Regulation of plant development by ethylene

Never-ripe

Ethylene biosynthesis

Expression analysis of ACS

Transcriptional regulation of ACS expression

Auxin

Wounding

Mutant screens for ethylene pathway genes

Screen for ethylene mutants I. Genes involved in regulation of biosynthesis

Wild type/air

eto1-1/air

ctr1-1/air

eir1-1/ethylene

aux1-21/ethylene

ein2-1/ethylene

ein4/ethylene

ein5-1/ethylene

ein6/ethylene

ein7/ethylene

Roman et al., 1994

phenotype rescued by inhibitor of ethylene biosynthesis *

ein3-1/ethylene

- his 1-1/ethylene

eto mutants – constitutive triple response

eto3

- overproduction of ethylene

eto2,eto3 dominant mutation results from single amino acid change in the C terminus ACS5,ACS9

ACS9 453 VSNWVFRVSW	TDRVPDER
---------------------	----------

eto3 453 VSNWDFRVSWTDRVPDER

eto3 mutation does not affect level of ACS9 mRNA

Table 1. Levels of ACS9 mRNA in Wild-Type and eto3 Seedlings					
Sample	C _T nor (Experiment 1)³	C _T nor (Experiment 2)	C _T nor (Experiment 3)	C _T nor (mean ± SD)	ACS9 mRNA ^b
Wild type	6.95	6.36	6.53	6.61 ± 0.30	1.0
eto2	7.23	6.99	6.07	6.76 ± 0.61	0.9

eto2 mutation does not affect specific activity of ACS5

Effect of *eto2* mutation on ACS5 protein stability

Posttranscritpional regulation of ACS

Eto1- recesive mutant with constitutive triple response

ETO1 interacts with ACS5 and regulates its activity

ETO1 promotes ACS5 degradation through proteasome dependent pathway

Model for regulation of ethylene biosynthesis by ETO1

Screen for ethylene mutants II. Genes invoved in signalling pathway

Wild type/air

- Wild type/ethylene
- eto1-1/air

- - aux1-21/ethylene

Ж

ein3-1/ethylene

ein4/ethylene

ein5-1/ethylene

ein6/ethylene

ein7/ethylene

Ecotype		Phenotype ^b	
A. Strains ^a			
aux1-7	Columbia	Aux ⁻	
aux1-21	Columbia	Aux	
aux1-22	Columbia	Aux ⁻	
+ ctr1-1	Columbia	Ctr ⁻	
ctr1-5	Wassilewskija	Ctr ⁻ , kan ^r	
* ein2-1	Columbia	Ein ⁻	
ein2-6	Wassilewskija	Ein ⁻	
+ ein3-1	Columbia	Ein ⁻	
ein3-2	Wassilewskija	Ein ⁻ , kan ^r	
+ ein4	Columbia	Ein^{-}	
ein5-1	Columbia	Ein ⁻	
ein5-2	Columbia	Ein ⁻	
ein6	Landsberg	Ein ⁻	
ein7	Columbia	Ein ⁻	
eir1-1	Columbia	Eir ⁻	
eir1-2	Columbia	Eir ⁻	
eto1-1	Columbia	Eto ⁻	
* etr1-3	Columbia	Ein ⁻	
hls1-1	Columbia	Hls	
ein2-1 tt4	Mixed	Ein^{-} , Tt^{-}	
eir1-1 ap1	Mixed	Eir ⁻ , Ap ⁻	
DP28	Landsberg	Dis ⁻ , Clv ⁻ , Tt ⁻	
W2	Landsberg	Dis ⁻ , An ⁻	
W100	Landsberg	Tt ⁻ , and more	
M10	Landsberg	Ap ⁻ , Clv ⁻	
		_	

	Ethylene				Air			
Strain	Root length	Hypocotyl length	Total seedling	Hook angle	Root length	Hypocotyl length	Total seeding	Hook angle
Columbia	1.5 ± 0.1	3.0 ± 0.1	4.5 ± 0.1	250 ± 8	3.9 ± 0.2	4.8 ± 0.1	8.7 ± 0.2	114 ± 9
Landsberg	2.1 ± 0.1	2.7 ± 0.1	4.8 ± 0.1	233 ± 18	\mathbf{nd}^{b}	nd	nd	nd
Wasslewskija	1.0 ± 0.1	3.1 ± 0.1	4.1 ± 0.1	270 ± 6	4.0 ± 0.2	6.1 ± 0.1	10.1 ± 0.2	166 ± 7
aux1-21	4.7 ± 0.2	3.4 ± 0.1	8.1 ± 0.3	197 ± 8	6.3 ± 0.3	6.0 ± 0.1	12.3 ± 0.3	126 ± 6
ctr1-1	0.8 ± 0.0	2.8 ± 0.1	3.6 ± 0.1	247 ± 5	0.9 ± 0.0	3.1 ± 0.1	4.0 ± 01	246 ± 10
ctr1-5	0.4 ± 0.0	1.9 ± 0.1	2.3 ± 0.1	252 ± 5	0.6 ± 0.0	2.4 ± 0.1	3.0 ± 0.1	237 ± 8
ein2-1	6.1 ± 0.2	6.5 ± 0.2	12.6 ± 0.2	39 ± 4	5.8 ± 0.2	6.9 ± 0.2	12.7 ± 0.3	43 ± 7
ein3-1	3.6 ± 0.1	5.2 ± 0.1	8.8 ± 0.2	118 ± 7	5.4 ± 0.3	5.9 ± 0.1	11.3 ± 0.4	77 ± 7
ein3-2	3.1 ± 0.1	5.5 ± 0.1	8.5 ± 0.2	176 ± 6	5.2 ± 0.3	6.3 ± 0.2	11.4 ± 0.3	152 ± 8
ein4	7.1 ± 0.2	7.3 ± 0.3	14.4 ± 0.3	64 ± 9	6.8 ± 0.3	6.9 ± 0.3	13.7 ± 0.4	45 ± 5
ein5-1	2.5 ± 0.1	4.8 ± 0.1	7.3 ± 0.1	144 ± 10	5.6 ± 0.2	5.3 ± 0.2	11.0 ± 0.3	89 ± 8
ein5-2	2.6 ± 0.1	4.6 ± 0.2	7.2 ± 0.2	156 ± 10	4.3 ± 0.2	5.6 ± 0.2	9.9 ± 0.3	113 ± 10
ein6	3.5 ± 0.1	6.2 ± 0.2	9.7 ± 0.2	95 ± 6	7.0 ± 0.2	6.0 ± 0.2	13.0 ± 0.2	47 ± 4
ein7	2.9 ± 0.1	5.2 ± 0.1	8.1 ± 0.2	176 ± 4	5.2 ± 0.2	6.7 ± 0.2	11.9 ± 0.2	137 ± 8
eir1-1	3.4 ± 0.1	3.1 ± 0.1	6.5 ± 0.1	282 ± 7	5.2 ± 0.9	6.2 ± 0.1	11.4 ± 0.1	106 ± 7
eir1-2	3.0 ± 0.1	3.1 ± 0.1	6.1 ± 0.1	261 ± 7	4.8 ± 0.3	5.7 ± 0.2	10.5 ± 0.4	109 ± 10
eto 1-1	1.4 ± 0.1	3.3 ± 0.1	4.7 ± 0.2	244 ± 10	1.9 ± 0.1	3.3 ± 0.1	5.3 ± 0.1	239 ± 8
etr1-3	4.6 ± 0.2	6.1 ± 0.1	10.7 ± 0.3	89 ± 7	4.9 ± 0.3	5.5 ± 0.2	10.4 ± 0.3	96 ± 5
hls 1-1	0.9 ± 0.1	3.4 ± 0.1	4.3 ± 0.2	5 ± 1	3.3 ± 0.1	5.1 ± 0.1	8.4 ± 0.2	4 ± 1

Quantifying the ethylene response phenotype

B. Double mutants ^a	
aux1-21 ctr1-1	Aus-, Ctr^{-c}
aux1-21 eir1-1	Aux ⁻
ctr1-5 ein 2-1	Ein
ctrI-1 ein3-2	Ein ⁻
ctr1-1 ein5-1	Ein ⁻
ctr1-1 ein7	Ein ⁻
ctrl-1 eirl-1	Eir ⁻ , Ctr ⁻
ctr1-1 etr1-3	Ctr"
ctr1-1 hls1-1	Hls ⁻ , Ctr ^{-c}
ein2-1 eir1-1	Ein ⁻ , Eir ⁻
ein2-6 eir1-1	Ein ⁻ , Eir ⁻
ein2-1 eto1-1	Ein ⁻
ein2-6 eto 1-1	Ein ⁻
ein2-1 etr1-3	Ein ⁻
ein2-1 hls1-1	Ein ⁻ , Hls ⁻
ein3-1 eir1-1	Ein ⁻ , Eir ⁻
ein5-1 eir1-2	Ein ⁻ , Eir ⁻
eir1-1 hls 1-1	Eir ⁻ , Hls ⁻

ETR1 codes for histidine kinase

His-kinases in Arabidopsis

Ethylene signalling – homology to two component system ?

Ctr1 – codes for protein kinase of Raf family

ETR1 interacts with CTR1

DB FUS	ION	AD FUSION	HIS	lacZ	β-gal units
1 ETR1 29	93-729	CTR1 53-568		-	71 ± 5.0
		CTR1 538-821	\$7 See	100 000	0.10 ± 0.02
н.		vector	10 7		0.07 ± 0.02
2 ETR1 29	93-610	CTR1 53-568	68 8	V	0.10 ± 0.02
		vector	100	See. 222	0.04 ± 0.00
3 ERS 261	1-613	CTR1 53-568	00		4.4 ±0.20
•		vector	(3) - A	1 - 197	0.05 ± 0.01
lamin		CTR1 53-568	DE		0.05 ± 0.01

C

3

Clark et al., 1998

CTR1 has protein kinase activity

-ethylene receptor dominant mutation > ethylene insensitivity
-ethylene receptor loss of function mutation > constitutive ethylene response
-ctr1 loss of function mutation > constitutive ethylene response

Current Opinion in Plant Biology

EIN2 - contains domain similar to Nramp metal transporters protein.

ein2-42 (stop)

EIN3 codes for transcription factor

Chao et al., 1997

EIN3 protein level is controlled by ethylene

EIN3 is rapidly degraded by a proteasome-mediated pathway

EIN3 accumulates in nucleus upon ethylene or MG132 treatment

Mutation in EBF1 and EBF2 results in hypersensitivity to ethylene and accumulation of EIN3 protein

Overexpression of EBF1 and EBF2 results in ethylene insensitivity and reduced accumulation of EIN3 protein

MODELS

Ethylene signal transduction pathway

Ethylene Modulates Stem Cell Division in roots

Olga Ortega-Martínez et al., 2007

Ethylene promotes QC cell division.

QC cell identity and function are maintained in eto1 mutants

Ethylene stimulates formation of additional columella cell layers

recombinant DNA techniques are used to make fusion between protein X and glutathione S-transferase (GST)

Figure 8–50. Molecular Biology of the Cell, 4th Edition.

GST "pull downs"

- GST protein is usually expressed in E. coli as microgram quantities are used in typical assays
- Detection of bound proteins are usually by western blotting, using antibody to the putative interactor
- Used extensively with GSTdomain fusions in structure function studies
- New proteins can be identified if metabolically labeled cells are used

