{VERSION 3 0 "IBM INTEL LINUX" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Title " 0 18 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 1 0 0 0 0 0 0 }3 0 0 -1 12 12 0 0 0 0 0 0 19 0 }} {SECT 0 {EXCHG {PARA 18 "" 0 "" {TEXT -1 30 "Newtonova - Leibnizova fo rmule" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 67 "S vyuzitim Newtonovy-Lei bnizovy formule vypoctete urcite integraly:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "i1:=Int(x^2, x=1..2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#i1G-%$IntG6$*$)%\"xG\"\"#\"\"\"/F*;\"\"\"F+" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "F:=unapply(int(x^2,x),x);" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"FGR6#%\"xG6\"6$%)operatorG%&arrow GF(,$*$)9$\"\"$\"\"\"#\"\"\"F0F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "F(2)-F(1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6##\"\"( \"\"$" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 38 "Primym vypoctem pomoci M aplu dostavame" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "i1=value( i1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*$)%\"xG\"\"#\"\"\"/ F);\"\"\"F*#\"\"(\"\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "i 2:=Int(1/x^2, x=-1..1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#i2G-%$In tG6$*&\"\"\"F)*$)%\"xG\"\"#F)!\"\"/F,;!\"\"\"\"\"" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 58 "Pokud bychom \"slepe\" pouzili predchazeji postup, dostavame" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "F:=unapply(in t(1/x^2,x),x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"FGR6#%\"xG6\"6$% )operatorG%&arrowGF(,$*&\"\"\"F.9$!\"\"!\"\"F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "F(1)-F(-1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#!\"#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 27 "coz zjevne neplati, protoze" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "plot(1/x^2, x=- 1..1, y=0..10, discont=true);" }}{PARA 13 "" 1 "" {INLPLOT "6&-%'CURVE SG6$7gn7$$!\"\"\"\"!$\"\"\"F*7$$!1w#p(e%G?y*!#;$\"1:\")pRA1X5!#:7$$!1A >B'esBf*F0$\"1`a>Ddz'3\"F37$$!1k^2AZ3z$*F0$\"1lIVdpyO6F37$$!1nX]ZIQk\" *F0$\"1u,.=en!>\"F37$$!1j_^7=q]*)F0$\"1q\"QPs/#[7F37$$!1\\\"yX&>f_()F0 $\"1y)fY)*[`I\"F37$$!1y]lr1YZ&)F0$\"1.&[d=b(o8F37$$!11FT0OJN$)F0$\"1r$ R='eJR9F37$$!12B](*o%Q7)F0$\"1CNq]HA::F37$$!16S&eRFj!zF0$\"1QS16Pu*f\" F37$$!1hQS+ht9xF0$\"1M*[>*y=!o\"F37$$!1,>+!o\\!*\\(F0$\"1YM\\&QG#yF37$$!1X[J3 TC%)oF0$\"1\"oorRC+6#F37$$!14*[$)4z)emF0$\"1xeiLeEbAF37$$!1O2tt`'zY'F0 $\"1nXROsO!R#F37$$!1E#eiK()eC'F0$\"1%z$pICPjDF37$$!1Y!oXi5$\\gF0$\"15& GIawEt#F37$$!1IF3F[jLeF0$\"1w(GYvr%QHF37$$!1![$*\\Yg#GcF0$\"1bNDCJ$o:$ F37$$!1>(QL'Q(RT&F0$\"1V#=FHv;T$F37$$!1$G#)*p=><_F0$\"1)3(>u>*Qn$F37$$ !1iM#e!f$\\+&F0$\"10(G'HU6#*RF37$$!15W^7;Y%y%F0$\"1fT*)*>:&oVF37$$!1C \\1#4QDf%F0$\"1'*3)edn7u%F37$$!1AG1KaD&Q%F0$\"1i+-5A3+_F37$$!1wxlh@6rT F0$\"1a'*fP(Gxu&F37$$!1rnd\\ZhhRF0$\"13xQTHqrjF37$$!1p@BJ_\"*ePF0$\"1w .Dm%>u2(F37$$!1'HKa(>&Q`$F0$\"1EaZ$)ph2!)F37$$!1AM+IEiJLF0$\"1U,E9\\C4 !*F37$$!1,'o(Q'*p:JF0$\"1mji-C7I5!#97$$!1^KC;8/?HF0$\"1'esPt%zs6F^v7$$ !1Ixe*3Nhq#F0$\"1L![*)RHbO\"F^v7$$!1OpS+g'[]#F0$\"1dS2d'*y$f\"F^v7$$!1 O5;4=[%H#F0$\"1\"G1rmi%**=F^v7$$!1#3*[2Gz)3#F0$\"1j=%z\"=(>H#F^v7$$!1! 4.][bM(=F0$\"187,9k8\\GF^v7$$!187+]+1m;F0$\"1D.T:?i-OF^v7$$!1(RDHEoRX \"F0$\"1K.'e\"fJIZF^v7$$!1,%HHqKOC\"F0$\"1Jh98FqlkF^v7$$!1)G**y;c.0\"F 0$\"1e4k*[WT1*F^v7$$!1x)*3vWR)G)!#<$\"1;_&zSdcX\"!#87$$!1)3>2_ArI'Fdy$ \"1&>c+.RQ^#Fgy7$$!1e16zLn%>%Fdy$\"1\")*QU\"3M$o&Fgy7$$!1TDj$pJP=$Fdy$ \"1Oi`>7ol)*Fgy7$$!1CW:3+zs@Fdy$\"1:ZfIz==@!#77$$!1=e6cDfH;Fdy$\"1$3)3 ,smlPF\\[l7$$!17s2/^R'3\"Fdy$\"1zpei,vs%)F\\[l7$$!1*3z0yjz9)!#=$\"1Qoq 5lE1:!#67$$!1ggQ?l(>V&Fj[l$\"1,=?<))4*Q$F]\\l7$$!1X&*G!*G)R2%Fj[l$\"1= =+&3j]-'F]\\l7$$!1II>g#*)fr#Fj[l$\"1b^hG&QcN\"!#57$$!1sZ9XC*p.#Fj[l$\" 1;HunG-5CF]]l7$$!1:l4Ic*zN\"Fj[l$\"1H$\\$GhaAaF]]l7$$!1uD[]\"))**y'!#> $\"1o=Zi?,p@!\"*7$$!1+++++++?!#C$\"1+++++++D\"\"#-%'COLOURG6&%$RGBGF*$ \"*++++\"!\")F*-F$6$7gn7$$\"1+++++++?Fb^lFc^l7$$\"16,Yj1j6oF[^l$\"1(Q5 m!3Db@F^^l7$$\"1A?pKTKi8Fj[l$\"1tT$p$G9)Q&F]]l7$$\"1L!Q!*>&[V?Fj[l$\"1 \"e>N\\KZR#F]]l7$$\"1WSQlikCFFj[l$\"1,6z'oPqM\"F]]l7$$\"1ng2)Rop3%Fj[l $\"10_B$4Po)fF]\\l7$$\"1*3o2`!H\\aFj[l$\"1#yG*)o'fnLF]\\l7$$\"1L@:'zMR <)Fj[l$\"1S\"Rd+5n\\\"F]\\l7$$\"1=O:1z&)*3\"Fdy$\"1%HjA\"[**=%)F\\[l7$ $\"1F/BfnyM;Fdy$\"1vi))HfxTPF\\[l7$$\"1OsI7crz@Fdy$\"1]'3$*3\\Z5#F\\[l 7$$\"15S*\\(\\*z7$Fdy$\"1.`EJ+/A5F\\[l7$$\"1&y!oPVFwSFdy$\"1P!z)*4\"H= gFgy7$$\"1h$[#zH:4iFdy$\"1*G&z(z#z$f#Fgy7$$\"1GV&\\sphN)Fdy$\"1#fXk1S@ V\"Fgy7$$\"1PZ[2#)H\\5F0$\"1VnQY;V#3*F^v7$$\"1]=Ul!3uC\"F0$\"1LkA\">Cm U'F^v7$$\"1@\\M[$RDX\"F0$\"1?4K`siRZF^v7$$\"1%H(e9kok;F0$\"1j(o&f*p&3O F^v7$$\"1%p(\\AJ:w=F0$\"1P9B5!\\4%GF^v7$$\"1))f9CEn$4#F0$\"1$eEeE+8G#F ^v7$$\"1Rhf>RE&G#F0$\"1\"\\s#)*p\"[\">F^v7$$\"1*4)**R.&4]#F0$\"1cs1eUy )f\"F^v7$$\"1b\\c*QAvr#F0$\"1w>6a$4TN\"F^v7$$\"1Tv9*oHi#HF0$\"1C4YS&Ry ;\"F^v7$$\"1b^o6fv:JF0$\"1?vP$>&3I5F^v7$$\"1\"4^;#47TLF0$\"1&=Fk$R4e*) F37$$\"1k#pikM?`$F0$\"1*RKEQfe,)F37$$\"1vV&R*o]RF0$\"1T&))Qm#*pS'F37$$\"1qs\"H>lj;%F0$\"1hG40O$3w&F37$$\"1 @l+b&RO:P%F37$$\"1Ql<9T1&*\\F0$\"1sR&p74z+%F37$$\"1!f&[2%Qb @&F0$\"1BKr$y@in$F37$$\"1x]$z#>Y2aF0$\"1Anafs*)>MF37$$\"1yr$zeWZh&F0$ \"1#**yiu\\?<$F37$$\"1CAMey))GeF0$\"1g@73)fK%HF37$$\"1IKUq_QQgF0$\"17< (f/uDu#F37$$\"1Jyw)y%3TiF0$\"1GOT(**=tc#F37$$\"1/xcW![hY'F0$\"1z<8k5r \"R#F37$$\"1yl***Qx$omF0$\"1eP21d%)[AF37$$\"1+9B\"Q+V)oF0$\"1\"HNA!**) *4@F37$$\"1\\nv.(e*zqF0$\"1&f>>-!)\\*>F37$$\"1qATI\\'QH(F0$\"1'[Ylz#oz =F37$$\"1lIf>S8&\\(F0$\"1Q-))fo3!y\"F37$$\"1k*Q3@=bq(F0$\"1`\"*><-@%o \"F37$$\"1>4^7s?6zF0$\"1:WW,3x(f\"F37$$\"15p*\\`Wl7)F0$\"10/e\\r@9:F37 $$\"1(y)**p*RRL)F0$\"1U#f#p.zR9F37$$\"1/Y2d<.Y&)F0$\"1(yO:%H@p8F37$$\" 1*fqqJnjv)F0$\"1'Rt&3OA/8F37$$\"1825_Qk\\*)F0$\"1q8;[)*\\[7F37$$\"185 \\s0;r\"*F0$\"1*4S(Rm\"*)=\"F37$$\"1#4Gzw(Gp$*F0$\"1.Y$Gbl\"R6F37$$\"1 N*)3#oK0e*F0$\"1b5HtN[*3\"F37$$\"1eX=>5s#y*F0$\"1jq8wU\"\\/\"F37$F+F+F f^l-%+AXESLABELSG6$Q\"x6\"Q\"yFeam-%%VIEWG6$;F(F+;F*$\"#5F*" 2 327 327 327 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 10030 10061 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 2285 -14180 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 75 "tj. f neni na interva lu -1..1 ohranicena, a proto urcity integral diverguje" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "Int(1/x^2, x=-1..1):%=value(%);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&\"\"\"F(*$)%\"xG\"\"#F(!\" \"/F+;!\"\"\"\"\"%)infinityG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "i3:=Int(1/(2-cos(x)), x=0..2*Pi);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#i3G-%$IntG6$*&\"\"\"F),&\"\"#\"\"\"-%$cosG6#%\"xG!\"\"!\"\"/F 0;\"\"!,$%#PiGF+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "F:=unap ply(int(1/(2-cos(x)),x),x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"FGR 6#%\"xG6\"6$%)operatorG%&arrowGF(,$*&-%%sqrtG6#\"\"$\"\"\"-%'arctanG6# *&-%$tanG6#,$9$#\"\"\"\"\"#F=F.F2F=#F>F1F(F(F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 61 "Opet \"slepou\" aplikaci Newtonovy-Leibnizoby formul e dostavame" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "F(2*Pi)-F(0) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 109 "coz je ocividne chybny vysledek, protoze integrand je kl adna funkce, takze integral musi mit kladnou hodnotu." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "plot(1/(2-cos(x)), x=0..2*Pi);" }} {PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$7en7$\"\"!$\"\"\"F(7$$\"1FT6j *))QU$!#<$\"1kq#y\\UT***!#;7$$\"1`#Gi#zxZoF.$\"122]Hzhw**F17$$\"1QU$*) omr-\"F1$\"1e:0W\"pv%**F17$$\"1^cC&eb&p8F1$\"1=f'3/Js!**F17$$\"16)>63x `'>F1$\"1UZ]9<76)*F17$$\"1qR*pd)>hDF1$\"1:yY![1To*F17$$\"1s[E^dK,RF1$ \"1\\C+zD5,$*F17$$\"1c^NehL]_F1$\"1c\"HSqF$Fao$\"1F-4 JU#)RiOFao$\"1N02/tX([$F17$$\"18!f%[$HSz$Fao$\"1;9t^4KyNF17$$\"1oE+7#* Q@RFao$\"1Bpvb()f)o$F17$$\"1)f0ii+G1%Fao$\"1cQE+*z*QQF17$$\"1fORr]')*= %Fao$\"1m;#eR!\\,SF17$$\"1&p%*z[LbK%Fao$\"1#pe)[8\\1UF17$$\"1'pExBp%[W Fao$\"1DO9)y#3BWF17$$\"1i/x$[qGe%Fao$\"1'poL?&p'p%F17$$\"1:%[Fao$\"1'Hzc5&3W`F17$$\"1u\"4%z!e2(\\Fa o$\"1f^Or]JKdF17$$\"1eC[4&eg5&Fao$\"1'oQ_F5l='F17$$\"1!f![/*ojB&Fao$\" 1b\")HpQ8omF17$$\"1dN^/,jp`Fao$\"1hV(eJ(3*>(F17$$\"1A\"GX$yy,bFao$\"1f v:Uv^^xF17$$\"1L1/jqABcFao$\"13;)og%ek#)F17$$\"1xeKB,TidFao$\"1bYwBb]H ))F17$$\"12$e;6(*o)eFao$\"1>RuQKu!G*F17$$\"1Lcu0ii>gFao$\"1(yX5\"[@m'* F17$$\"1:=>Xb9$3'Fao$\"1z[k\"f&[/)*F17$$\"1**zj%)[mYhFao$\"17?&[E8y!** F17$$\"1*\\Lr)\\z!='Fao$\"1!fPmv**y%**F17$$\"1***G'*3D\\@'Fao$\"1ykOme ww**F17$$\"1+X7#>b!\\iFao$\"1h4BJ'zT***F17$$\"1++i%H&=$G'FaoF)-%'COLOU RG6&%$RGBG$\"#5!\"\"F(F(-%+AXESLABELSG6$Q\"x6\"%!G-%%VIEWG6$;F($\"+3`= $G'!\"*%(DEFAULTG" 2 327 327 327 2 0 1 0 2 9 0 4 2 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "Int(1/(2-cos(x)), x=0..2* Pi):%=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%$IntG6$*&\"\"\"F (,&\"\"#\"\"\"-%$cosG6#%\"xG!\"\"!\"\"/F/;\"\"!,$%#PiGF*,$*&F6F+-%%sqr tG6#\"\"$F(#F*F<" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}} {MARK "8 0 0" 28 }{VIEWOPTS 1 1 0 1 1 1803 }