Proteinová krystalografie Jaromír Marek, Laboratoř funkční genomiky proteinů, MU Brno Historický úvod Monokrystalová strukturní analýza - studium 3-D struktur „molekul" difrakčními technikami Potřeba vhodné „sondy" - například rentgenového záření (1895, N.c. za fyziku 1901 - W. C. Röntgen) 1912 - průkaz vlnové povahy rentgenového záření jeho difrakcí na krystalu (N.c. za fyziku 1914 - M. von Laue) 1913-14- První analýzy struktur krystalů (N.c. za fyziku 1915 -W.H. Brar Další strukturní krystalografové -nositelé Nobelovy ceny chemie - L. Pauling - „The nature of the chemical bond and the structure of molecules and crystals" chemie - M.F.Perutz & J. C. Kendrew - první proteiny medicína - F.H.C.Crick, J.D.Watson, M.H.F.Wilkins-DNA chemie - D. Crowfood-Hodgkin - biochemické molekuly chemie - J.Deisenhofer, R.Huber & H. Michel -membránové proteiny chemie (1/2) - R. MacKinnon - „structural and mechanistic studies of ion channels" chemie - R. D. Kornberg - „molecular basis of eukaryotic transcription" (= struktura RNA polymerázy) chemie - V. Ramakrishnan, T.A. Steitz, A.E. Yonath -„structure and function of the ribosome Nárůst užití difrakčních metodik pro určování 3 -D struktur krystalů v čase biologické makromolekuly (databáze PDB) 90. léta-PCR [objev 1983, (1/2) N.C. za chemii 1993-Kary B. Mullis],plošné detektory, synchrotronové zareni 14000 m 12000-1 i ff 10000 I -| 8000-I ^ 1 "5 6000 J I 1 'S = 4000 J I 2000 J databáze PDB 1980 1985 1990 1995 2000 Postgenomická éra biologie ? J.C. Venter et a/.: The Sequence of the Human Genome, Science 2001 February 16; 291: 1304-1351. The genome international sequencing consortium: Initial sequencing and analysis of the human genome, Nature 409, 860-921; 15 February 2001. The Arabidopsis genome initiative: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408. 796-815: 14 December 2000. Studium genetických informací Prohledávání velkých databází a hledání jednotlivých genů (lidský genom:25-28000 genů?) Určování funkce jednotlivých genů Struktury všech pvoteirmiHurnan proteome project Techniky studia 3D struktur proteinů PDB 2001 2008 Z roztoků NMR 2 a XA tisíce 7 a Ví tisíce Krystaly Difrakční techniky Přes 12 tisíc 44 a !/2 tisíce Očekává se, že převážná většina struktur globulárních proteinů (proteinů s dobře určenou terciární strukturou) bude určována difrakcí rtg. (resp. synchrotronového) záření i v budoucnu. Teoretické základy difrakčního studia 3-D struktur „sonda46 vhodné velikosti pro studium atomů -rentgenové záření o vlnové délce v oboru standardních meziatomových vzdáleností (~ 1 Á) Foton s látkou interaguje rozptylem nebo absorbcí Rozptyl - s energetickými ztrátami - Comptonovský - beze ztrát energie - Thompsonův Teoretické základy difrakčního studia 3-D struktur: Thompsonův rozptyl rentgenového záření Nabitá částice je v poli rovinného monochromatického záření sekundárním zdrojem elektromagnetického pole 1Q = 1Oi 2 2 4 SÍn 9 * m r c Rozptyl na protonech je nevýznamný (je 18372x slabší), difrakcí RTG záření studujeme elektronovou strukturu látky Určování struktur enzymů Určení genu Příprava rekombinantního proteinu, čištění, zahušťování Krystalizace Difrakční experiment Fázový problém, příprava modelu Zpřesňování modelu crystal diffraction pattern electron density ma atomic model Studium genetické informace Není dosud přesně známo, kolik genů v lidské DNA je. Zatím jen u cca 1/10 lidských enzymů je známa jejich funkce Zpracování genetických informací není možná bez počítačů Problematické místo - formulace hypotéz o polohách genů a funkcích jejich produktů Příprava biologického materiálu Naprostá většina v současnosti studovaných proteinů se připravuje biotechnologickými metodami (rekobinantní DNA, nadprodukce v modelovém systému, ...) Výhody - „snadnost" provádění genetických modifikací Kritická místa : funkčnost u rekombinantních proteinů protein musí být rozpustný cistern Krystalizace Až doposud nejkritičtější a časově nejnáročnější část určování 3-D struktur Využívání již existujících zkušeností o kry stalo vání jiných proteinů (statistické zpracovávání „řídkých" mnoharozměr. množin empirických dat => kryštalizační sety pokrývající širokou škálu chemických podmínek) Proteomický projekt - první testy s robotem na automatickou krystalizaci (automatické míchání a pipeto vání roztoků, nanolitrové objemy, strojem řízené mikroskopování a na FT založené vyhodnocování výsledků). Zpracování až desítek proteinů (desítky tisíc testovacích krystalizaci) týdně. --o 1 \ kapalina ■ ^^ | ^ 1 ^^ ^^ s ^s*^ metastabilní oblast • ^^ — koncentrace Ä pevná fáze ^^^^fc ^^^ **" mmm ^s,vNlNinetastabilní oblast kapalina koncentrace A _______________________________________________________________________________________________________________________________________________________________________________________________________i Difrakční experiment pro určení 3-D struktury Generování rentgenového záření Konvenční laboratorní zdroje charakteristického rentgenového záření - rentgenová lampa a rotační anoda Limitace - „bodový" zdroj kulových vln s omezenými možnostmi zvyšování vyzářeného výkonu Synchrotrony - zdroje vysoce intenzivního spojitého spektra - řádově kratší experiment (řádově hodiny) Difrakční experiment pro určení 3-D struktury Detektory rentgenového záření Rentgenový film Scintilační detektor Plošný mnohadrátový proporciální detektor Detektor typu „obrazová deska" CCD detektor Difrakční experiment pro určení 3-D struktury: Detektor typu „obrazová deska" (image plate) Elektronicky zpracovatelný analogie klasického filmu Integrující detektor zaznamenávající virtuální obraz (ionty Eu3+) Klady: - 50x citlivější než film, nízký šum +/-: - velké rozměry celého zařízení - rozlišovací schopnost cca 0.1 mm daná zrny krystalů detekční látky Zápory: - omezená linearita - „vyvolávání" je relativně dlouhé Rotující zrcadlq '* Laser, paprsek ^< Laser, p A/D Obrazový procesor Grafický vystup | Magnetic záznam Difrakční experiment pro určení 3-D struktury: Plošný detektor s polovodičovým CCD prvkem Detektor pracuje s podobnými polovodičovými prvky jako digitální fotoaparát. Scintilační krystal převádí rentgenové záření do pásma viditelného světla Klady: - rychlost +-: - velikost CCD prvku - osvětluje se zužovacím segmentem ze světlovodivých vláken Zápor:- vlastní teplotní šum polovodičů PHOSPHOR FIBEROPTIC TAPER (3.6:1 TAPER RATIO J i ELECTRONS IN CCD PIXEL VISIBLE LIGHT PHOTONS VISIBLE LIGHT PHOTONS Difrakční experiment Naprostá většina proteinových struktur je nyní určována ze synchrotron, difrakčních dat (hlavní klady: intenzita záření, rychlost experimentu, možnost optimalizace vlnové délky) a za kryopodmínek (stabilita krystalu, lepší difrakční schopnosti). „Domácí" laboratoře - testování difrakční kvality krystalů, „ladění" kryoexperimentů, předzmražování krystalů. Sběr úplných difrakčních synchrotron, dat - řádově desítky minut. Automatizovaná výměna a měření zmražených vzorků Obrovský „boom" Se-proteinů & MAD/SAD experimentů Difrakční experiment: automatický difraktometr-schéma Principle of an X rays diffraction experiment Area Detector (s) 50keV Electrons Rotating Anode (Cu) 4-Circle Gonoimeter (Eulerian or Kappa Geometry) Teoretické základy difrakčního studia 3-D struktur: Strukturní faktor, elektronová hustota a fázový problém Strukturní faktor - popisuje amplitudu difraktované vlny Fm(^)= jZ Pj(r - řj)exp(2m7\ř)dř = v J=i N - - N = Z \Pj(Ŕj)QXP\2iriř*.[řj + ^yjk^y = Z fjif*)QXP[2™f*'fj) 7=1 V 7=1 Krystalová elektronová hustota je obráceným Fourierovým obrazem strukturních amplitud 1 +00 Íjjj / de \ de X ■% l F (r )exp(- Inir .fjdf = — 2j Fhu exP[~ 2m(hx + ky + r/* " h,kJ=-co Fázový problém - neměříme strukturní amplitudy, ale intenzity difrakcí Fázový problém cíl - zjistit 3-D model studované (makro)molekuly prostředek - určit při difrakčním experimentu ztracenou informaci o fázích strukturních amplitud a FT poté získat mapy elektronových hustot nejjednodušší metoda - fázový problém vůbec neřešit, využít podobnost studovaného sytému se systémem s již známou 3-D strukturou (MR, molecular replacement). nutná je poměrně velmi vysoká podobnost mezi modelem a studovaným systémem (AA identita cca 30% a lépe, AA podobnost 50% a lépe) Deriváty proteinů kanály rozpouštědla (krystalograficky neuspořádané vody) relativní stabilita terciální struktury globulámích proteinů při interakci jejich interakci s „malými" molekulami nutnost opakovaných měření s různými dobře difraktujícími izomorfními deriváty podobnost struktur proteinů s jejich Se-Met analogy disperzní závislost reálné i imginární složky fSe Zpřesňování proteinů: omezené množství dat Rozlišení Počet nezáv. Poměr počtů reflexí reflexí a proměnných [Á] {x,y,z} {x,y,z,B} 40.0-3.0 3500 0.8 40.0-2.5 6800 1.6 1.2 40.0-1.9 13500 3.1 2.3 40.0-1.5 29800 6.8 5.1 40.0-1.2 58800 13.3 10.0 40.0-1.0 81300 18.5 13.8 •Protein s 182 AA, 40% solventu a 1468 atomy •+/- 4500 souřadi úc, 6000 proměnných včetně B •Teplotní kmity Zpřesňování proteinových struktur: možné problémy • Experimentální proměnné - difrakce • Modelová funkce - strukturní amplituda Startovní strukturní model - MR, fáz. problém + mapa el. hustoty • Kritérium správnosti - R faktory Limitovaný počet pozorování daný rozlišením experimentu Nelineární problém - iterativnost, konvergence Lokální vs. globální minima „Přefitování" Limit, počet dat: snížení počtu proměnných „constrained" minimalizace: X - C.Xf + C „Tvrdé" vazební podmínky Triviální aplikace - operace symetrie pro S.G. vyšší než PÍ „rigid body refinement" + volné proměnné popisující AA příklad: 17 atomový fragment fenylalanin-alanin 51 vs 11 parametrů aplikace - zpřesňování el. hustoty Limit, počet dat: zvýšení počtu „pozorování • „měkké" vazební podmínky ' „restrained" minimalizace - využití nekrystalografických dat ■> popis pomocí „tolerancí" dist{Atomx,Atom2) = D± cr(D) chemická „energie" popisující vzdálenosti, úhly, planarity, ... SD = »i ľ "fa. IDEAL j, M O DEL dodatečné údaje - strukturní databáze, spektrální data, QM výpočty váhové koeficienty 2 stupňové zpřesňování - generování chem. informace + minimalizace Zpřesňování proteinových struktur: minimalizace Krystalografie malých molekul — metoda nejmenších čtverců - F s2-I^(\F»í-\F«í) Tayloruv rozvoj kolem minima se členy 1. řádu vede na soustavu k rovnic s' = L wh\ m 8 F, -Ax, = (F - AX)~[ W{F - AX • Proteiny -jde doopravdy o rozvoj kolem globálního minima? •Spatně určená fáze — pomalá konvergence (minimalizace rozdílů mezi mapami elektron, hustoty) Iterativní zpřesňování proteinů Startovní model 1 Manuální úprava modelu v 1 f Á L Minimalizace Výpočet nových map elektronové hustoty 1 Á f L 1 f Výpočet nových strukturních faktoru Stavba a zpřesňování modelu na empirii založené úpravy map elektronové hustoty knihovny fragmentů zpřesňování pomocí maximalizace entropie vs. konvenční minimalizace nejmenších čtverců (LS) eliminace nedostatku exp. dat využíváním chem. informace „brute force" přístup: doplňování a ubírání molekul vody & hledání chemické interpretace nového modelu Zpřesňování: maximalizace pravděpodobnosti •Pannu & Read (1996) - alternativní přístup -nejpravděpodobnější řešení (maximum likelihood method, ML) • podobnost vztahů pro LS a ML • metoda nejmenších čtverců - speciální případ maximalizace pravděpodobnosti • problémy - váhy, implementace „chyb", „přefitování" ,kross-validace", R-free