rJuorjns Oharnjsxry rrorrj -ensDry "CD sippjjcsriijan Lecturer: assist prof dr Matjaž KristI matiaz.kristl@uni-mb.si University of Maribor, Slovenia Faculty of Chemistry and Chemical Engineering Department of Inorganic Chemistry J Ik *^J J ^>d -j ^>J J > R Lazarini, J. BrenSiS, Splošna in anorganska kemjja, DZS Ljubljana 1984 (pp, 280-301) > D, F, Shriver, P. W. Atkins, Inorganic Chemistry, Oxford university press 1999 (pp, 407 - 427) > Web sources Inorganic LtierTvisUy m n "Perhaps one of you gentlemen would mind telling me jupt what it is outside the window that uo u find so attractive. ™ GönsraJ sJsiiJöniisiJ DroD^rtí^s Atomic number: 9 Atomic weight: 18,998 Electron configuration: 1 s22s22px22py22pz1 Electronegativity (Allred - Rochow scale): 4,10 Ionic radius F~ : 1,36 Á Covalent radius F; 0,71 Á Melting point:-219,6 °C Boiling point: -187,5 °C i 3c-£ľDľJ3cjíi-£jyny Dimensionless quantity! Ability of an atom to attract electrons towards itself in a covalent bond H 2,20 Li Be B C 0,98 1,57 2,04 2,55 0,94 1,46 2,01 2,63 0,97 1,47 2,01 2,50 Na Mg Al Si 0,93 1,31 1,61 1,90 0h93 1,32 1,31 2,44 1,01 1,23 1,42 1,74 K Ca Ga Ge 0,82 1,00 1,81 2,09 0,80 - 1,95 - 0,91 1,04 1,82 2,02 Rb Sr (n Sh 0,82 0,95 1,78 1,96 - - 1,80 - 0,89 0,99 1,49 1,72 Cs Ba TI Pb 0,79 G,B9 2,04 2,33 0,86 0,97 1,44 1,55 + 1 + 2 + 3 + 4 N 3,04 2,33 3,07 P 2,19 1,&1 2,06 As 2,18 1.75 2,20 Sb 2,05 1,65 1,82 Bi 2,02 1,67 O 3,44 3,17 3,50 S 2,58 2,41 2,44 Se 2.55 2,23 2,48 Te 2,10 2,01 F 3,98 3,31 4,10 Cl 3,16 3,00 2,83 3r 2,96 2.76 2,74 J 2,66 2,56 2,21 -3 -2 -1 Occurs/ICO and pr^ductJün 0,066 wt % in nature Due to high reactivity, it can not be found in elementary state Most common minerals: > fluorite, CaF2 > apatite, Ca5F(P04)3 • cryolite, Na3AIF6 CrjüWiB, tti\j\\r > First described: 1799 from a deposit in Ivigtut, West Greenland. > Historically: ore of aluminium > Today: electrolytic processing of bauxite, Al203 (lowers the I melting point from > 2000 °C to < 1000 °C j-J jsi o ry ♦ 1530: 'fluorspar' (mainly CaF2) first described ♦ 1670: glass is etched when exposed to fluorspar treated with acid * 1700s: hydrofluoric acid is easily obtained by treating fluorite with concentrated sulfuric acid * 1800s: many unsucessfull attempts to produce elemental fluorine from H, very dangerous - killing or blinding several scientists - "fluorine martyrs" Moissan method (1886): isolation possible only by electrolysis, there is no stronger oxidizing agent: CaF2 + H2S04 -» CaS04 + 2 HF HF + KF -» KHF2 KHFo-»2KF + Ho + F > High temperature electrolysis at 240°C (steel anode) or low temperature electrolysis at 90°C (Ni / C anode) Ferdinand Frederic Henri Moissan, 1852 -1907 (Np 1906) Low conductivity of HF! Melting temperatures: KFHF:217°C KP2HF: 72 °C KP3HF: 66 °C in lei |H2 outlet F2 outlet H2 outlet HF/KF electrolyte Steel cathode (—) Carbon anode (+) r2pruí\i\ďí}uíi p Jam (ErjcjJsjľjdJ: U l»1! i —. Tr: ÍJ " «'^: >2 JsükriJrjcj f2by ďnsnnoc\\ íBiiďůon: Karl O. Christe, University of South California (1986): K2MnF6 + 2SbF5 -► 2KSbF6 + MnF4 2MnF4 -► 2MnF3 + F2 i i E i r2 jjjüJscljJöj char/jJCsiJ pľupBľíJíS üffJuorjjjö Bond length: 1,44 Á Short bond: strong repulsion ofnonbonding electron pairs —► weak bond —► highly reactive element! reacts with all elements other than He, Ne in Ar reactions are strongly exothermic Atomorbital des Molekül- Atomorbital des einen F-Atoms orbital anderen F-Atomsl |2p-0rbitale fit H !$Orbitale Some examples of reactions of elemental fluorine: 2H20 + 2F2 -► 02 + 4HF (explosive!) > Similar strongly exothermic reactions with all hydrogen containing compounds, e. g. H2S, NH3, H20 > Reacts with H2 in dark at -200°C > By fluorinating, many elements form compounds with the highest possible oxidation state (e. g. PF5, SF6, IF7) > With metals, the reactions are often moderate, at room T and normal pressure pasivisation of metals > Dry F at room T does not react with glass! Muďí j/u p or hi mfJ u urin 3 coí/jpounds HF: synthesis from elements theoretically possible, but inconvinient, expensive, dangerous! Industrial methods: CaFo + HoSO, -> CaSO. + 2HF 2Ca5F(P04)3 + 7H2S04 -+ 3Ca(H2P04) + 7CaS04 + 2HF Anomalous high boiling point (HF +19°C; HCl -85°C HBr -67°C, HI -35°C) - try to explain why! Most important properties of H F > High dipole moment, good solvent, many physical properties similar to water —► miscible in all proportions > Protolitic equilibrium: HF + HF <+ H2F+ + P (K = 1-10"10) > HNO3 reacts as a base (!) in liquid HF: HNO3 + HF -> H2N03+ + F- > Very few compouds react as acids in HF: SbF5 + 2HF -► H2F+ + SbF6- > Aqueous solution (hydrofluoric acid) is a weak acid HF + H20 -> H30+ + P (K = 7,2 • 10"4) Reaction with glass: Si02(s) + 4 HF(aq) Si02(s) + 6 HF(aq) SiF4(g) + 2 H20(l) H2[SiF6](aq) + 2 H20(l) Working with HF using glassware is impossible! Use: etching of glass ÜXüCüinpüiinÜB us sliioriľi 2F2 + 2NaOH -> 2NaF + 0F2 + H20 Colourless gas, very toxic, stable, does not react with water 02F2: prepared by subjecting a 1:1 mixture of gaseous fluorine and oxygen at low pressure to an electric discharge (Otto Ruff, 1933) Unstable, strong oxidizing and fluorinating agent J/jdustrkiJ use vriluonne l\) £íJ*JľJchnrj£ÍJ*jt UÍ LJľSJ/JJLJJ/J Natural uranium: 99.2% U-238, 0.8% U-235 Problem: only 235U is fissionable by thermal neutrons Low - enriched uranium (reactor grade): min. 3-4% U-235 Highly enriched uranium (weapons grade) min. 80 -90% U-235 Isotope separation: difficult, energy intensive (235U is on|y ! 26% lighter than 238U) U308 + HNO3 -► U02(N03)2 U02(N03)2 + NH3 -► (NH4)2U20: (NH4)2U207 + H2 -► UO U02 + 4HF ->UF4 + 2H20 UF4 + F2 -► UF6 (g) > Separation by gasseous diffusion: forcing UF6 through semi-permeable membranes (obsolete, energy -consuming, separation factor per stage 1,005) > Separation by or gas centrifuges: centrifugal force presses U-238 toward the outside of the cylinder (less energy consuming, separation factor per stage 1,3) 560000 tonnes of depleted UF6 only in the USA! industrií]J U23 os iliionn b) rJuuľoĽhJuľuhydľucnrb Freones (CFCs): trade name for a group of chlorofluorocarbon and hydrochlorofluorocarbon compounds: CCI3F (freon 11) CCI2F2 (freon 12) C2CI3F3 (freon 113) 2 isomeres: CCI3-CF3, CCI2F-CCIF2 Great properties: odorless, colorless, nonflammable, noncorrosive - ideal for use in air conditioning, refrigeration and fire-fighting systems. Developed in 1930 {Migdley, Kettering) as an alternative to the toxic gases that were previously used as refrigerants: NH3, S02, CH3CI WW2: use as automatic fire extinguishers in aircraft 1960s: CBrF3 (halon 1301) CF2CIBr (halon 1211) > among the most effective fire-fighting materials discovered! > By the late 1960s: standard in applications where ■ water and dry-powder extinguishers posed a threat of damage to the protected property, including computer rooms, telecommunications switches, laboratories, museums and art collections 1974: first warnings of damage to stratospheric ozone {Molina, Rowland) Atmospheric time-series of CFC-11 Late 1980s, early 1990s: conventions for outphasing freones and (partially) halones from production (exception: Civilian and military aircraft!) Northern hemisphere Southern hemisphere 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Time [year] Possible replacements: hydrofluorocarbons, HFCs > 1,1,1,2-tetrafluoroethane, CF3-CH2F: refrigerant for domestic and car air conditioners, no ozone depleting properties (!), possible greenhoue effects JrjdLJäíľhiJ IJ33 oTÍluoríno o) p o\y iBíľíjfl u or o s'thy \ on • (C2F4)n: • Discovery: 1938, by accident when trying to synthesize C2F4 • Use: cooking pans, textile fibers, chemical industry (resistant to F2!) bearings, gaskets, medical implats, electronical devices / Guarantied Td Kapp Yini Dry "> GORE-TEX rJ3<]JÍb JľJJpJjCSJ'£JOrj£í üVhllütifi • trace element (5g / 70 kg), in the form of F- • very nonuniform distribution throughout the body, most in bones and teeth • reduces tooth decay —► water fluoridation (0.5 -1 mg / L), controversial Elemental F2 is highly toxic, LD50 =185 ppm (!!!) • Harmfull to lungs, skin and especially eyes - even 25 ppm cause strong eye irritarion. Storing: iron, Ni - Cu alloy (monel), PTFE PliionriB cjhöi/jjsnry research Jrj EjJovö/jjsj: US Ljubljana, departement K1, prof. dr. Boris Žemva: • Synthesis and characterization of new coordination compounds with fluorine ligands, e. g.: XeF2, XeF4, KrF2) AsF3) HF etc. • Synthesis and characterization of ternary fluorides • Use of photochemical reactions and 1 elemental fluorine for the synthesis of new fluorine compounds of transition metals in high oxidation states itaLft JVkiľJbor Syntheses and characterization of hydroxylammonium fluorometallates, (NH3OH)xMFy • 1990 - 2009:12 scientific articles with JCR + 1 submitted (B. Volavšek, M. Drofenik, M. Kristl, I. Ban B. Dojer), 2 + 1 PhD theses, 3 MSc «*. •p». W" M = Ti, Zr, Hf, Al, Ga; In, Si, Ge, Cr, V, Co*, Cu*, Fe** Structure of P J LJ o r j r j b co/jj pounds uí nob\3 cjsiso Bartlett, 1962: 'PtOF4' = 02+(PtF6)- > first compound, in which oygen was oxidized! > Ej (O) = 1177 kJ/mol, Ej (Xe) = 1170 kJ/mol Xe + PtF6 -+ Xe(PtF6) Hoppe, 1962: Xe + F2 -► XeF2 (1 atm, 400°C) > strong oxidizing and fluorinating agent (XeF+ is formed) > reacts with water in alkaline solutions: 2XeF2 + 2H20 -► 2Xe + 4HF + 02 XeF4(1962): Xe + 2F2- XeF4 (6 atm, 400°C, Xe : F2 = 1 : 5) solid compound, square planar geometry reacts with water: 3XeF„ + 6H20 -► Xe + 2 Xe03 + 12 HF XeF6 (Slivnik et al., 1963): Xe + 3F2 -► XeF6 (60 atm, 400°C, Xe : F2 • solid compound, octahedral geometry • reacts with water: XeF6 + H20 -► XeOF4 + 2HF XeFfi + 3H,0 -► Xe03 + 6HF > Recently also compounds with Xe -N and Xe - C bonds have been discovered, e. g. Xe(CF3)2 and XeFN(S02F)2 > Xe forms coordination compounds with unusually high coordination numbers: XeF6 + CsF -► CsXeF7 2CsXeF7 -► XeF6 + Cs^eFg > Kr reacts with F in an electric field at -196°C:Kr+F2 (solid compound, stable only below -80°C, extremely strong oxidizing oriAnf An _v AnP \