-x_0} dx\right\} = -i\pi \exp\{ix_0t\} \quad , \quad t < 0 \quad .$$

$$(7.4)$$

Pro hamiltonián složený ze dvou částí $\hat{H} = \hat{H}_0 + \hat{V}$, \hat{H}_0 je základní část (neporušený hamiltonián), \hat{V} je interakční část (porucha), můžeme hledat řešení rovnice pro Greenovu funkci (7.1) pomocí vztahů

$$\lim_{\varepsilon \to 0} \frac{1}{E - \hat{H}_0 + i\varepsilon} + \lim_{\varepsilon \to 0} \frac{1}{E - \hat{H}_0 + i\varepsilon} \hat{V} \lim_{\varepsilon \to 0} \frac{1}{E - \hat{H}_0 - \hat{V} + i\varepsilon} = \\
\lim_{\varepsilon \to 0} \frac{1}{E - \hat{H}_0 + i\varepsilon} \left[\hat{1} + \hat{V} \lim_{\varepsilon \to 0} \frac{1}{E - \hat{H}_0 - \hat{V} + i\varepsilon} \right] = \\
\lim_{\varepsilon \to 0} \frac{1}{E - \hat{H}_0 + i\varepsilon} \left[\lim_{\varepsilon \to 0} \left(E - \hat{H}_0 - \hat{V} + i\varepsilon \right) + \hat{V} \right] \lim_{\varepsilon \to 0} \frac{1}{E - \hat{H}_0 - \hat{V} + i\varepsilon} = \\
\lim_{\varepsilon \to 0} \frac{1}{E - \hat{H}_0 - \hat{V} + i\varepsilon} ,$$
(7.5)

a tedy

$$\hat{G} = \hat{G}_0 + \hat{G}_0 \hat{V} \hat{G} \quad , \quad \hat{G} = \hat{G}_0 + \hat{G}_0 \hat{V} \hat{G}_0 + \hat{G}_0 \hat{V} \hat{G}_0 \hat{V} \hat{G}_0 + \dots$$
(7.6)

Pro vlnovou funkci dostáváme

$$|\Psi\rangle = \frac{1}{\hat{1} - \hat{G}_{0}\hat{V}} |\Psi^{(0)}\rangle = \left[\hat{1} + \hat{G}_{0}\hat{V} + \hat{G}_{0}\hat{V}\hat{G}_{0}\hat{V} + \dots\right] |\Psi^{(0)}\rangle = \left[\hat{1} + \left(\hat{G}_{0} + \hat{G}_{0}\hat{V}\hat{G}_{0} + \dots\right)\hat{V}\right] |\Psi^{(0)}\rangle = \left[\hat{1} + \hat{G}\hat{V}\right] |\Psi^{(0)}\rangle .$$

$$(7.7)$$

Zapíšeme-li Hamiltonův operátor \hat{H} pomocí vlastních vektorů $|\Psi_m\rangle$ a Hamiltonův operátor \hat{H}_0 pomocí

Michal Lenc: Teorie rozptylu - 12 -

vlastních vektorů $\left| \Phi_{m} \right\rangle$

$$\hat{H} = \sum_{m} E_{m} |\Psi_{m}\rangle \langle \Psi_{m}| \quad , \quad \hat{H}_{0} = \sum_{m} E_{m}^{(0)} |\Phi_{m}\rangle \langle \Phi_{m}| \quad , \tag{7.8}$$

můžeme pro operátory Greenovy funkce psát

$$\hat{G} = \lim_{\varepsilon \to 0} \sum_{m} \frac{|\Psi_{m}\rangle \langle \Psi_{m}|}{E - E_{m} + i\varepsilon} \quad , \quad \hat{G}_{0} = \lim_{\varepsilon \to 0} \sum_{m} \frac{|\Phi_{m}\rangle \langle \Phi_{m}|}{E - E_{m}^{(0)} + i\varepsilon} \quad .$$
(7.9)

Pro stopu operátoru Greenovy funkce máme

$$\operatorname{Tr}\left\{\hat{G}\right\} = \lim_{\varepsilon \to 0} \sum_{m} \frac{1}{E - E_{m} + i\varepsilon} \quad .$$
(7.10)

Greenova funkce v souřadnicové representaci je

$$\langle \vec{r} | \hat{G} | \vec{r'} \rangle \equiv G(\vec{r}, \vec{r'} | E) = \lim_{\varepsilon \to 0} \sum_{m} \frac{\Psi_{m}^{*}(\vec{r'}) \Psi_{m}(\vec{r})}{E - E_{m} + i\varepsilon} ,$$

$$\int G(\vec{r}, \vec{r} | E) d^{s} \vec{r} = \lim_{\varepsilon \to 0} \sum_{m} \frac{1}{E - E_{m} + i\varepsilon} .$$

$$(7.11)$$

Pro kvasikontinuální energiové spektrum přejdeme od sumace k integraci

$$\sum_{m} f(E_{m}) \rightarrow \int f(x)\rho(x)dx \quad , \tag{7.12}$$

takže můžeme psát

$$\int G(\vec{r}, \vec{r} | E) d^{s} \vec{r} = \lim_{\varepsilon \to 0} \int \frac{\rho(x)}{E - x + i\varepsilon} dx ,$$

$$\rho(E) = -\frac{1}{\pi} \Im \left\{ \int G(\vec{r}, \vec{r} | E) d^{s} \vec{r} \right\} .$$
(7.13)

Pro volné částice platí

$$E_{\vec{k}} = \frac{\hbar^{2} k^{2}}{2m} , \quad \Psi_{\vec{k}}(\vec{r}) = \frac{1}{\sqrt{\Omega}} \exp\{i\vec{k}\cdot\vec{r}\} , \quad \rho(E_{\vec{k}})dE_{\vec{k}} = \frac{\Omega}{(2\pi)^{s}}d^{s}\vec{k} ,$$

$$G(\vec{r},\vec{r}'|E) = \frac{2m}{(2\pi)^{s}} \lim_{\epsilon \to 0} \int \frac{\exp\{i\vec{k}\cdot(\vec{r}-\vec{r}')\}}{2mE-\hbar^{2}\vec{k}^{2}+i\epsilon}d^{s}\vec{k} .$$
(7.14)

Greenova funkce pro časově závislou Schrödingerovu rovnici (přitom \hat{H} explicitně nezávisí na čase) je

$$G\left(\vec{r},t\middle|\vec{r}',t'\right) = \int_{-\infty}^{\infty} \frac{dE}{2\pi\hbar} \exp\left\{-\frac{i}{\hbar}E\left(t-t'\right)\right\} \lim_{\varepsilon \to 0} \sum_{m} \frac{\Psi_{m}^{*}\left(\vec{r}'\right)\Psi_{m}\left(\vec{r}\right)}{E-E_{m}+i\varepsilon} ,$$

$$G\left(\vec{r},t\middle|\vec{r}',t'\right) = \begin{cases} \frac{i}{\hbar} \sum_{m} \Psi_{m}^{*}\left(\vec{r}'\right)\Psi_{m}\left(\vec{r}\right)\exp\left\{-\frac{i}{\hbar}E_{m}\left(t-t'\right)\right\} & t \ge t' \\ 0 & t < t' \end{cases} .$$

$$(7.15)$$

Pro volné částice je

$$G(\vec{r},t|\vec{r}',t') = \begin{cases} \left[\frac{m}{2\pi i \hbar(t-t')}\right]^{s/2} \exp\left\{i\frac{m(\vec{r}-\vec{r}')^2}{2\hbar(t-t')}\right\} & t \ge t' \\ 0 & t < t' \end{cases}$$
(7.16)

8 Užitečné zobecněné funkce

Působení zobecněných funkcí na prostoru "hodných" funkcí jedné proměnné Φ je zobrazení těchto funkcí do prostoru komplexních (reálných) čísel

$$F: \Phi \ni \varphi \to \langle F, \varphi \rangle \in \mathbb{C} \quad . \tag{8.1}$$

Jedna ze zobecněných funkcí má původ ve výpočtu Cauchyho vlastní hodnoty integrálu funkce s jednoduchým pólem na reálné ose. Obecně je Cauchyho vlastní hodnota definována jako

$$\operatorname{Vp}\int_{-\infty}^{\infty} dx f(x) = \lim_{\varepsilon \to 0} \left\{ \int_{-\infty}^{-\varepsilon} dx f(x) + \int_{\varepsilon}^{\infty} dx f(x) \right\} \quad .$$
(8.2)

Definujeme zobecněnou funkci $\mathcal{P}(1/x)$ jako

$$\mathcal{P}\frac{1}{x}: \Phi \ni \varphi(x) \rightarrow \left\langle \mathcal{P}\frac{1}{x}, \varphi(x) \right\rangle \equiv \operatorname{Vp} \int_{-\infty}^{\infty} dx \frac{\varphi(x)}{x} .$$
 (8.3)

Dále definujeme Diracovu delta (zobecněnou) funkci

$$\delta(x): \Phi \ni \varphi(x) \to \langle \delta(x), \varphi(x) \rangle \equiv \varphi(0) \quad . \tag{8.4}$$

Poslední vztah (8.4) je zapisován také jako

$$\int_{-\infty}^{\infty} dx \,\delta(x)\varphi(x) = \varphi(0) \quad . \tag{8.5}$$

Pomocí zobecněných funkcí (8.3) a (8.4) můžeme vyjádřit jiné důležité zobecněné funkce, tj.

Michal Lenc: Teorie rozptylu - 14 -

$$\frac{1}{x+i\varepsilon}: \Phi \ni \varphi(x) \to \left\langle \frac{1}{x+i\varepsilon}, \varphi(x) \right\rangle \equiv \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} dx \frac{\varphi(x)}{x+i\varepsilon}$$
(8.6)

а

$$\frac{1}{x-i\varepsilon}: \quad \Phi \ni \varphi(x) \quad \to \quad \left\langle \frac{1}{x-i\varepsilon}, \varphi(x) \right\rangle \equiv \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} dx \frac{\varphi(x)}{x-i\varepsilon} \quad . \tag{8.7}$$

Platí (Sochockého vztahy)

$$\frac{1}{x+i\varepsilon} = \mathcal{P}\frac{1}{x} - i\pi\,\delta(x) \quad , \tag{8.8}$$

а

$$\frac{1}{x-i\varepsilon} = \mathcal{P}\frac{1}{x} + i\pi\,\delta(x) \quad . \tag{8.9}$$

Důkaz není obtížný. Vezměme nejprve

$$\left\langle \frac{1}{2} \left(\frac{1}{x - i\varepsilon} - \frac{1}{x + i\varepsilon} \right), \varphi(x) \right\rangle =$$

$$i \lim_{\varepsilon \to 0} \varepsilon \int_{-\infty}^{\infty} dx \frac{\varphi(x)}{x^2 + \varepsilon^2} = i \lim_{\varepsilon \to 0} \varepsilon \int_{-\infty}^{\infty} dx \frac{\varphi(0) + x \varphi'(0) + \cdots}{x^2 + \varepsilon^2} = i \pi \varphi(0) \quad .$$

$$(8.10)$$

Dále pak

$$\left\langle \frac{1}{2} \left(\frac{1}{x - i\varepsilon} + \frac{1}{x + i\varepsilon} \right), \varphi(x) \right\rangle = \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} dx \frac{x \varphi(x)}{x^2 + \varepsilon^2} =$$

$$\operatorname{Pv} \int_{-\infty}^{\infty} dx \frac{\varphi(x)}{x} + \lim_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} dx x \frac{\varphi(0) + x \varphi'(0) + \cdots}{x^2 + \varepsilon^2} = \operatorname{Pv} \int_{-\infty}^{\infty} dx \frac{\varphi(x)}{x} \quad .$$
(8.11)

Odečtením a přičtením (8.10) k (8.11) dostáváme Sochockého vztahy. Podívejme se teď na integrál

$$I_{+} = \int_{-\infty}^{\infty} dx \frac{\varphi(x)}{x - x_{0} + i\varepsilon}$$
(8.12)

z pohledu teorie funkce komplexní proměnné. Je-li funkce $\varphi(x)$ analytická v horní (dolní) polorovině, můžeme doplněním integrálu po reálné ose integrálem po polokružnici v horní (dolní) polorovině se středem v počátku a s poloměrem jdoucím do nekonečna použít Cauchyovy věty. Dostáváme pak (v prvním případě má křivkový integrál souhlasnou orientaci s reálnou osou, v druhém opačnou) Michal Lenc: Teorie rozptylu - 15 -

$$I_{+} = \int_{-\infty}^{\infty} dx \frac{\varphi(x)}{x - x_{0} + i\varepsilon} = \begin{cases} 0\\ -2\pi i\varphi(x_{0}) \end{cases}$$
(8.13)

Obdobně dostaneme

$$I_{-} = \int_{-\infty}^{\infty} dx \frac{\varphi(x)}{x - x_0 - i\varepsilon} = \begin{cases} 2\pi i \varphi(x_0) \\ 0 \end{cases}$$
(8.14)

9 Užitečné ortonormální soustavy funkcí

9.1 Legendreovy polynomy

Legendreovy polynomy $P_l(\cos\theta)$, l=0,1,... jsou definovány jako

$$P_l(\cos\theta) = \frac{1}{2^l l!} \frac{d^l}{\left(d\cos\theta\right)^l} \left(\cos^2\theta - 1\right)^l \quad . \tag{9.1}$$

Jsou řešením diferenciální rovnice

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dP_l(\cos\theta)}{d\theta} \right) + l(l+1)P_l(\cos\theta) = 0 \quad . \tag{9.2}$$

Na intervalu (-1,1)tvoří polynomy $P_i(x)$ ortogonální systém, tj.

$$\int_{-1}^{1} P_{l}(x) P_{l'}(x) dx = \frac{2}{2l+1} \delta_{ll'} \quad .$$
(9.3)

Přidružené Legendreovy polynomy $P_l^m(\cos\theta), m=0,1,...,l$ jsou definovány jako

$$P_l^m(\cos\theta) = \sin^m\theta \frac{d^m P_l(\cos\theta)}{(d\cos\theta)^m} = \frac{1}{2^l l!} \sin^m\theta \frac{d^{l+m}}{(d\cos\theta)^{l+m}} (\cos^2\theta - 1)^l$$
(9.4)

a jsou řešením diferenciální rovnice

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dP_l^m(\cos\theta)}{d\theta} \right) + \left[l(l+1) - \frac{m^2}{\sin^2\theta} \right] P_l^m(\cos\theta) = 0 \quad . \tag{9.5}$$

Platí

$$\int_{-1}^{1} P_{l}^{m}(x) P_{l'}^{m}(x) dx = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{ll'} \qquad (9.6)$$

Normované funkce jsou (a zde se mohou lišit různí autoři ve fázovém faktoru, zde zvolený je podle Landaua a Lifšice)

$$\Theta_{l}^{m}(\cos\theta) = (-1)^{m} i^{l} \left[\frac{2l+1}{2} \frac{(l-m)!}{(l+m)!} \right] P_{l}^{m}(\cos\theta) , \quad m = 0, 1, ..., l$$

$$\Theta_{l}^{m}(\cos\theta) = i^{l} \left[\frac{2l+1}{2} \frac{(l-|m|)!}{(l+|m|)!} \right] P_{l}^{|m|}(\cos\theta) , \quad m = -l, -l+1, ..., -l$$
(9.7)

Přidáme-li ještě ortonormální soustavu na intervalu $(0, 2\pi)$

$$\Phi_m(\varphi) = \frac{1}{(2\pi)^{1/2}} \exp\{i m \varphi\} \quad , \tag{9.8}$$

dostáváme ortonormální systém sférických funkcí

$$Y_{lm}(\theta,\varphi) = (-1)^{m+|m|} i^{l} \left[\frac{2l+1}{4\pi} \frac{(l-|m|)!}{(l+|m|)!} \right] P_{l}^{|m|}(\cos\theta) \exp\{i \, m \, \varphi\} \quad , \tag{9.9}$$

relace ortonormality jsou

$$\int_{0}^{2\pi} \int_{0}^{\pi} \left(Y_{l'm'}\left(\theta,\varphi\right) \right)^{*} Y_{lm}\left(\theta,\varphi\right) \sin\theta \, d\theta \, d\varphi = \delta_{l'l} \, \delta_{m'm} \quad . \tag{9.10}$$

Zjevně platí

$$\left(Y_{lm}\left(\theta,\varphi\right)\right)^{*} = \left(-1\right)^{l-m} Y_{l,-m}\left(\theta,\varphi\right) \quad . \tag{9.11}$$

Sférické funkce nejnižších řádů jsou

$$Y_{0}^{0} = \frac{1}{(4\pi)^{1/2}} , \quad Y_{1}^{0} = i \left(\frac{3}{4\pi}\right)^{1/2} \cos\theta , \quad Y_{1}^{\pm 1} = \mp i \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta \exp\{\pm i\,\varphi\} ,$$

$$Y_{2}^{0} = \left(\frac{5}{16\pi}\right)^{1/2} \left(1 - 3\cos^{2}\theta\right) , \qquad (9.12)$$

$$Y_{2}^{\pm 1} = \pm \left(\frac{15}{8\pi}\right)^{1/2} \cos\theta \sin\theta \exp\{\pm i\,\varphi\} , \quad Y_{2}^{\pm 2} = -\left(\frac{15}{32\pi}\right)^{1/2} \sin^{2}\theta \exp\{\pm 2i\,\varphi\} .$$

Označíme-li \vec{n} jednotkový vektor charakterizovaný azimutálním úhlem θ a polárním úhlem φ , můžeme značit $Y_{lm}(\theta, \varphi) \equiv Y_{lm}(\vec{n})$. Řada vztahů vypadá jednodušeji, užijeme-li identity

$$P_{l}(\cos\omega) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} \left(Y_{lm}(\Theta, \Phi) \right)^{*} Y_{lm}(\theta, \varphi) \quad , \qquad (9.13)$$

kde $\cos \omega = \cos \Theta \cos \theta + \sin \Theta \sin \theta \cos (\Phi - \varphi)$, nebo ve značení pomocí jednotkových vektorů

Michal Lenc: Teorie rozptylu - 17 -

$$P_{l}\left(\vec{n}'\cdot\vec{n}\right) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} \left(Y_{lm}\left(\vec{n}'\right)\right)^{*} Y_{lm}\left(\vec{n}\right) \quad .$$
(9.14)

9.2 Sférické Besselovy funkce

Sférické Besselovy funkce $j_l(z)$ a $n_l(z)$ nebo $h_l^{(+)}(z)$ a $h_l^{(-)}(z)$ jsou řešením rovnice

$$f''(z) + \frac{2}{z}f'(z) + \left[1 - \frac{l(l+1)}{z^2}\right]f(z) = 0 \quad .$$
(9.15)

Máme

$$j_{l}(z) = \left(\frac{\pi}{2z}\right)^{1/2} J_{l+1/2}(z) , \quad n_{l}(z) = \left(\frac{\pi}{2z}\right)^{1/2} N_{l+1/2}(z) ,$$

$$h_{l}^{(+)}(z) = -n_{l}(z) + i j_{l}(z) = i \left(\frac{\pi}{2z}\right)^{1/2} H_{l+1/2}^{(1)}(z) , \qquad (9.16)$$

$$h_{l}^{(-)}(z) = -n_{l}(z) - i j_{l}(z) = -i \left(\frac{\pi}{2z}\right)^{1/2} H_{l+1/2}^{(2)}(z) .$$

Kromě obvyklého vyjádření pomocí řad je možné zapsat sférické Besselovy funkce jako

$$j_{l}(z) = (-1)^{l} z^{l} \left(\frac{1}{z} \frac{d}{dz}\right)^{l} \frac{\sin z}{z} \quad , \quad n_{l}(z) = (-1)^{l+1} z^{l} \left(\frac{1}{z} \frac{d}{dz}\right)^{l} \frac{\cos z}{z} \quad . \tag{9.17}$$

Sférické Besselovy funkce řádu 0, 1 a 2 jsou

$$j_{0}(z) = \frac{\sin z}{z} , \quad j_{1}(z) = \frac{\sin z}{z^{2}} - \frac{\cos z}{z} , \quad j_{2}(z) = \left(\frac{3}{z^{3}} - \frac{1}{z}\right) \sin z - \frac{3\cos z}{z^{2}} ,$$

$$n_{0}(z) = -\frac{\cos z}{z} , \quad n_{1}(z) = -\frac{\cos z}{z^{2}} - \frac{\sin z}{z} , \quad n_{2}(z) = -\left(\frac{3}{z^{3}} - \frac{1}{z}\right) \cos z - \frac{3\sin z}{z^{2}} .$$
(9.18)

Asymptotické vyjádření je

$$j_{l}(z) \xrightarrow[z \to \infty]{} \frac{1}{z} \sin\left(z - l\frac{\pi}{2}\right) , \quad n_{l}(z) \xrightarrow[z \to \infty]{} -\frac{1}{z} \cos\left(z - l\frac{\pi}{2}\right) ,$$

$$h_{l}^{(+)}(z) \xrightarrow[z \to \infty]{} \frac{1}{z} \exp\left\{i\left(z - l\frac{\pi}{2}\right)\right\} , \quad h_{l}^{(-)}(z) \xrightarrow[z \to \infty]{} \frac{1}{z} \exp\left\{-i\left(z - l\frac{\pi}{2}\right)\right\} .$$

$$(9.19)$$

Pro hodnoty argumentu blízké nule je

$$j_{l}(z) \xrightarrow[z \to 0]{} \frac{z^{l}}{(2l+1)!!} , \quad n_{l}(z) \xrightarrow[z \to 0]{} -\frac{(2l-1)!!}{z^{l+1}} \quad l = 0, 1, 2, \dots ,$$

$$(2l+1)!! = (2l+1) \cdot (2l-1) \dots 3 \cdot 1 .$$

$$(9.20)$$

Michal Lenc: Teorie rozptylu - 18 -

Specielně

$$j_0(z) \xrightarrow[z \to 0]{} 1$$
, $n_0(z) \xrightarrow[z \to 0]{} -\frac{1}{z}$. (9.21)

Pro sférické Besselovy funkce platí relace ortogonality

$$\int_{0}^{\infty} j_{l}(p'r) j_{l}(pr) r^{2} dr = \frac{\pi}{2p^{2}} \delta(p'-p) = \frac{\pi}{2mp} \delta(E'-E) \quad .$$
(9.22)

10 Exaktní teorie rozptylu

Hamiltonián je na čase nezávislý a skládá se z hamiltoniánu volné částice a interakčního potenciálu

$$\hat{H} = \hat{H}_0 + \hat{V}$$
 . (10.1)

Přesto má rozptylová úloha charakter časově závislé úlohy. Je to dáno předpokladem, že pro $t \to -\infty$ je stav částice takový, že lze působení interakčního potenciálu zanedbat. Totéž předpokládáme o situaci v časech, kdy $t \to \infty$. Stav částice v t=0 označíme $|\psi\rangle$, stav volné částice v t=0 označíme $|\phi\rangle$, takže máme

$$|\psi(t)\rangle = \exp\{-i\hat{H}t\}|\psi\rangle$$
 (10.2)

а

$$|\phi(t)\rangle = \exp\{-i\hat{H}_0 t\}|\phi\rangle$$
 (10.3)

Hledáme takové řešení rozptylové úlohy, které se bude asymptoticky blížit nějakým řešením pro volnou částici, tj.

$$\lim_{t \to -\infty} \left\| \exp\left\{ -i \,\hat{H} \, t \right\} \left| \psi \right\rangle - \exp\left\{ -i \,\hat{H}_0 \, t \right\} \left| \phi_- \right\rangle \right\| = 0 \tag{10.4}$$

pro $t \rightarrow -\infty$ a

$$\lim_{t \to \infty} \left\| \exp\{-i\hat{H}t\} |\psi\rangle - \exp\{-i\hat{H}_0t\} |\phi_+\rangle \right\| = 0$$
(10.5)

 $t \to \infty$. To uděláme ve dvou krocích: 1) pro nějaký zadaný stav $|\phi_{-}\rangle \in \mathcal{H}$ sestrojíme $|\psi\rangle$ tak, aby byl splněn vztah (10.4) a 2) pro takto získané $|\psi\rangle$ sestrojíme $|\phi_{+}\rangle \in \mathcal{H}$ tak, že bude splněn vztah (10.5). Pro experiment je podstatný vztah $|\phi_{+}\rangle$ k $|\phi_{-}\rangle$. Zajímá nás tedy existence unitárního operátoru

$$\left|\phi_{+}\right\rangle = \hat{S}\left|\phi_{-}\right\rangle \quad . \tag{10.6}$$

Začněme se zobecněním (10.4) a (10.5). Je možné k libovolným stavům $|\phi_{\pm}\rangle \in \mathcal{H}$ najít stav $|\psi\rangle$ takový, aby

(10.4) a (10.5) byly splněny? Přepišme tyto vztahy (operátor $\exp\left\{-i\hat{H}t\right\}$ je unitární) na

$$\lim_{t \to \mp\infty} \left\| \psi \right\rangle - \exp\left\{ i \,\hat{H} \, t \right\} \exp\left\{ -i \,\hat{H}_0 \, t \right\} \left| \phi_{\mp} \right\rangle \right\| = 0 \quad . \tag{10.7}$$

Jde tedy o podmínku existence operátorů

$$\hat{U}_{\pm} = \lim_{t \to \pm \infty} \exp\left\{i\,\hat{H}\,t\right\} \exp\left\{-i\,\hat{H}_0\,t\right\} \quad . \tag{10.8}$$

Uvažujme operátor

$$\hat{U}(t) = \exp\left\{i\hat{H}t\right\} \exp\left\{-i\hat{H}_0t\right\} \quad . \tag{10.9}$$

Platí pro něj rovnice

$$\frac{d\hat{U}(t)}{dt} = i \exp\{i\hat{H}t\}(\hat{H} - \hat{H}_0)\exp\{-i\hat{H}_0t\} = i \exp\{i\hat{H}t\}\hat{V}\exp\{-i\hat{H}_0t\}$$
(10.10)

s počáteční podmínkou $\hat{U}(0) = \hat{1}$. Řešením je

$$\hat{U}(t) = \hat{1} + i \int_{0}^{t} \exp\{i\hat{H}t\} \hat{V} \exp\{-i\hat{H}_{0}t\} dt \quad .$$
(10.11)

Hledané operátory pak jsou

$$\hat{U}_{\pm} = \hat{1} + i \int_{0}^{\pm \infty} \exp\{i\hat{H}t\} \hat{V} \exp\{-i\hat{H}_{0}t\} dt \quad .$$
(10.12)

Postačující podmínkou existence \hat{U}_{\pm} je existence integrálů (opět využíváme toho, že operátor $\exp\{-i\hat{H}t\}$ je unitární)

$$\int_{0}^{\pm\infty} \left\| \hat{V} \exp\left\{ -i \hat{H}_{0} t \right\} \right| \phi \rangle \right\| \quad , \quad \left| \phi \right\rangle \in \mathcal{H} \quad . \tag{10.13}$$

V souřadnicové representaci máme pro $\phi(\vec{x},t) = \exp\{-i\hat{H}_0 t\}\phi(\vec{x})$

$$\phi(\vec{x},t) = \frac{1}{(2\pi)^{3/2}} \int \phi(\vec{k}) \exp\left\{i\left(\vec{k}\cdot\vec{x}-\frac{1}{2}k^2t\right)\right\} d^3\vec{k} \quad . \tag{10.14}$$

Pro odhad budeme potřebovat oba případy přibližného výpočtu integrálu metodou stacionární fáze. Mějme

$$I = \int_{a}^{b} g(x) \exp\{i\lambda f(x)\} dx \quad , \qquad (10.15)$$

přitom λ bude velké číslo. Pokud je na integračním intervalu $f'(x) \neq 0$, počítáme

$$I = \frac{1}{i\lambda} \int_{a}^{b} \frac{g(x)}{f'(x)} \frac{d}{dx} \left(\exp\{i\lambda f(x)\} \right) dx \approx$$

$$\frac{ig(a) \exp\{i\lambda f(a)\}}{\lambda f'(a)} - \frac{ig(b) \exp\{i\lambda f(b)\}}{\lambda f'(b)} \quad .$$
(10.16)

Pokud je na integračním intervalu $f'(x_0)=0$, počítáme

$$I \approx g(x_{0}) \exp\{i\lambda f(x_{0})\} \int_{a}^{b} \exp\{i\frac{\lambda}{2}f''(x_{0})(x-x_{0})^{2}\} dx =$$

$$\left(\frac{2\pi i}{\left|f''(x_{0})\right|}\right)^{1/2} g(x_{0}) \exp\{i\lambda f(x_{0})\} \quad .$$
(10.17)

11 Lippmanova – Schwingerova rovnice

Moellerovy operátory (znaménko u limity pro t je opačné než označení operátoru!)

$$\hat{\Omega}_{\pm} = \lim_{t \to \mp \infty} \exp\left\{i\hat{H}t\right\} \exp\left\{-i\hat{H}_0t\right\} \quad .$$
(11.1)

Označíme

$$\hat{\Omega}_{+} |\phi\rangle \equiv |\phi+\rangle , \quad \hat{\Omega}_{-} |\chi\rangle \equiv |\chi-\rangle .$$
 (11.2)

Vektor $|\phi+\rangle$ je skutečný stav v t=0, byl-li počátečním (*in*) stavem volné částice vektor $|\phi\rangle$, vektor $|\chi-\rangle$ je skutečný stav v t=0, bude-li koncovým (*out*) stavem volné částice vektor $|\chi\rangle$. Mějme teď

$$\left|\psi\right\rangle = \hat{\Omega}_{+}\left|\psi_{in}\right\rangle = \hat{\Omega}_{-}\left|\psi_{out}\right\rangle \quad . \tag{11.3}$$

Poněvadž pro unitární operátory $\hat{\Omega}^{+} \hat{\Omega} = \hat{1}$, můžeme z (11.3) získat vztah

$$\left|\psi_{out}\right\rangle = \hat{\Omega}_{-}^{+} \hat{\Omega}_{+} \left|\psi_{in}\right\rangle \equiv \hat{S} \left|\psi_{in}\right\rangle \quad , \tag{11.4}$$

kde jsme zavedli operátor rozptylu

$$\hat{S} = \hat{\Omega}_{-}^{+} \hat{\Omega}_{+}$$
 (11.5)

Bez důkazu zde uvedeme tvrzení, že Hilbertův prostor můžeme rozdělit na podprostor rozptylových stavů (tj. stavů, které mají asymptotický vztah k *in* a *out* stavům) a podprostor vázaných stavů. Jen část důkazu: vezměme vázaný stav $\hat{H} |\xi_n\rangle = E_n |\xi_n\rangle$. Potom

$$\langle \xi_n | \psi \rangle = \langle \xi_n | \hat{\Omega}_+ | \psi_{in} \rangle = \lim_{t \to -\infty} \exp\{i E_n t\} \langle \xi_n | \exp\{-i\hat{H}_0 t\} | \psi_{in} \rangle = \langle \xi_n | \hat{\Omega}_- | \psi_{out} \rangle = \lim_{t \to \infty} \exp\{i E_n t\} \langle \xi_n | \exp\{-i\hat{H}_0 t\} | \psi_{out} \rangle = 0$$
(11.6)

Vztahy pro Moellerivy operátory jsme odvodili v předchozí části. Tady je trochu upravíme na

$$\hat{\Omega}_{-} = \hat{1} + i \lim_{\varepsilon \to 0^{+}} \int_{0}^{\infty} \exp\{-\varepsilon t\} \exp\{i \hat{H} t\} \hat{V} \exp\{-i \hat{H}_{0} t\} dt ,$$

$$\hat{\Omega}_{+} = \hat{1} - i \lim_{\varepsilon \to 0^{+}} \int_{-\infty}^{0} \exp\{\varepsilon t\} \exp\{i \hat{H} t\} \hat{V} \exp\{-i \hat{H}_{0} t\} dt .$$
(11.7)

Dostáváme tak

$$\begin{aligned} |\phi - \rangle &= \hat{\Omega}_{-} |\phi\rangle = |\phi\rangle + i \lim_{\varepsilon \to 0^{+}} \int_{0}^{\infty} \exp\{-\varepsilon t\} \exp\{i \hat{H} t\} \hat{V} \exp\{-i \hat{H}_{0} t\} |\phi\rangle dt , \\ |\phi + \rangle &= \hat{\Omega}_{+} |\phi\rangle = |\phi\rangle - i \lim_{\varepsilon \to 0^{+}} \int_{-\infty}^{0} \exp\{\varepsilon t\} \exp\{i \hat{H} t\} \hat{V} \exp\{-i \hat{H}_{0} t\} |\phi\rangle dt . \end{aligned}$$

$$(11.8)$$

Nejprve rozložíme stav $|\phi\rangle$ podle vlastních stavů hamiltoniánu volné částice $|\vec{p}\rangle$, tj. $\hat{H}_0 |\vec{p}\rangle = E_p |\vec{p}\rangle$, takže

$$\exp\left\{-i\hat{H}_{0}t\right\}\left|\phi\right\rangle = \exp\left\{-i\hat{H}_{0}t\right\}\left|\tilde{p}\right\rangle\left\langle\tilde{p}\right|\phi\right\rangled^{3}\vec{p} = \int \exp\left\{-iE_{p}t\right\}\left|\tilde{p}\right\rangle\left\langle\tilde{p}\right|\phi\right\rangled^{3}\vec{p} \qquad (11.9)$$

a potom provedeme integraci podle času

$$\lim_{\varepsilon \to 0^{+}} \int_{0}^{\infty} \exp\left\{-i\left(E_{p}-i\varepsilon-\hat{H}\right)t\right\} dt = -i\lim_{\varepsilon \to 0^{+}} \left(E_{p}-i\varepsilon-\hat{H}\right)^{-1} = -i\lim_{\varepsilon \to 0^{+}} \hat{G}\left(E_{p}-i\varepsilon\right) ,$$

$$\lim_{\varepsilon \to 0^{+}} \int_{-\infty}^{0} \exp\left\{-i\left(E_{p}+i\varepsilon-\hat{H}\right)t\right\} dt = i\lim_{\varepsilon \to 0^{+}} \left(E_{p}+i\varepsilon-\hat{H}\right)^{-1} = i\lim_{\varepsilon \to 0^{+}} \hat{G}\left(E_{p}+i\varepsilon\right) .$$
(11.10)

Máme tak upraven vztah (11.8) na

$$|\phi\pm\rangle = |\phi\rangle + \lim_{\varepsilon \to 0^+} \int \hat{G}(E_p \pm i\varepsilon) \hat{V} |\vec{p}\rangle \langle \vec{p} |\phi\rangle d^3 \vec{p} \quad .$$
(11.11)

Ve složkách $|\vec{p}\rangle$ pak máme

$$\left|\vec{p}\pm\right\rangle = \left|\vec{p}\right\rangle + \lim_{\varepsilon\to 0^+} \hat{G}\left(E_p\pm i\varepsilon\right)\hat{V}\left|\vec{p}\right\rangle \quad . \tag{11.12}$$

V dalším budeme symbol $\lim_{\epsilon \to 0^+}$ už vynechávat. Rovnici (11.12) přepíšeme do tvaru s \hat{G}_0 . Připomeňme si, že operátor Greenovy funkce definujeme jako inversní operátor k operátoru vlastní hodnoty hamiltoniánu

$$(z - \hat{H})\hat{G}(z) = \hat{1} , \quad \hat{G}(z) = \frac{1}{z - \hat{H}} ,$$

$$(z - \hat{H}_0)\hat{G}_0(z) = \hat{1} , \quad \hat{G}_0(z) = \frac{1}{z - \hat{H}} .$$

$$(11.13)$$

Pro hamiltonián složený ze dvou částí $\hat{H} = \hat{H}_0 + \hat{V}$, \hat{H}_0 je základní část (volná částice v teorii rozptylu), \hat{V} je porucha (interakční potenciál v teorii rozptylu), můžeme hledat řešení rovnice pro Greenovu funkci pomocí vztahů

$$\frac{1}{z - \hat{H}_0 - \hat{V}} = \frac{1}{z - \hat{H}_0} \left[\left(z - \hat{H}_0 - \hat{V} \right) + \hat{V} \right] \frac{1}{z - \hat{H}_0 - \hat{V}} = \frac{1}{z - \hat{H}_0} \left[\hat{1} + \hat{V} \frac{1}{z - \hat{H}_0 - \hat{V}} \right] = \frac{1}{z - \hat{H}_0} + \frac{1}{z - \hat{H}_0} \hat{V} \frac{1}{z - \hat{H}_0 - \hat{V}} \quad ,$$
(11.14)

a tedy

$$\hat{G}(z) = \hat{G}_{0}(z) + \hat{G}_{0}(z)\hat{V}\hat{G}(z) ,$$

$$\hat{G}(z) = \hat{G}_{0}(z) + \hat{G}_{0}(z)\hat{V}\hat{G}_{0}(z) + \hat{G}_{0}(z)\hat{V}\hat{G}_{0}(z) + \dots$$
(11.15)

Pro stavový vektor dostáváme

$$|\psi\rangle = \left[\hat{1} + \hat{G}(z)\hat{V}\right]|\psi_{0}\rangle = \left[\hat{1} + \left(\hat{G}_{0}(z) + \hat{G}_{0}(z)\hat{V}\hat{G}_{0}(z) + ...\right)\hat{V}\right]|\psi_{0}\rangle = \left[\hat{1} + \hat{G}_{0}(z)\hat{V} + \hat{G}_{0}(z)\hat{V}\hat{G}_{0}(z)\hat{V} + ...\right]|\psi_{0}\rangle = \frac{1}{\hat{1} - \hat{G}_{0}(z)\hat{V}}|\psi_{0}\rangle \implies (11.16)$$
$$|\psi\rangle = |\psi_{0}\rangle + \hat{G}_{0}(z)\hat{V}|\psi\rangle \quad .$$

Místo (11.12) máme tedy

$$\left|\vec{p}\pm\right\rangle = \left|\vec{p}\right\rangle + \hat{G}_{0}\left(E_{p}\pm i\varepsilon\right)\hat{V}\left|\vec{p}\pm\right\rangle \quad .$$
(11.17)

V souřadnicové reprezentaci je

$$\langle \vec{x} | \vec{p} \pm \rangle = \langle \vec{x} | \vec{p} \rangle + \int \langle \vec{x} | \hat{G}_0 (E_p \pm i\varepsilon) | \vec{x}' \rangle V(\vec{x}') \langle \vec{x}' | \vec{p} \pm \rangle d^3 \vec{x}' \quad . \tag{11.18}$$

Pro maticové prvky Greenovy funkce napíšeme

$$\langle \vec{x} | \hat{G}_0(z) | \vec{x}' \rangle = \int \langle \vec{x} | \hat{G}_0(z) | \vec{p} \rangle \langle \vec{p} | \vec{x}' \rangle d^3 \vec{p} ,$$

$$\hat{G}_0(z) | \vec{p} \rangle = \frac{1}{z - \frac{p^2}{2m}} | \vec{p} \rangle , \quad \langle \vec{x} | \vec{p} \rangle \langle \vec{p} | \vec{x}' \rangle = \frac{1}{(2\pi)^3} \exp\{ i \vec{p} (\vec{x} - \vec{x}') \} ,$$

$$(11.19)$$

takže

$$\langle \vec{x} | \hat{G}_0(z) | \vec{x}' \rangle = \frac{2m}{(2\pi)^3} \int \frac{\exp\{i \vec{p} (\vec{x} - \vec{x}')\}}{2mz - p^2} d^3 \vec{p}$$
 (11.20)

Při výpočtu postupujeme obvyklým způsobem

$$\frac{2m}{(2\pi)^{3}} \int \frac{\exp\{i\vec{p}(\vec{x}-\vec{x}')\}}{2mz-p^{2}} d^{3}\vec{p} = \frac{2m}{(2\pi)^{3}} \int_{0}^{\infty} \frac{p^{2}}{2mz-p^{2}} \int_{0}^{\pi} \sin\theta \exp\{ip|\vec{x}-\vec{x}'|\cos\theta\} \int_{0}^{2\pi} d\varphi d\theta dp = (11.21)$$
$$\frac{im}{2\pi^{2}|\vec{x}-\vec{x}'|} \int_{-\infty}^{\infty} \frac{p\exp\{ip|\vec{x}-\vec{x}'|\}}{p^{2}-2mz} dp \quad .$$

Integrační křivku v rovině komplexního p můžeme uzavřít polokružnicí v horní polorovině. V této polorovině bude mít integrand pól v případě, že

$$p_{+} = \sqrt{2mE_{p} + i\varepsilon} = \sqrt{2mE_{p}} + i\varepsilon = p + i\varepsilon ,$$

$$p_{-} = -\sqrt{2mE_{p} - i\varepsilon} = -\sqrt{2mE_{p}} + i\varepsilon = -p + i\varepsilon$$
(11.22)

a hodnota integrálu bude

$$2\pi i \operatorname{Res}(p = p_{+}) = \pi i \exp\{i p |\vec{x} - \vec{x}'|\},$$

$$2\pi i \operatorname{Res}(p = p_{-}) = \pi i \exp\{-i p |\vec{x} - \vec{x}'|\}.$$
(11.23)

Maticové elementy Greenovy funkce tedy jsou

$$\left\langle \vec{x} \left| \hat{G}_{0} \left(E_{p} \pm i \varepsilon \right) \right| \vec{x}' \right\rangle = -\frac{m}{2\pi} \frac{\exp\left\{ \pm i p \left| \vec{x} - \vec{x}' \right| \right\}}{\left| \vec{x} - \vec{x}' \right|}$$
(11.24)

a rovnice (11.18) má tvar

$$\langle \vec{x} | \vec{p} \pm \rangle = \langle \vec{x} | \vec{p} \rangle - \frac{m}{2\pi} \int \frac{\exp\{\pm i p | \vec{x} - \vec{x}' |\}}{|\vec{x} - \vec{x}'|} V(\vec{x}') \langle \vec{x}' | \vec{p} \pm \rangle d^3 \vec{x}' \quad . \tag{11.25}$$

S přiblížením

$$\left|\vec{x} - \vec{x}'\right| = \left(\vec{x}^2 - 2\vec{x} \cdot \vec{x}' + \vec{x}'^2\right)^{1/2} \approx r - \vec{n} \cdot \vec{x}' \quad , \quad \left|\vec{x} - \vec{x}'\right| \approx r$$
(11.26)

v exponentu resp. čitateli máme

$$\left\langle \vec{x} \,\middle| \, \vec{p} \,\pm \right\rangle \approx \left\langle \vec{x} \,\middle| \, \vec{p} \right\rangle - \frac{m \exp\{\pm i \, p \, r\}}{2 \, \pi \, r} \int \exp\{\mp i \, p \, \vec{n} \cdot \vec{x}'\} V\left(\vec{x}'\right) \left\langle \vec{x}' \,\middle| \, \vec{p} \,\pm \right\rangle d^3 \, \vec{x}' \quad . \tag{11.27}$$

Protože máme

$$\langle \vec{x} | \vec{p} \rangle = \frac{1}{(2\pi)^{3/2}} \exp\{i \, \vec{p} \cdot \vec{x}\} , \quad \langle \pm p \, \vec{n} | \vec{x}' \rangle = \frac{1}{(2\pi)^{3/2}} \exp\{\mp i \, p \, \vec{n} \cdot \vec{x}'\} , \quad (11.28)$$

můžeme (11.27) zapsat také jako

$$\langle \vec{x} \, | \, \vec{p} \, \pm \rangle = \frac{1}{(2\pi)^{3/2}} \left[\exp\{i \, \vec{p} \cdot \vec{x}\} - (2\pi)^2 \, m \, \frac{\exp\{\pm i \, p \, r\}}{r} \langle \pm p \, \vec{n} \, | \, \hat{V} \, | \, \vec{p} \, \pm \rangle \right] \quad . \tag{11.29}$$

S označením

$$f(p\vec{n}\leftarrow\vec{p}) = -(2\pi)^2 m \langle p\vec{n} | \hat{V} | \vec{p} + \rangle$$
(11.30)

máme konečně

$$\left\langle \vec{x} \,\middle|\, \vec{p} \,+\,\right\rangle = \frac{1}{\left(2\,\pi\right)^{3/2}} \left[\exp\left\{i\,\vec{p}\cdot\vec{x}\right\} + \frac{\exp\left\{i\,p\,r\right\}}{r} f\left(p\,\vec{n}\leftarrow\vec{p}\right) \right] \quad . \tag{11.31}$$

V souřadnicové reprezentaci je

$$f\left(p\,\vec{n}\leftarrow\vec{p}\right) = -m\left(2\,\pi\right)^{1/2}\int\exp\left\{-i\,p\,\vec{n}\cdot\vec{x}'\right\}V\left(\vec{x}'\right)\left\langle\vec{x}'\right|\vec{p}+\left\langle d^{3}\,\vec{x}'\right\rangle .$$
(11.32)

V Bornově aproximaci dosadíme v integrandu (11.32) $\langle \vec{x} | \vec{p} + \rangle = \langle \vec{x} | \vec{p} \rangle$. S označením $\vec{q} = \frac{1}{\hbar} (p \vec{n} - \vec{p})$ a

 $\vec{n} \cdot \vec{p}/p = \cos\theta$ máme (píšeme Planckovu konstantu)

$$f(\vec{q}) = -\frac{m}{2\pi\hbar^2} \int \exp\{-i\vec{q}\cdot\vec{x}\} V(\vec{x}) d^3\vec{x} \quad . \tag{11.33}$$

12 Parciální vlny

Místo báze tvořené vektory $|\vec{p}\rangle$ zvolíme bázi $|E,l,m\rangle$, kterou získáme z transformačních vztahů

$$\left\langle \vec{x} \left| E, l, m \right\rangle = i^{l} \left(\frac{2mp}{\pi} \right)^{1/2} j_{l} \left(p r \right) Y_{lm} \left(\theta, \varphi \right) \quad , \tag{12.1}$$

kde $\vec{x} = r \sin\theta \cos\varphi \vec{e}_x + r \sin\theta \sin\varphi \vec{e}_y + r \cos\theta \vec{e}_z$ a $p = (2mE)^{1/2}$.

Užitím (12.1), (9.22) a (9.10) dostáváme relace ortonormality pro bázi $|E,l,m\rangle$

$$\langle E', l', m' | E, l, m \rangle = \int \langle E', l', m' | \vec{x} \rangle \langle \vec{x} | E, l, m \rangle d^3 \vec{x} = \delta (E' - E) \delta_{l'l} \delta_{m'm} .$$

$$(12.2)$$

Jak vypočteme $\langle \vec{p} | E, l, m \rangle$? Platí

$$\left\langle \vec{p} \left| E, l, m \right\rangle = \int \left\langle \vec{p} \right| \vec{x} \right\rangle \left\langle \vec{x} \left| E, l, m \right\rangle d^3 \vec{x} = \frac{1}{\left(2\pi\right)^{3/2}} \int \exp\{-i \vec{p} \cdot \vec{x}\} \left\langle \vec{x} \left| E, l, m \right\rangle d^3 \vec{x} \quad . \tag{12.3}$$

Vyjádření rovinné vlny je

$$\exp\{i\,\vec{p}\cdot\vec{x}\} = 4\pi \sum_{l'=0}^{\infty} \sum_{m'=-l'}^{l'} i^{l'} \,j_{l'}\,(p\,r) \Big(Y_{l'm'}\left(\Theta,\Phi\right)\Big)^* \,Y_{l'm'}\left(\theta,\varphi\right) \quad, \tag{12.4}$$

kde $\vec{p} = p \sin\Theta \cos\Phi \vec{e}_x + p \sin\Theta \sin\Phi \vec{e}_y + p \cos\Theta \vec{e}_z$. Dosazením (12.4) do (12.3) dostaneme

$$\left\langle \vec{p} \left| E, l, m \right\rangle = \frac{1}{\left(m p \right)^{1/2}} \delta \left(E_p - E \right) Y_{lm} \left(\Theta, \Phi \right) \quad .$$
(12.5)

Rozklad vektoru $\left| \vec{p} \right\rangle$ je tedy

$$\left|\vec{p}\right\rangle = \int_{0}^{\infty} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left|E,l,m\right\rangle \left\langle E,l,m\right|\vec{p}\right\rangle dE = \frac{1}{(m p)^{l/2}} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(Y_{lm}\left(\Theta,\Phi\right)\right)^{*} \left|E,l,m\right\rangle \quad .$$
(12.6)

Přirozeně stejný rozklad dostáváme pro

$$|\vec{p}+\rangle = \hat{\Omega}_{+} |\vec{p}\rangle = \frac{1}{(m p)^{1/2}} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (Y_{lm}(\Theta, \Phi))^{*} \hat{\Omega}_{+} |E, l, m\rangle = \frac{1}{(m p)^{1/2}} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (Y_{lm}(\Theta, \Phi))^{*} |E, l, m+\rangle \quad .$$
(12.7)

V analogii k rozkladu (12.1) budeme psát

$$\left\langle \vec{x} \left| E, l, m + \right\rangle = i^{l} \left(\frac{2mp}{\pi} \right)^{1/2} \frac{\psi_{l,p}(r)}{pr} Y_{lm}(\theta, \varphi) \quad , \tag{12.8}$$

odkud dostaneme pro (12.7)

$$\left\langle \vec{x} \middle| \vec{p} + \right\rangle = \left(\frac{2}{\pi}\right)^{1/2} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} i^{l} \frac{\psi_{l,p}\left(r\right)}{p r} Y_{lm}\left(\theta,\varphi\right) \left(Y_{lm}\left(\Theta,\Phi\right)\right)^{*} \quad .$$
(12.9)

Ještě jednou zapíšeme

$$\left\langle \vec{x} \middle| \vec{p} \right\rangle = \left(\frac{2}{\pi}\right)^{1/2} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} i^{l} j_{l} \left(pr\right) \left(Y_{lm}\left(\Theta,\Phi\right)\right)^{*} Y_{lm}\left(\theta,\varphi\right) \quad .$$
(12.10)

Vyjádřeme teď amplitudu rozptylu (11.32)

$$f(p\vec{n}\leftarrow\vec{p}) = -m(2\pi)^{2} \int \langle p\vec{n} | \vec{x}' \rangle V(r') \langle \vec{x}' | \vec{p} + \rangle d^{3}\vec{x}' = -\frac{8m\pi}{p}$$

$$\sum_{l=0}^{\infty} i^{l} \sum_{l'=0}^{\infty} (-i)^{l'} \sum_{m=-l}^{l} (Y_{lm}(\Theta, \Phi))^{*} \sum_{m'=-l'}^{l'} Y_{l'm'}(\Theta, \varphi) \int_{\omega'} (Y_{l'm'}(\Theta', \varphi'))^{*} Y_{lm}(\Theta', \varphi') d\omega' \quad (12.11)$$

$$\int_{0}^{\infty} j_{l'}(pr') V(r') \psi_{l,p}(r') r' dr' \quad .$$

Relace ortogonality pro sférické funkce zjednoduší výraz (12.11) na tvar

$$f(p\vec{n}\leftarrow\vec{p}) = -\frac{8m\pi}{p}\sum_{l=0}^{\infty}\sum_{m=-l}^{l} \left(Y_{lm}(\Theta,\Phi)\right)^{*}Y_{lm}(\theta,\varphi)\int_{0}^{\infty}j_{l}(pr')V(r')\psi_{l,p}(r')r'dr' \quad .$$

$$(12.12)$$

Rovnici (11.31) napíšeme s pomocí (12.9), (12.10) a (12.12) jako

$$i^{l} \frac{\psi_{l,p}(r)}{pr} = i^{l} j_{l}(pr) - \frac{2m}{pr} \exp\{i pr\} \int_{0}^{\infty} j_{l}(pr') V(r') \psi_{l,p}(r') r' dr' \quad .$$
(12.13)

Odtud

$$\Psi_{l,p}(r) = pr j_l(pr) - 2m pr h_l^{(+)}(pr) \int_0^\infty j_l(pr') V(r') \Psi_{l,p}(r') r' dr' \quad .$$
(12.14)

Exaktní výraz, platný pro všechna r

$$\psi_{l,p}(r) = pr j_{l}(pr) - 2m pr \left[j_{l}(pr) \int_{r}^{\infty} h_{l}^{(+)}(pr') V(r') \psi_{l,p}(r') r' dr' + h_{l}^{(+)}(pr) \int_{0}^{r} j_{l}(pr') V(r') \psi_{l,p}(r') r' dr' \right]$$
(12.15)

V předchozím vztahu je využito asymptotického chování $h_l^{(+)}(z \rightarrow \infty)$. Označíme-li jako parciální amplitudu rozptylu

$$f_{l}(p) = -\frac{2m}{p} \int_{0}^{\infty} j_{l}(pr') V(r') \psi_{l,p}(r') r' dr'$$
(12.16)

můžeme výraz (12.14) zapsat jako

$$\Psi_{l,p}(r) = pr \Big[j_l(pr) + p f_l(p) h_l^{(+)}(pr) \Big] \quad .$$
 (12.17)

Protože

$$j_{l}(z) = \frac{1}{2i} \left(h_{l}^{(+)}(z) - h_{l}^{(-)}(z) \right) \quad , \qquad (12.18)$$

můžeme (12.17) zapsat jako

$$\psi_{l,p}(r) = \frac{i}{2} pr \Big[h_l^{(-)}(pr) - S_l(p) h_l^{(+)}(pr) \Big] , \qquad (12.19)$$

kde

$$S_l(p) = 1 + 2i p f_l(p)$$
 . (12.20)

Výraz (12.12) je teď

$$f\left(p\,\vec{n}\leftarrow\vec{p}\right) = 4\,\pi\sum_{l=0}^{\infty}\sum_{m=-l}^{l}\left(Y_{lm}\left(\Theta,\Phi\right)\right)^{*}Y_{lm}\left(\theta,\varphi\right)f_{l}\left(p\right) \quad .$$
(12.21)

Označíme-li jako úhel θ nikoliv azimutální úhel, ale úhel rozptylu $\vec{n} \cdot \vec{p}/p = \cos\theta$, můžeme s využitím (9.13) zapsat poslední vztah jako

$$f\left(p\,\vec{n}\leftarrow\vec{p}\right) = \sum_{l=0}^{\infty} (2l+1)f_l\left(p\right)P_l\left(\cos\theta\right) \quad . \tag{12.22}$$

Přirozeně, pokud dopadá vlna ve směru osy z, oba úhly jsou stejné. Vlnová funkce je pak

$$\psi = \frac{i}{2 p r} \sum_{l=0}^{\infty} (2l+1) P_l(\cos\theta) \Big[(-1)^l \exp\{-i p r\} - S_l \exp\{i p r\} \Big] \quad . \tag{12.23}$$

13 Rozptyl při vysokých energiích

Schrödingerovu rovnici

$$\Delta \psi(\vec{r}) + p^2 \psi(\vec{r}) = 2mV(\vec{r})\psi(\vec{r})$$
(13.1)

budeme řešit substitucí

$$\psi(\vec{r}) = \exp\{i p z\} F(\vec{r}) \quad . \tag{13.2}$$

Dostáváme tak rovnici

$$\Delta F(\vec{r}) + 2ip \frac{\partial F(\vec{r})}{\partial z} = 2mV(\vec{r})F(\vec{r}) \quad . \tag{13.3}$$

Předpokládáme, že $\Delta F \approx 0$, takže můžeme napsat explicitní tvar řešení rovnice (13.3), řešení Schrödingerovy rovnice

$$\psi(\vec{r}) = C \exp\left\{i\left[pz - \frac{m}{p}\int_{-\infty}^{z} V(\vec{\rho}, z) dz\right]\right\} , \qquad (13.4)$$

kde jsme označili $\vec{\rho} = x\vec{e}_x + y\vec{e}_y$. Všimněme si, že (13.4) je možno psát jako

$$\psi(\vec{r}) = C \exp\left\{i \int_{0}^{z} \left[p^{2} - 2mV(\vec{\rho}, z)\right]^{1/2} dz\right\} .$$
(13.5)

Dosadíme-li do výrazu pro amplitudu rozptylu

$$f(p\vec{n}\leftarrow\vec{p}) = -\frac{m}{2\pi} \int \exp\{-i\,p\,\vec{n}\cdot\vec{r}\} V(\vec{r})\psi(\vec{r})d^{3}\vec{r}$$
(13.6)

ze (13.3)

$$mV(\vec{r})\psi(\vec{r}) = i p \exp\{i p z\} \frac{\partial F(\vec{r})}{\partial z} , \qquad (13.7)$$

dostaneme

$$f(p\vec{n}\leftarrow\vec{p}) = \frac{p}{2i\pi} \int \exp\{-ip\vec{n}\cdot\vec{\rho}\} \exp\{ip(1-n_z)z\} \frac{\partial F(\vec{r})}{\partial z} d^2\vec{\rho} \quad . \tag{13.8}$$

Pro $n_{z} \approx 1\,$ můžeme amplitudu rozptylu zapsat jako

$$f(p\vec{n}\leftarrow\vec{p}) = \frac{p}{2i\pi} \int \exp\{-ip\vec{n}\cdot\vec{\rho}\} \Big[F(\vec{\rho},\infty) - F(\vec{\rho},-\infty)\Big] d^2\vec{\rho}$$
(13.9)

a po dosazení z (13.4)

$$f(p\vec{n} \leftarrow \vec{p}) = \frac{p}{2i\pi} \int [S(\vec{\rho}) - 1] \exp\{-ip\vec{n} \cdot \vec{\rho}\} d^{2}\vec{\rho} ,$$

$$S(\vec{\rho}) = \exp\{2i\delta(\vec{\rho})\} , \quad \delta(\vec{\rho}) = -\frac{m}{2p} \int_{-\infty}^{\infty} V(\vec{\rho}, z) dz .$$
(13.10)

14 Více o parciálních vlnách

Vyjdeme z unitarity S-matice. Napíšeme proto

$$S_l(p) = \exp\{2i\,\delta_l(p)\} \quad . \tag{14.1}$$

Vztah mezi fázovým posuvem a amplitudou rozptylu dostaneme z (12.20)

$$f_{l}(p) = \frac{1}{p} \exp\{i \,\delta_{l}(p)\} \sin \delta_{l}(p) \quad . \tag{14.2}$$

Celkový účinný průřez je

$$\sigma = \sum_{l=0}^{\infty} \sigma_l = 4\pi \sum_{l=0}^{\infty} (2l+1) |f_l|^2 = \frac{4\pi}{p^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l(p) \quad .$$
(14.3)

Ze vztahu (14.2) dostáváme vyjádření optického teorému

$$\Im\{f_{l}(p)\} = p|f_{l}(p)|^{2} , \qquad (14.4)$$

což můžeme přepsat jako

$$\Im\left\{\frac{1}{f_l(p)}\right\} = -p \quad . \tag{14.5}$$

Musí tedy amplituda rozptylu mít tvar

$$f_{l}(p) = \frac{1}{g_{l}(p) - ip} \quad , \tag{14.6}$$

kde reálná funkce $g_l(p)$ je z (14.2)

$$g_l(p) = p \cot \delta_l(p) \quad . \tag{14.7}$$

- 29 -

14.1 Bornova aproximace

Funkce $\psi_{l,p}(r)$ a $pr j_l(pr)$ jsou řešením rovnic

$$\frac{d^{2}\psi_{l,p}(r)}{dr^{2}} + \left[p^{2} - \frac{l(l+1)}{r^{2}} - 2mV(r)\right]\psi_{l,p}(r) = 0 ,$$

$$\frac{d^{2}r j_{l}(pr)}{dr^{2}} + \left[p^{2} - \frac{l(l+1)}{r^{2}}\right]r j_{l}(pr) = 0 .$$
(14.8)

S okrajovou podmínkou $\psi_{l,p}(0)=0$ dostaneme úpravou (14.8)

$$pr j_{l}(pr) \frac{d\psi_{l,p}(r)}{dr} - \psi_{l,p}(r) \frac{dpr j_{l}(pr)}{dr} = 2m p \int_{0}^{r} V(r) \psi_{l,p}(r) j_{l}(pr) r dr \quad . \quad (14.9)$$

Pro $r \rightarrow \infty$ máme ze (12.19)

$$\psi_{l,p}(r) = \frac{i}{2} pr \Big[h_l^{(-)}(pr) - S_l(p) h_l^{(+)}(pr) \Big] ,
\frac{d\psi_{l,p}(r)}{dr} = \frac{1}{2} p^2 r \Big[h_l^{(-)}(pr) + S_l(p) h_l^{(+)}(pr) \Big] .$$
(14.10)

Levá strana (14.9) je tedy

$$\frac{i}{2}p(S_l(p)-1) = -p^2 f_l(p) \quad . \tag{14.11}$$

V integrandu integrálu na pravé straně položíme $\psi_{l,p}(0) \approx p r j_l(p r)$, takže máme

$$f_{l}(p) = -2m \int_{0}^{\infty} V(r) (j_{l}(pr))^{2} r^{2} dr \quad .$$
(14.12)

Srovnáním se vztahem (14.2) vidíme nekonsistenci této aproximace. Ta se "ztratí" v přiblížení malých fázových posuvů, kdy

$$f_{l}(p) \approx \frac{\delta_{l}(p)}{p} \implies \delta_{l}(p) \approx -2m p \int_{0}^{\infty} V(r) (j_{l}(pr))^{2} r^{2} dr \quad .$$
(14.13)

14.2 Kvasiklasická aproximace

Rovnice pro volnou částici a částici v potenciálovém poli (14.8) zapíšeme trochu odlišně, když zaměníme značení, tj. $\psi_{l,p}(r) \rightarrow \psi_l(r)$ a $r j_l(pr) \rightarrow \chi_l(r)$ a píšeme místo l(l+1) obecněji $\lambda^2 = \lambda^2(l)$ - 30 -

.

$$\frac{d^2 \chi_l(r)}{dr^2} + \left[p^2 - \frac{\lambda^2}{r^2}\right] \chi_l(r) = 0$$
(14.14)

$$\frac{d^2 \psi_l(r)}{dr^2} + \left[p^2 - \frac{\lambda^2}{r^2} - 2 m V(r) \right] \psi_l(r) = 0 \quad . \tag{14.15}$$

Asymptotický tvar sférické Besselovy funkce vede k asymptotice řešení (14.14)

$$\chi_l(r) \underset{z \to \infty}{\longrightarrow} \sin\left(pr - l\frac{\pi}{2}\right)$$
 (14.16)

Ve stacionárním jednorozměrném případě je kvasiklasickým řešením rovnice (14.15)

$$\psi_{l}(r) = \frac{A}{2\sqrt{|P|}} \exp\left\{-\int_{r}^{a} |P| dr\right\} , \quad |P| = \left[2mV(r) + \frac{\lambda^{2}}{r^{2}} - p^{2}\right]^{1/2}$$
(14.17)

v intervalu $0 \le r < a$, kde $p^2 - 2mV(r) - \lambda^2/r^2 < 0$ a

$$\psi_{l}(r) = \frac{B_{1}}{\sqrt{P}} \exp\left\{i\int_{a}^{r} P \,dr\right\} + \frac{B_{2}}{\sqrt{P}} \exp\left\{-i\int_{a}^{r} P \,dr\right\} , P = \left[p^{2} - 2mV(r) - \frac{\lambda^{2}}{r^{2}}\right]^{1/2}$$
(14.18)

v intervalu $a < r < \infty$, kde $p^2 - 2mV(r) - \lambda^2/r^2 > 0$.

V okolí bodu obratu je

$$p^{2} - 2mV(r) - \frac{\lambda^{2}}{r^{2}} \approx \alpha^{2}(r-a)$$
 (14.19)

V tomto okolí (ale stále dostatečně daleko od bodů obratu) můžeme psát

$$\psi_{l}(r) = \frac{A}{2\sqrt{\alpha}(a-r)^{1/4}} \exp\left\{-\frac{2\alpha}{3}(a-r)^{3/2}\right\} , \quad \psi_{l}(r) = \frac{B_{1}}{\sqrt{\alpha}(r-a)^{1/4}} \exp\left\{\frac{2\alpha}{3}i(r-a)^{3/2}\right\} + \frac{B_{2}}{\sqrt{\alpha}(r-a)^{1/4}} \exp\left\{-\frac{2\alpha}{3}i(r-a)^{3/2}\right\} .$$
(14.20)

Při analytickém prodloužení odmocnin do komplexní roviny použijeme zápisu takového zápisu, aby v horní polorovině převažoval (exponencielně) jeden člen, v dolní polorovině člen druhý. V našem případě je vhodný zápis

$$a - r = \rho \exp\{i(\varphi - \pi)\} \quad . \tag{14.21}$$

Obchodem bodů obratu v horní (spodní) polorovině, tj. pro $\varphi \in (0,\pi) (\varphi \in (\pi, 2\pi))$ dostáváme podmínky spojitosti

$$B_2 = \frac{A}{2} \exp\left\{i\frac{\pi}{4}\right\} , \quad B_1 = \frac{A}{2} \exp\left\{-i\frac{\pi}{4}\right\} , \quad (14.22)$$

takže máme v klasicky dostupné oblasti kvasiklasické řešení rovnice (14.15)

$$\psi_{l}(r) = \frac{C}{\left[P(r)\right]^{1/2}} \cos\left\{\int_{a}^{r} P(r) dr - \frac{\pi}{4}\right\} , \quad P(r) = \left[p^{2} - 2mV(r) - \frac{\lambda^{2}}{r^{2}}\right]^{1/2} . \quad (14.23)$$

Budeme-li tedy rovnici (14.14) řešit standardním postupem kvasiklasické aproximace, dostaneme výraz

$$\chi_{l}(r) = \frac{C}{P(r)^{1/2}} \sin\left(\int_{a}^{r} P(r) dr + \frac{\pi}{4}\right) , \quad P(r) = \left(p^{2} - \frac{l(l+1)}{r^{2}}\right)^{1/2} , \quad P(a) = 0 \quad . (14.24)$$

Integrál můžeme spočítat analyticky, takže argument sinu je

$$\int_{a}^{r} P(r) dr + \frac{\pi}{4} = pr \left[1 - \left(\frac{\lambda}{pr}\right)^{2} \right]^{1/2} + \lambda \left[\arcsin\frac{\lambda}{pr} - \frac{\pi}{2} \right] + \frac{\pi}{4} \xrightarrow[r \to \infty]{}$$

$$pr - \left(\lambda - \frac{1}{2}\right) \frac{\pi}{2} \quad .$$

$$(14.25)$$

Srovnáním (14.25) a (14.16) docházíme k tomu, že v kvasiklasické aproximaci musíme jako velikost momentu impulzu vzít veličinu $\lambda = l + 1/2$. Fázový posuv už spočteme snadno když od skutečné fáze odečteme fázi odpovídající volné částici

$$\delta_{l}(p) = \int_{a}^{\infty} \left\{ \left[p^{2} - 2mV(r) - \frac{(l+1/2)^{2}}{r^{2}} \right]^{1/2} - p \right\} dr + \left(l + \frac{1}{2} \right) \frac{\pi}{2} \quad . \tag{14.26}$$

Pro velké hodnoty *l* je také velká hodnota *a*, takže můžeme interakční potenciál považovat za poruchu. Ze (14.26) dostaneme

$$\delta_{l}(p) = -m \int_{a_{0}} \frac{V(r)}{\left[p^{2} - \frac{\left(l+1/2\right)^{2}}{r^{2}}\right]^{1/2}} dr \quad , \quad a_{0} = \frac{l+1/2}{p} \quad .$$
(14.27)

14.3 Rozptyl při vysokých energiích

Pro sféricky symetrický potenciál můžeme (13.10) upravit na

 ∞

$$f(p\vec{n} \leftarrow \vec{p}) = -ip \int_{0}^{\infty} \left[\exp\{2i\delta(\rho)\} - 1 \right] J_{0}(p\sin\theta\rho)\rho d\rho ,$$

$$\sin\theta = \left(n_{x}^{2} + n_{y}^{2}\right)^{1/2} , \quad \delta(\rho) = -\frac{m}{2p} \int_{-\infty}^{\infty} V(\rho, z) dz .$$
(14.28)

Porovnejme to s výrazem (12.22)

Michal Lenc: Teorie rozptylu - 32 -

$$f\left(p\,\vec{n}\leftarrow\vec{p}\right) = \frac{1}{2\,i\,p} \sum_{l=0}^{\infty} (2\,l+1) \Big[\exp\{2\,i\,\delta_l(p)\} - 1\Big] P_l(\cos\theta) \quad . \tag{14.29}$$

Pro malé úhly platí

$$P_l(\cos\theta) \approx J_0\left(\left(l+\frac{1}{2}\right)\sin\theta\right)$$
, (14.30)

takže

$$f\left(p\,\vec{n}\leftarrow\vec{p}\right)\approx\frac{1}{i\,p}\sum_{l=0}^{\infty}\left(l+\frac{1}{2}\right)\left[\exp\left\{2\,i\,\delta_{l}\left(p\right)\right\}-1\right]J_{0}\left(\left(l+\frac{1}{2}\right)\sin\theta\right),\qquad(14.31)$$

což po nahrazení $(l+1/2) \rightarrow p \rho$ a $\Delta l = (l+1+1/2) - (l+1/2) \rightarrow p d \rho$ vede skutečně k (14.28).

14.4 Rozptyl při nízkých energiích

Při nízkých energiích budeme při řešení rovnice (14.15) rozlišovat tři oblasti. Označíme jako *a* poloměr oblasti, kde je interakce výrazná. V první oblasti můžeme zanedbat kinetickou energii částice, tj.

$$\frac{d^2 \psi_l(r)}{dr^2} - \left[\frac{l(l+1)}{r^2} + 2mV(r)\right] \psi_l(r) \approx 0 \quad , \quad 0 \le r \le a \quad . \tag{14.32}$$

V další oblasti můžeme zanedbat i potenciální energii

$$\frac{d^2 \psi_l(r)}{dr^2} - \frac{l(l+1)}{r^2} \psi_l(r) \approx 0 \quad , \quad a \le r \le \frac{1}{p} \quad . \tag{14.33}$$

Konečně ve vnější oblasti už poklesne efektivní potenciál natolik, že musíme uvažovat i kinetickou energii

$$\frac{d^2 \psi_l(r)}{dr^2} + \left[p^2 - \frac{l(l+1)}{r^2} \right] \psi_l(r) \approx 0 \quad , \quad \frac{1}{p} \le r \le \infty \quad . \tag{14.34}$$

Řešením rovnice (14.33) je

$$\psi_l(r) = c_1 r^{l+1} + c_2 r^{-l} \quad . \tag{14.35}$$

Řešením rovnice (14.34) je

$$\psi_{l}(r) = d_{1}r j_{l}(pr) + d_{2}r n_{l}(pr) \quad . \tag{14.36}$$

Asymptotický tvar (14.36) pro velké hodnoty argumentu je podle (9.19)

$$\Psi_{l}(r) \approx \frac{\left(d_{1}^{2} + d_{2}^{2}\right)^{1/2}}{p} \sin\left(pr - l\frac{\pi}{2} + \delta_{l}(p)\right) , \quad \tan\delta_{l}(p) = -\frac{d_{2}}{d_{1}} , \quad (14.37)$$

zatímco pro malé hodnoty argumentu podle (9.20)

Michal Lenc: Teorie rozptylu - 33 -

$$\Psi_{l}(r) \approx d_{1} \frac{p^{l}}{(2l+1)!!} r^{l+1} - d_{2} \frac{(2l-1)!!}{p^{l+1}} r^{-l} \quad .$$
(14.38)

Porovnáním (14.38) a (14.35) získáme vyjádření koeficientů *d* pomocí koeficientů *c*, a dosazení do (14.37) dává výraz pro fázový posuv

$$\delta_{l}(p) \approx \tan \delta_{l}(p) = \frac{c_{1}}{c_{2}((2l-1)!!)^{2}} \frac{p^{2l+1}}{(2l+1)} \quad .$$
(14.39)

Pro amplitudu rozptylu dostáváme

$$f_l(p) = \frac{\exp\{2i\delta_l(p)\} - 1}{2ip} \approx \frac{\delta_l(p)}{p} \sim p^{2l} \quad . \tag{14.40}$$

Je proto většinou možné považovat rozptyl při malých energiích za s-rozptyl.

15 Nepružný rozptyl

15.1 Parciální vlny

Budeme se snažit o co největší podobnost s popisem při pružném rozptylu. Tak vlnovou funkci napíšeme ve stejném tvaru, tj. jako (12.23)

$$\psi = \frac{i}{2 p r} \sum_{l=0}^{\infty} (2l+1) P_l(\cos\theta) \Big[(-1)^l \exp\{-i p r\} - S_l \exp\{i p r\} \Big] \quad , \tag{15.1}$$

ale nebude již platit $|S_i|=1$. Amplituda rozptylu bude mít také stejný tvar

$$f(\theta) = \frac{1}{2ip} \sum_{l=0}^{\infty} (2l+1)(S_l-1)P_l(\cos\theta) \quad .$$
(15.2)

Rozdíl musíme brát v úvahu při výpočtu účinných průřezů. Máme

$$\sigma_{t} = \sum_{l=0}^{\infty} \sigma_{t}^{(l)} , \quad \sigma_{t}^{(l)} = \sigma_{e}^{(l)} + \sigma_{r}^{(l)} . \quad (15.3)$$

(Indexy total, elastic a reaction). Pro pružný rozptyl

$$\sigma_e^{(l)} = \frac{\pi}{p^2} (2l+1) |1-S_l|^2 \quad , \tag{15.4}$$

pro nepružný rozptyl

$$\sigma_r^{(l)} = \frac{\pi}{p^2} (2l+1) \left(1 - |S_l|^2 \right)$$
(15.5)

a pro celkový účinný průřez

$$\sigma_t^{(l)} = \frac{2\pi}{p^2} (2l+1) (1-\Re S_l) \quad . \tag{15.6}$$

Významnými hodnotami jsou $S_l = 1$ - žádný rozptyl, $S_l = -1$ - maximální pružný rozptyl a $S_l = 0$ - úplná absorpce. Celkový účinný průřez je tedy

$$\sigma_{l} = \frac{2\pi}{p^{2}} \sum_{l=0}^{\infty} (2l+1)(1-\Re S_{l}) \quad . \tag{15.7}$$

Dosazení $\theta = 0$ do imaginární části (15.2) a porovnání s (15.7) dává zobecnění optického teorému

$$\Im f(0) = \frac{p}{4\pi} \sigma_t \quad . \tag{15.8}$$

Pro parciální amplitudy

$$\Im f_l(p) = \frac{p}{4\pi} \frac{\sigma_t^{(l)}}{2l+1} \quad . \tag{15.9}$$

Při záměně rozbíhavé vlny za sbíhavou nebudeme moci využít komplexního sdružení, ale záměny $p \rightarrow -p$ a $S_l \rightarrow 1/S_l$. Je pak

$$f_l(p) = \frac{S_l - 1}{2ip}$$
, $f_l(-p) = \frac{\frac{1}{S_l} - 1}{-2ip}$, (15.10)

odkud po vyloučení S_l dostaneme vztah mezi $f_l(p)$ a $f_l(-p)$, který lze upravit na tvar

$$\frac{1}{f_l(p)} + i p - \left(\frac{1}{f_l(-p)} - i p\right) = 0 \implies \frac{1}{f_l(p)} + i p = g_l(p^2) \quad , \tag{15.11}$$

takže

$$f_{l}(p) = \frac{1}{g_{l}(p^{2}) - ip} \quad .$$
 (15.12)

15.2 Komplexní index lomu prostředí

Mějme prostředí, skládající z mnoho rozptylových center. Bude-li velikost amplitudy rozptylu malá ve srovnání se střední vzdáleností částic $d \approx (V/N)^{1/3}$, můžeme výslednou amplitudu rozptylu v prostředí považovat za prostý součet jednotlivých amplitud. Dále si zavedeme efektivní potenciál, který bude takový, že vyjádření amplitudy v Bornově aproximaci budeme dávat správnou hodnotu amplitudy rozptylu dopředu (tzn efektivní potenciál bude komplexní). Podle (6.12) (budeme teď psát i Planckovu konstantu)

Michal Lenc: Teorie rozptylu - 35 -

$$U_{eff} = -\frac{N}{V} \frac{2\pi\hbar^2}{m} f(0, E) \quad .$$
 (15.13)

Rovinnou vlnu procházející prostředím zapíšeme s komplexním vlnovým vektorem

$$\psi = \exp\{i k z\}$$
, $k = \frac{1}{\hbar} \Big[2 m \Big(E - U_{eff} \Big) \Big]^{1/2}$. (15.14)

Index lomu je pak

$$n = \left[1 - \frac{U_{eff}}{E}\right]^{1/2} = \left[1 + \frac{N}{V} \frac{2\pi\hbar^2}{mE} f(0, E)\right]^{1/2} \quad .$$
(15.15)

Není-li index lomu příliš odlišný od jedničky, můžeme psát

$$\Im n \approx \frac{N}{V} \frac{2\pi}{k^2} \Im f(0, E) = \frac{N}{V} \frac{\sigma_t}{2k} \quad . \tag{15.16}$$

16 Příklady

16.1 Rozptyl nukleonů

Při malých energiích můžeme psát pro amplitudu rozptylu protonu na neutronu (uvažujeme pouze *s*-rozptyl, tj. l=0)

$$f = \frac{1}{g(k^2) - ik} \approx \frac{1}{-\kappa_0 + \frac{1}{2}r_0k^2 - ik} \quad .$$
(16.1)

Amplituda má singularitu (v komplexní rovině impulsů k) pro

$$k = i\kappa \quad , \quad \kappa = \kappa_0 + \frac{1}{2}r_0\kappa^2 \quad . \tag{16.2}$$

Účinný průřez je pak

$$\sigma = 4\pi \left| f \right|^2 = \frac{4\pi}{\left(\kappa_0 - \frac{1}{2}r_0 k^2\right)^2 + k^2} \quad . \tag{16.3}$$

Malou úpravou dostaneme

$$\sigma = \frac{4\pi}{\left(k^{2} + \kappa^{2}\right)\left[1 - r_{0}\kappa + \frac{1}{4}r_{0}^{2}\left(k^{2} + \kappa^{2}\right)\right]} \approx \frac{4\pi\hbar^{2}}{m\left(E + |\varepsilon|\right)}\left(1 + r_{0}\kappa_{0}\right) \quad , \tag{16.4}$$

kde $m = m_p m_n / (m_p + m_n)$ a $-\varepsilon$ je energie vázaného stavu částic (deuteronu).

16.2 Rozptyl rychlých neutronů na jádře

Efektivní poloměr jádra označme *a*. Předpokládáme splnění podmínky kvasiklasické aproximace $ka=2\pi a/\lambda \gg 1$. Dále předpokládáme, že všechny neutrony s momentem impulsu $l < l_0 = ka$, tj. s impaktním parametrem $\rho = \hbar l/mv = l/k < a$ jsou absorbovány. Jako model můžeme pak vzít Fraunhoferovu difrakci na nepropustném terčíku poloměru *a*. Pro diferenciální účinný průřez dostáváme hned

$$d\sigma_e = \pi a^2 \frac{J_1^2 (k \, a \, \theta)}{\pi \, \theta^2} d\Omega \quad . \tag{16.5}$$

Z obecného vztahu pro rozptyl je

$$S_{l} = \begin{cases} \frac{0 \quad l < l_{0}}{1 \quad l > l_{0}} \implies f(\theta) = \frac{1}{2ik} \sum_{l=0}^{l_{0}} (2l+1) P_{l}(\cos\theta) \quad . \tag{16.6} \end{cases}$$

V sumě budou nejdůležitější úlohu hrát velké hodnoty l, takže ve známé aproximaci

$$f(\theta) = \frac{i}{k} \int_{0}^{ka} \xi J_0(\theta\xi) d\xi = i a \frac{J_1(k a \theta)}{\theta} \quad .$$
(16.7)

Celkový účinný průřez pružného rozptylu je

$$\sigma_e = \pi a^2 \int_0^\infty \frac{J_1^2 (k a \theta)}{\pi \theta^2} 2\pi \theta d\theta = \pi a^2 \quad . \tag{16.8}$$

16.3 Rozptyl rychlých elektronů na atomu

Označme hustotu rozložení náboje v atomu

$$\rho(\vec{r}) = en(r) - Ze\delta(\vec{r}) \quad , \tag{16.9}$$

kde *e* je náboj elektronu a n(r) hustota pravděpodobnosti výskytu elektronu. Poissonovu rovnici

$$\Delta \Phi(\vec{r}) = -\frac{1}{\varepsilon_0} \rho(\vec{r})$$
(16.10)

řešíme pomocí Fourierovy transformace, tj.

$$g(\vec{r}) = \frac{1}{(2\pi)^3} \int G(\vec{q}) \exp\{i\vec{q}\cdot\vec{r}\} d^3\vec{q} \quad , \quad G(\vec{q}) = \int g(\vec{r}) \exp\{-i\vec{q}\cdot\vec{r}\} d^3\vec{r} \quad . \quad (16.11)$$

Z rovnic (16.10) a (16.9) máme

Michal Lenc: Teorie rozptylu - 37 -

$$\Phi(q) = \frac{e}{\varepsilon_0 q^2} \left(F(q) - Z \right) \quad , \quad F(q) = \int n(r) \exp\{-i \vec{q} \cdot \vec{r}\} d^3 \vec{r} \quad . \tag{16.12}$$

Integrace vzhledem k úhlovým proměnným dává

$$F(q) = \frac{4\pi}{q} \int_{0}^{\infty} n(r) \sin(qr) r \, dr \quad . \tag{16.13}$$

Do vztahu (11.33) dosadíme $V(q) = e\Phi(q)$, takže máme

$$f(q) = \frac{me^2}{2\pi\hbar^2 \varepsilon_0 q^2} (Z - F(q))$$
(16.14)

a konečně pro účinný průřez

$$d\sigma = 4 \left(\frac{me^2}{4\pi\varepsilon_0 \hbar^2 q^2}\right)^2 \left(Z - F(q)\right)^2 d\Omega \quad . \tag{16.15}$$

Máme

$$q^{2} = \frac{1}{\hbar^{2}} \left(p \,\vec{n} - \vec{p} \right)^{2} = 2 \left(\frac{p}{\hbar} \right)^{2} \left(1 - \cos\theta \right) = \left(2 \frac{p}{\hbar} \sin\frac{\theta}{2} \right)^{2} \quad . \tag{16.16}$$

Je vidět, že pro velmi malé úhly rozptylu lze považovat *q* za malé (označíme-li *a* poloměr koule, kde je n(r) významně různé od nuly, znamená "malé *q*" podmínku $qa \ll 2\pi$) a máme přibližně

$$F(q) \doteq \int n(r) \left[1 - i \vec{q} \cdot \vec{r} - \frac{1}{2} (\vec{q} \cdot \vec{r})^2 \right] d^3 \vec{r} , \quad \int n(r) d^3 \vec{r} = Z ,$$

$$\int n(r) \vec{q} \cdot \vec{r} \, d^3 \vec{r} = 0 , \quad \int n(r) (\vec{q} \cdot \vec{r})^2 \, d^3 \vec{r} = \frac{q^2}{3} \int n(r) r^2 \, d^3 \vec{r} , \qquad (16.17)$$

$$Z - F(q) \doteq \frac{1}{6} q^2 \int n(r) r^2 \, d^3 \vec{r} .$$

Dosazením do (16.15) dostáváme pro rozptyl pod malými úhly

$$d\sigma = \left(\frac{me^2}{3\varepsilon_0\hbar^2}\int_0^\infty n(r)r^4 dr\right)^2 d\Omega \quad . \tag{16.18}$$

Účinný průřez je pro velmi malé rozptylové úhly konstantní. Naopak pro $q a \gg 2\pi$ můžeme F(q) oproti Z zanedbat a dostáváme

$$d\sigma = \left(\frac{Ze^2}{8\pi\varepsilon_0 mv^2}\right)^2 \frac{d\Omega}{\sin^4\frac{\theta}{2}} \quad , \tag{16.19}$$

tedy klasický Rutherfordův vztah.

Dosadíme-li do (16.13) Thomasovu - Fermiho hustotu pravděpodobnosti

- 38 -

$$n(r) = \frac{Z^2}{b^3} \rho \left(Z^{1/3} \frac{r}{b} \right) \quad , \tag{16.20}$$

dostaneme

$$F(q) = \frac{4\pi Z^2}{q b^3} \int_0^\infty \rho \left(Z^{1/3} \frac{r}{b} \right) \sin(q r) r \, dr = Z \, \phi \left(\frac{q b}{Z^{1/3}} \right) \quad . \tag{16.21}$$

Derivováním (16.16) dostáváme vyjádření elementu prostorového úhlu jako

$$d\Omega = \left(\frac{\hbar}{p}\right)^2 q \, dq \, d\varphi \quad . \tag{16.22}$$

Diferenciální účinný průřez (16.15) bude po dosazení ze (16.21) a (16.22)

$$d\sigma = \left(\frac{me^2 Z}{2\pi\varepsilon_0 \hbar p}\right)^2 \left(1 - \phi\left(\frac{qb}{Z^{1/3}}\right)\right)^2 \frac{dq}{q^3} d\varphi =$$

$$Z^{4/3} \left(\frac{me^2 b}{2\pi\varepsilon_0 \hbar p}\right)^2 \Phi\left(\frac{qb}{Z^{1/3}}\right) d\left(\frac{qb}{Z^{1/3}}\right) d\varphi \quad .$$
(16.23)

Integrací (16.23) dostáváme velmi obecný výraz pro účinný průřez rozptylu rychlého elektronu na atomu

$$\sigma \sim \frac{Z^{4/3}}{E} \quad . \tag{16.24}$$

17 Rozptyl identických částic

Zvolíme těžišťový souřadný systém. Výměna částic znamená změnu orientace vektoru spojujícího částice. Ve sférických souřadnicích to znamená záměnu azimutálního úhlu $\theta \rightarrow \pi - \theta$. Máme tedy pro vlnovou funkci

$$\psi = \exp\{i k z\} \pm \exp\{-i k z\} + \frac{\exp\{i k r\}}{r} [f(\theta) \pm f(\pi - \theta)] \quad . \tag{17.1}$$

Je-li celkový spin částic sudý, je účinný průřez

$$d\sigma_{s} = \left| f(\theta) + f(\pi - \theta) \right|^{2} d\Omega \quad , \qquad (17.2)$$

zatímco pro celkový spin lichý je

$$d\sigma_a = \left| f(\theta) - f(\pi - \theta) \right|^2 d\Omega \quad . \tag{17.3}$$

V experimentech se jen málo využívá polarizovaných svazků. Je tedy vhodné mít střední hodnoty. Z celkového počtu $(2s+1)^2$ stavů je pro částice s poločíselným spinem s(2s+1) stavů se sudým spinem a

(s+1)(2s+1) stavů s lichým spinem. Máme tedy pro částice s poločíselným spinem

$$d\sigma = \frac{s}{2s+1}d\sigma_s + \frac{s+1}{2s+1}d\sigma_a = \left[\left|f\left(\theta\right)\right|^2 + \left|f\left(\pi-\theta\right)\right|^2 - \frac{1}{2s+1}\left(f\left(\theta\right)f^*\left(\pi-\theta\right) + f\left(\theta\right)^*f\left(\pi-\theta\right)\right)\right]d\Omega \quad .$$
(17.4)

Pro částice s celočíselným spinem je naopak s(2s+1) stavů s lichým spinem a (s+1)(2s+1) stavů se sudým spinem. Máme tedy

$$d\sigma = \frac{s+1}{2s+1}d\sigma_s + \frac{s}{2s+1}d\sigma_a = \left[\left|f\left(\theta\right)\right|^2 + \left|f\left(\pi-\theta\right)\right|^2 + \frac{1}{2s+1}\left(f\left(\theta\right)f^*\left(\pi-\theta\right) + f\left(\theta\right)^*f\left(\pi-\theta\right)\right)\right]d\Omega \quad .$$
(17.5)

18 Excitace atomu při srážce s částicí

Předpokládejme, že můžeme využít Fermiho pravidla. Počáteční stav obsahuje atom hmotnosti M a nábojem jádra -Ze v základním stavu a volnou částici hmotnosti m a nábojem ze s hybností \vec{p} ; konečný stav obsahuje atom v n-tém excitovaném stavu (n je multiindex) a opět volnou částici s hybností \vec{p}' . Interakční potenciál je \hat{V} . Zákon zachování energie v soustavě, ve které se atom v počátečním stavu jako celek nepohybuje, zapíšeme jako

$$\frac{p^{\prime 2}}{2m} - \frac{p^2}{2m} + \frac{\left(\vec{p}^{\prime} - \vec{p}\right)^2}{2M} + E_n - E_0 = 0 \quad . \tag{18.1}$$

Velké zjednodušení přinese předpoklad, že bude možné pohyb atomu v konečném stavu zanedbat. Máme pak pro pravděpodobnost přechodu za jednotku času

$$dw_{n} = \frac{2\pi}{\hbar} \left| \left\langle n, \vec{p}' \left| \hat{V} \right| 0, \vec{p} \right\rangle \right|^{2} \delta \left(\frac{p^{\prime 2}}{2m} - \frac{p^{2}}{2m} + E_{n} - E_{0} \right) \frac{d^{3} \vec{p}'}{\left(2\pi\hbar\right)^{3}} \quad .$$
(18.2)

Integrací vzhledem k p' (píšeme $d^3 \vec{p}' = p'^2 d p' d\Omega$) odstraníme delta funkci

$$dw_{n} = \frac{m\sqrt{p^{2} - 2m(E_{n} - E_{0})}}{4\pi^{2}\hbar^{4}} \left| \left\langle n, \vec{p}' \left| \hat{V} \right| 0, \vec{p} \right\rangle \right|^{2} d\Omega \quad .$$
(18.3)

Přejdeme teď k souřadnicové representaci. Normování vlnové funkce částice v konečném stavu musí odpovídat námi vybrané hustotě koncových stavů v (18.2), tj.

- 40 -

$$\langle \vec{p}_1 | \vec{p}_2 \rangle = \delta \left(\frac{\vec{p}_1 - \vec{p}_2}{2\pi\hbar} \right) \implies \psi_{\vec{p}'}(\vec{r}) = \exp \left\{ \frac{i}{\hbar} \vec{p} \cdot \vec{r} \right\}$$
 (18.4)

Zvolíme-li normování dopadající vlny na jednotkový tok

$$\Psi_{\vec{p}}(\vec{r}) = \left(\frac{m}{p}\right)^{1/2} \exp\left\{\frac{i}{\hbar} \vec{p} \cdot \vec{r}\right\} \quad , \tag{18.5}$$

spočteme pak přímo účinný průřez. Interakční potenciál je

$$V = \frac{z e^2}{4\pi \varepsilon_0} \left(-\frac{Z}{r} + \sum_a \frac{1}{\left| \vec{r} - \vec{r_a} \right|} \right) \quad . \tag{18.6}$$

Dostáváme tak po dosazení do vztahu (18.3) výraz pro diferenciální účinný průřez při excitaci atomu

$$d\sigma_{n} = \left(\frac{ze^{2}m}{4\pi\varepsilon_{0}\hbar^{2}}\right)^{2} \frac{\sqrt{p^{2}-2m(E_{n}-E_{0})}}{4\pi^{2}p} \left| \left\langle n \right| \int \left(-\frac{Z}{r} + \sum_{a} \frac{1}{\left|\vec{r}-\vec{r}_{a}\right|}\right) \exp\left\{-i\vec{q}\cdot\vec{r}\right\} d^{3}\vec{r}\left|0\right\rangle \right|^{2} d\Omega \quad , \quad (18.7)$$

kde jsme označili $\vec{q} = (\vec{p}' - \vec{p})/\hbar$. Fourierův obraz potenciálu vyjádříme pomocí vztahu

$$\int \frac{\exp\{-i\vec{q}\cdot\vec{r}\}}{|\vec{r}-\vec{r}_a|} d^3\vec{r} = \exp\{-i\vec{q}\cdot\vec{r}_a\} \int \frac{\exp\{-i\vec{q}\cdot\vec{r}\}}{r} d^3\vec{r} = \frac{4\pi}{q^2} \exp\{-i\vec{q}\cdot\vec{r}_a\} \quad .$$
(18.8)

Další úprava spočívá ve vyjádření elementu prostorového úhlu za vztahu

$$q^{2} = \frac{1}{\hbar^{2}} \left(p^{2} + p^{\prime 2} - 2 p p^{\prime} \cos \theta \right) \implies$$

$$q \, dq = \frac{p p^{\prime}}{\hbar^{2}} \sin \theta \, d\theta = \frac{p p^{\prime}}{2\pi \hbar^{2}} d\Omega \quad . \tag{18.9}$$

Výraz pro diferenciální účinný průřez (18.7) přepíšeme tedy na

$$d\sigma_{n} = 8\pi \left(\frac{z e^{2}}{4\pi \varepsilon_{0} \hbar v}\right)^{2} \left| \left\langle n \left(-Z + \sum_{a} \exp\{-i \vec{q} \cdot \vec{r}_{a}\} \right) \right| 0 \right\rangle \right|^{2} \frac{dq}{q^{3}} \quad .$$
(18.10)

Pro pružný rozptyl (n=0) máme tedy známý vztah

$$d\sigma_e = 8\pi \left(\frac{z\,e^2}{4\pi\,\varepsilon_0\,\hbar\nu}\right)^2 \left[Z - F(q)\right]^2 \frac{dq}{q^3} \quad . \tag{18.11}$$

Zde jsme využili definice rozptylového faktoru

$$F(q) = \int n(r) \exp\{-i\vec{q}\cdot\vec{r}\} d^{3}\vec{r} = \int \langle 0|\sum_{a}\delta(\vec{r}-\vec{r}_{a})|0\rangle \exp\{-i\vec{q}\cdot\vec{r}\} d^{3}\vec{r} = \langle 0|\sum_{a}\exp\{-i\vec{q}\cdot\vec{r}_{a}\}|0\rangle \quad .$$
(18.12)

Pro nepružný rozptyl máme s uvážením ortogonality stavů (tj. $\langle n \neq 0 | 0 \rangle = 0$)

$$d\sigma_{r} = \sum_{n \neq 0} d\sigma_{n} =$$

$$8\pi \left(\frac{z e^{2}}{4\pi \varepsilon_{0} \hbar v}\right)^{2} \sum_{n \neq 0} \left| \langle n | \sum_{a} \exp\{-i \vec{q} \cdot \vec{r}_{a} \} | 0 \rangle \right|^{2} \frac{dq}{q^{3}} \quad .$$
(18.13)

Obecně platí

$$\sum_{n} \left| f_{0n} \right|^{2} = \sum_{n} f_{0n} f_{0n}^{*} = \sum_{n} f_{0n} \left(f^{+} \right)_{n0} = \left(f f^{+} \right)_{00} \implies \sum_{n \neq 0} \left| f_{0n} \right|^{2} = \sum_{n} \left| f_{0n} \right|^{2} - \left| f_{00} \right|^{2} = \left(f f^{+} \right)_{00} - \left| f_{00} \right|^{2} \qquad (18.14)$$

Aplikujeme-li teď obecný výsledek na matici v (18.13), máme s využitím (18.12)

$$\sum_{n \neq 0} \left| \left\langle n \left| \sum_{a} \exp\{-i \vec{q} \cdot \vec{r}_{a} \right\} \right| 0 \right\rangle \right|^{2} = \left\langle 0 \left| \sum_{a} \sum_{b} \exp\{i \vec{q} \cdot (\vec{r}_{a} - \vec{r}_{b}) \right\} \right| 0 \right\rangle - \left| \left\langle 0 \left| \sum_{a} \exp\{-i \vec{q} \cdot \vec{r}_{a} \right\} \right| 0 \right\rangle \right|^{2}$$

$$Z - F^{2} \left(q \right) + \left\langle 0 \left| \sum_{a \neq b} \exp\{i \vec{q} \cdot (\vec{r}_{a} - \vec{r}_{b}) \right\} \right| 0 \right\rangle \quad .$$

$$(18.15)$$

Dosazení do (18.13)

$$d\sigma_{r} = 8\pi \left(\frac{z e^{2}}{4\pi \varepsilon_{0} \hbar v}\right)^{2} \left[Z - F^{2}(q) + \langle 0|\sum_{a \neq b} \exp\{i \vec{q} \cdot (\vec{r}_{a} - \vec{r}_{b})\}|0\rangle\right] \frac{dq}{q^{3}} \quad .$$

$$(18.16)$$