Substituting into (4.15)
cin=c'(H+¢, dC/dt=dC'dt, (3a,b)
we obtain as the equation for C’ {using (1}],
dCdt=—kC’, where k=Fk;So+k_+kz. (4a,b)
Equation (4a) has the solution {compare equation (A4.2)]
'=C*exp(—kt).

Here, C* is a constant that must be determined by the initial conditions.
To this end we first use (3a) to find that the original concentration C is

given by
cty=C*exp(—kt) + C.
The initial condition C{0)=Cy thus requires
Co=C"+C, ie, C'=Co=C,
which at once yields the final result 4.17).

S

The chemostat .

Construction and analysis of a model for the chemostat is the goal of
this chapter. .Hm.oln:naoﬂﬂ is a device that enables us continuously to
row and harvest bacteria. The consequent *‘continuous culture’” of bac-
teria is in contrast with “‘batch culture,” in which a fixed quantity of
nutrient is supplied and bacteria are harvested after a certain growth
period.

A schematic view of the chemostat is provided in Figure 5.1. We shall
assume that all materials necessary for growth are supplied in abundance,
except for one critical nutrient that is typically in somewhat short supply.
A solution containing the critical nutrient is supplied to the growth
chamber, and an equal! volume (per wnit time) of solution containing
bacteria and partly consumed nutrient is removed. The chemostat is
stirred to keep conditions uniform.

Virtually all the information necessary for the construction of a math-
ematical model of chemostat operation has been supplied. The reader is
invited to think about the construction of such a model before reading
further. A few additional assumptions must be made; the simplest rea-
sonable possibilities should be used, as is the case in all first attempts at
model building. We shall shortly sketch the classic theory of the chemo-
stat, due to Novick and Szilard (£950) and Monod (1950). Part of our
presentation is similar to that of Rubinow (1975). The reader probably
will have little difficulty in following the discussion, but congratulations
are in order if he or she has been able to make significant progress toward
the model construction. On a number of occasions the author has pre-
sented the facts in the revious paragraph to a class and then asked for
EEEF every case the model was constructed

classdebate, and a certain number of

only after about two hours_of

\\.lllllll‘l‘l‘. . . .
hints. This reflects ihe fact that construction of EE

an art that requires considerable experience, But it is not nearly so diffi-
Gult to learn to “‘read” the equations proposed by someone as a mathe-
matical representation of & biological situation, to see what they imply,
and hence to judge the suitability of the model. The acquisition of a good
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Chemostot

Figure 5.1, Schematic diagram of a chemostat with nutrient supplied from a
reservoir, oxygen being bubbled in, and the chemostat chamber being agitated by
a stirrer § to keep concentration uniform. Heavy dots represent bacteria, The
overflow contains partially used nutrient and the bacterial harvest.

measure of such ‘‘reading ability”’ is one goal of the instruction that we
are attempting to impart here.

Choice of variables

We wish to follow the behavior of the chemostat as time passes. [n some
instances it is appropriate to assume that time progresses in discrete
units. For example, yearly time intervals are natural when considering
populations of insects that emerge each spring, lay eggs in the fall, and
then die in the winter. Here it seems more natural to think of time as an
independent variable that continuously increases (but see Exercise 12).
The constituents of some Sy§7eTs vary from place to place, necessitating
the introduction of further independent variables - the spatial coordi-
nates x, v, and z. Here the stirring creates conditions that can be regarded
as spatially homogeneous, so that the time £ is the only independent vari-
able required;

Having decided on independent variatles, the next step is to select
m_mmﬁu.m_ﬁ variables, the ‘‘unknowns.”” One of these is N{(1), the total
number of bacteria Th the chemostat at any time ¢, The other is C(¢), the
concentration of critical nutrient at time ¢. Given this selection (which is
not obvious to beginners in the art of modeling), we must now try to
write some mathematical description that will allow us to_compute NV(/)
and C(¢). Here and in many other instances this description takes the
Tormof-differential equations that describe the factors that cause the
dependent variables to change.

For differential equations to be appropriate, the functions in question
must, of course, have derivatives. Here NV is an integer, so that its graph

N N
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Figure 5.2. Two views of the number of bacteria & as & function of time. (&) A
“close up,'" clearly showing the birth and death of in ual bacteria. (b} A
more rapidly varying scale V; the sieps in the graph are hardly noticeable.

must have the stepiike character of Figure 5.2(a), and the derivative is
either zero or nonexistent, Nevertheless, because our equations neces-
sarily provide approximate descriptions of the true biological situation,
there may be no harm in considering an approxirmate dependent variable.
Indeed, the number of bacteria in the chemostat is very large, and the
death or birth of a single bacterium is of no interest to us. Consider the
graph of Figure 5.2(b), where a somewhat realistic scale has been pro-
vided for N. The jumps in the curve are virtually undetectable. It is thus
reasonable to replace the ‘‘true’ steplike function N(¢) by a smooth
approximation (to which we shall apply the same letter N).

We now assume that N(¢) and C(¢) are smooth functions with as
many derivatives as we care to calculate. Strictly speaking, as we have
pointed out, this is “*‘wrong.”’ But here and in other modeling situations
it is important to realize that a model can ismissed {as untrained
people are wont to do) merely because it is wrong. Essentially all models
of physical situations contain errors, catled ‘‘simplifications.” The
question is, Are these simplifications so drastic or foolish that the result-
ing model is indeed without validity, or can the model provide useful
results in a given situation? Here, for example, with inevitable errors in
measurement of bacterial and chemical concentrations, the individual
bacteria and molecules that inhabit the chemostat are essentially unde-
tectable; so it seems permissible (indeed, wise) to blur their contributions
to the state of the system.

Differential equations and initial cenditions

There are two major contributions to the change in the total bacteria
number N: the net birth of the bacteria {births minus deaths) and the
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Figure 5.3, The bacterial growth rate & es a function of the critical nutrient ncnv\\
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washing of bacteria out of the chemostat. The the latter step is

easy to characterize. Suppose that Q@ units Aﬂm; cubic centimeters) of

— | fluid drip out of the chemostat per unit time. The number of bacteria per
unit volume is N/ ¥, where V is the volume of the chemostat, Thus, bac-
teria leave the system at a rate QN/ V. Because the rate of change of NV is
given by the derivative dN/dt, we can write

dN/dt = (net births) = (QN/ V). 1

Let k be the average bacterial birthrate. In the absence of other effects,
the simplest equation to assume is dN/dt =kN, where k is a constant.
This yields N =N, exp(kt), so that k can be determined by the doubling
time T

2Ng=Ng exp(kT), i.e., k=(In2)/T.

When the bacterial population gets large, the net birthrate (or growth
rate} & will not remain constant. It may be reduced by the accumulation
of poisons, for example. Such effects are often modeled by making & a
decreasing function of the population size N. Here the population of
bacteria is limited because bacteria are washed out of the chemostat, so
that the dependence of & on /N need not be taken into account in a first

modeling attempt. What is important, however, is the dependence of &
on the critical nutrient concentration C. When no critical nutrient is
present, k=0, Presumably, as critical nutrient concentration rises, the
growth rate increases. One foresees a limit to such an increase, for there s
a limit to how fast the bacteria can absorb any nutrient. Thus, we expect
the dependence of k& on C to be given by a curve such as that in Figure
5.3. (Actually, the curve probably decreases at very high values of C, but

such an effect is secondary, and we shall ignore it.)

-

At this point, we have completed our formulation of the equation
for N:

dN/de=k(C)N—gN. 2)
Here we have introduced the convenient abbreviation
g=Q/V. 3

The critical nutrient concentration C increases because of inflow into
the chemostat, and € decreases because of outflow and ¢onsumption by
the bacteria. Denate by C; the concentration of critical nutrient in thein-
_ coming fluid. Because the fluid enters at the constant rate O, the amount

of nutrient incremses from MTlow at the constant rate QC;. The fluid that
leaves at time f is at concentration C(¢). At this time, therefore, the
efflux of material from the chemostat decreases the net amount of eriti-
cal nutrient at the rate QC. Finally, let us assume that some function
F(C) describes the rate at which an individual bacterium consumes C.
Taking account of the fact that there are N bacteria in the chemostat at
time 7, we are led to the following equation for the change in the total
amount of critical nutrient:

d(CV)/di=QC;—QC~Nr(C). (4)

What form should we assume for the consumption function r(C)?

. Obviously, r=0 when C=0. Moreover, r should saturate (approach an

- asymptote, in mathematical language) when C becomes large, for there
must be a limit as to how fast the nutrient can be absorbed. The function
r(C) thus has the same general shape as the growth-rate function k{C)
depicted in Figure 5.3. In fact, it is reasonable and convenient to assume
that the growth rate k is proportional to the nutrient uptake rate r. This
is almost certainly appropriate at sufficiently low values of C, when both
k(C)and r(C) generally are proportional to C (Exercise 5). Later we can
determine what changes in our results will occur if this assumption is not
made (Exercise 6), We therefore assume that

k(C)=yr(C), 5)
where y is a constant. We now use (5) to replace r in (4). Remembering
that V is a constant, we write d(CV)/dt=V(dC/dt), divide through by
V, and recall that ¢ =0/ V. This gives as our final version of the equation
for the critical nutrient concentration

dC/dt=g(C;—C)=N{¥V)"'k(C). (6)

Equations (2) and (6) describe how the number of bacteria NV and the
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nutrient concentration C change with time. We should thus be able to
calculate the state of the chemostat system at any time (i.e., the values of
the dependent variables N and C) provided that we know how the system
was constituted at some initial time. Let us call this time t =0. We assume
that the critical nutrient initially was present at concentration Cg and that
a certain number of bacteria Ny were inoculated into the chemostat as it
was started. This gives the initial conditions
N(0Y=Ny, C(0)=0Co- M
The differential equations (2) and (6) and the initial conditions (7) con-
stitute a mathematical model for the chemostat. The model contains the
parameters ¢, G, J» ¥, Ny, Cp, and the function k(C); these must be
prescribed before any numerical results can be obtained. It will be con-
venient later to choose a specific expression for the function k. The
simplest function that starts at the origin and saturates is given by the
“Michaelis-Menten’' expression

k(C)=MC/(K+C), C20. (8)

Here, M and K are constants. Note that [as was pointed out in connec-
tion with the analogous equation (4.29)] M is the value of k that is
approached as C — «, whereas X is the half-saturation constant, in that
k=M/2 when C=K (see Figure 5.3).

+ is worth collecting all the equations (2), (6), (7), and (8) of our
explicit mathematical model:

ANty MN(CW) ;
= KLC) gN(1), (9a)
doit) . s NINMC() 9%

il R BTy W oo
znOvu.z.c. ﬁuﬁOv“no. N (9¢,d)

To retain biological meaningfulness, we must add the conditions N 20,
€ 20. Note that the model contains eight parameters g, C;, », ¥, No, Coy
M, and K.

At the beginning of this chapter the reader was asked to attempt the
enaided construction of a mathematical model of a chemostat, If such an
effort was made, the model (9) will not be dismissed as obvious.

We now turn to a mathematical analysis of the model. Here, too, it is
recommended that the reader attempt (0 anticipate the results. We wish
to know, for example, if the chemostat will operate as designed. That is,

after an initial transient period, will the chemostat settle down to a steady
mode of operation in which constant numbers of bacteria per unit time
are produced? Is it certain that steady-state production of bacteria will
always take place? If so, about how long will it take to achieve a steady
state? What parameter values give the maximum production? s it pos-
sible that the bacteria population might oscillate in time? If it does,
approximately what is the period of the oscillation? What is the ampli-
tude? Under what conditions will an oscillation occur? If the reader can
confidently answer all questions such as these, then there is no need to
consider a mathematical model. Otherwise, the use of a mathematical
model will doubtless be a useful adjunct to an experimental program.

Steady solutions

Will the chemostat settle down to a steady state of operation? That is,
does N = constant and € —* constant, whatever the initial conditions, as
{ — o7 This is a difficult question to answer. But considerable insight
can be gained into this problem, and similar problems, if we ask a some-
what different (and much simpler) question: Can the system remain for-
ever in exactly the same steady state? That is, do the original equations
(2) and (6) admit the following very simple solution?

N =N, C(t)=C, Nand C constants. (10)
Because the derivative of a constant is zero, (10} will hold if and only if

k()N —gN=0, g(C=C)=N(V) k(C)=0. (11a,b)

The algebraic equation (11a) has two solutions: one if N=0, and another
if k(C)=g. Let us consider these possibilities one at a time.

If N=0, then (11a} is satisfied, whereas (1 1b) is satisfied if and only if
¢'=C;. This solution is so “rivial”’ that it is easily overlooked, but it
makes perfect biological sense. The chemostat can run forever with no
bacteria inside, and hence with no change in the concentration of critical
nutrient.

We must now ask about the solutions to the equation k(C)=gq. Does
this equation always have a solution? Could it have more than one solu-
tion? The answer (as is so often the case) is easily seen by drawing some
graphs. We see from Figure 5.4 that k(C) =g has no solutions if g 2M
and exactly one solution if g <M. Again, this makes sense biologically.
As far as the bacteria in the chemostat are concerned, ‘“‘washout’’ at rate
g is the same as death, for the washed-out bacteria disappear. If the
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Figure 5.4, Demonstration of the fact that the equation k(C) =g has a unique
solution when g <M and no solution when g 2 M.

washout rate ¢ is greater than the maximum birthrate M, then there can
be no nonzero steady population level of bacteria in the chemostat.

Once C is obtained, by solving k(C) =g, then a unique value of Ncan

be obtained by solving (11b). For this value to be positive, g must be such

__that £<C;. '

-—To summarize, there are two possible steady-state solutions of the

. equations (2) and (6). One solution is

N=0, C=C;. (12a)

Corresponding 1o every positive flow parameter g that is less than the
maximum value of &(C) and is also small enough so that ¢;>C, there is
a second solution €, N, where ]

- - - —
KO)=q, N=W(C-0. = O <="  am
1¢ we use (8), we can find explicit formulas for the solution (12b):
K 5 gk v
= — =WlCi——— | 13a,b
| treem, Ceg 3(C- 3= (132,0)
Here we see algebraically that C>0 requires

q<M,
| whereas N>0 if
\ &
\ Ci> HEMIQ .

\

To transform the latter inequality into a condition on the flow-rate para-
meter g, we multiply both sides by M —g. Because this quantity must be
positive, as we have just seen, we obtain

VyCi

0 " 9

Figure 5.5. Graphs of the steady-state bacteria number (V) and critical nutrient
concentration (C) as functions of the flow-rate parameter ¢ [see equations (13)

and (14)].
CM—-Cig>gK,
or
<g*, whereg*= M 14)
g<q’, q|_+;,_.d:. (

Note that g* <M, so that if N>0, then certainly ¢>0.

Figure 5.5 depicts graphs of the steady-state nutrient concentration €
and bacteria number N as functions of the flow parameter q. It is seen
that as ¢ increases toward g%, increases to its maximum possible value
C;, while N decreases toward zero.

If the chemostat is regarded as a factory for producing bacteria, then it
is natural to inquire as to its optimum output. One possible quantity to
maximize is the bacterial production rate gN. This is zero when ¢=0,
and also when g=g¢" (and N=0). There must be an optimum interme-
diate flow rate.

Problem: Find the flow rate ¢ that maximizes giV.
Sotution: From (13b),

gN= STQEMMV.
The derivative 8{g/N')/8g vanishes when
TS!SGQNTENHHQ
(M—g) '
Simplifying, we observe that (15) holds if
qHC+K) = 2Mgq(Ci+ K) + MG =0 (16)

C -

(15)
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{t is an important observation that (16) can be further simplified if we divide
through by C;+K and use (14}, yielding
qt-2Mg+Mg*=0.

On solving (17), we find that
au.;m!ﬁiﬁkﬁln.::u. (18)
Because g* <M, the quantity whose root must be extracted is positive, We have
not written a plus sign before the square-root term, because the plus sign corre-

sponds to the value of g that is larger than M and is therefore of no biological
interest, But we must verify that the other roct is not only less than M but also less

than g*.

Is M~ [M(M—g"]'"?<g*? Le.,is M—g* < [M(M-g")]'

R\ s (M—g*) <M(M—g")7 IsM=g'<M? Yes. 19
The maximum flow rate is not the only possible optimization that may be
sought. For example, we might wish to maximize profit, given certain
prices to be paid for nutrient and to be received for bacteria (Exercise 7).

(17

Dimensionless variables

At some stage in the examination of a nontrivial mathematical model itis
often wise to introduce dimensionless variables, if only to simplify the
notation by the consolidation of some parameters (see Appendix 7). We
must divide the existing variables by parameters of the same dimensicns.
A way in which this can be done in ﬁﬁmbEnEﬂﬂk@.ﬁwmﬁmsE

A way in which this can 9e COoE =~
muitiples of 1/¢=V/Q, the time it takes to fill (or empty) the chemostat

at rate Q. The first term of (9a) will simplify if we define a dimensionless
chemical concentration ¢ by C{t)=Ke(1), that is, if we measure concen-
tration in units of the half-saturation constant K. And it is natural to
measure N in terms.of the initial inoculant size Ng. With the dimensjon-

P

less variables

r=tg, ¢=C/K, n=N/Ny, : (20a,b,0)
the system (9} becomes [Exercise 1(a)]
dn  pnc de wne
. Al AL g e o S 21a,b
+ dr  l+c " dr e ( )
(21c,d)

n(0)=1, cl0)=ce.
Instead of the eight parameters of (9), the dimensionless equations (21)
contain the four dimensionless parameters

p=M/g, E=Ci/K, v=Ng/yKV, c=Co/K. (22a-d)

The dimensionless steady solutions satisfy

Ai=0, ¢=§, (23a,b}
or

lle A yufic .

1w TG =0 (242,5)

so that [Exercise 1(b)]

_ 1 1
v ow(p=1" p—1

|srer

. (25a,b)

A=

The positivity of the solutions in (25) is assured by the following dimen-
sionless version of (14):

u>1+E7h (26)

=y

Stability of the steady states

Under certain conditions we have two possible steady states: (23) and
(25). To which of these, if either, will the system tend? This is not an easy
question to answer in general, but we can answer it rather simply for
solutions that start #ear one of the steady states. The required ‘‘stability
analysis’ is always worthwhile as part of an attempt to understand the
behavior of a system of ordinary differential equations (see Appendix 5).
Our calculations will be facilitated by the relatively uncluttered form of
the dimensionless equations (21}, but except for slightly increased alge-
braic complication, they could just as well have been carried out on the
original equations (3) (Exercise 3).

The given equations (21) have the form

dn/dr=f(n,c), de/dr=g(n,c), (27a,b)
where
_kne b bene
flney=rgp = glne)=f—c-77 "

As is discussed in Appendix 5, the procedure is to introduce deviations
n'(¢) and ¢’(¢) from a given steady state (A,¢) by

n'=n—Hh, ¢'=c=¢ (28a,b)



Assuming that the quantities n' and ¢’ are small, we can utilize the
Taylor approximation (A2.8) to obtain the approximate (linear) equa-
tions

dn'/dr=An‘+Bc’, de'fdr=Cn'+De’, (29a,b)
where
afin.c) 4 af{n,c) pit
A= = — -1 B=—— = —07
an lyes 1+E 7 dc 1+ (30a,0)
e=¢
dg(n,c) vuf dgin,c) pufl
C= =- , D= =—1- .
an  lp=s 14€ dc  |p=a (1+8)? (30ed)
e={ c=f

Let us first consider the steady-state point (25). Using (24a) for pre-
liminary simplification of the expressions in (30) (not an essential step,
but one that makes calculations easier), we find (Exercise 4) that

A=0, B=8, C=-», D==1-16. (31)

Here,

nﬁlﬁbmlk
o=t (- 15 e

is a positive constant, by (26). From (A5.16), the next step is to calculate
B and v:

B=—(A+D)=1+28, y=AD—-BC=v0. (33)
Because
§>0, v>0, mulfn??:ulf&n:?:va

we see from Figure A5.9 that the steady-state point (25) is a stable node.
Suppose that circumstances are such that the steady state in question
exists [i.e., (26) holds]. Then our stability result implies that if the che-
mostat starts near this steady state, conditions in the chemostat will auto-

e e

matically adjust themselves so that steady-state conditions (with a non-

S A

sero bacterial population) will be a proached 95:@? (This is
2 homeostatic property that is typical of biological systems. The
investigation of homeostasis mandates stability analyses in many biologi-
cal problems.)

Having examined {25), we turn our attention to the other steady state

(23), wherein there are no bacteria in the chemostat. Here (Exercise 4),

~

=Py B=0, C=--—7, D=-1
1+ ’ ’ 145’
mm ¢ ! (34)
PP o B
f=2 1+£° =TTy

Perusal of Figure AS5.9 leads us to conclude that there are two possi-
ies. If

wE
1< ———, sothat ¥y<0,
e omEy

(35a,9)

then (23) is a saddle point. Alternatively, if (35a) is reversed, then
y>0, B>0, mpu,:nS+:N|3u$1:pv9

and (23) is a stable node.

We must now relate the conditions just obtained to the other inequali-
ties that we have derived. In doing so, we observe that (35a) is in fact
identical with (26). Consequently, either there is & single stable steady
state (with no bacteria) or there are two steady states - one with no bac-
teria, and one in which the chemostat is operating properly. In the latter
case, the steady state (25) with bacteria is stable, and the no-bacteria state
(23) is unstable.

Qualitative behavior and the phase plane

Determination of steady states and their stability is a relatively straight-
forward task that it is almost always worth carrying out for any dynamic
model {i.e., for any set of time-varying equations). Accomplishment of
this task is a major step toward the objective of ascertaining the model’s
qualitative behavior for all possible sets of parameters and initial con-
ditions.

For the present prablem, for every (biologically meaningful) para-
meter value there is exactly one stable steady state, Thus, it is natural to
/a,oE.nnER that the chemostat will approach this state from all initial con-

n,_,w_aoﬂm. This would mean, from (14), that if the flow rate g were larger
tHan the critical value g*, then in whatever manner the chemostat was
started, all the bacteria would eventually disappear. But if g<g*, there
would be a strong homeostatic tendency. No matter how far the chemo-
/stat was started from its steady-state operating con itions, the “proper”

 steady state would be approached as time passed.



of the chemostat is quite reasonable, and it is possible to terminate our
theoretical investigation at this point. But additional effort will make the
conjecture firm, in the face of such questions s Could there be an oscil-
latory solution as well as a steady state? Further light will be shed on the
operation of the system, and we shall obtain valuable practice in thinking
about the phase plane.

Let us follow the steps suggested in Appendix 5 to conjecture the
behavior of the various trajectories in the phase plane. We shall plot the
bacterial population n on the ordinate (vertical axis) and the critical sub-
strate concentration ¢ on the abscissa (horizontal axis), in deference to
the tendency to view the bacterial population as a function of its nutrient
supply. (In fact, it is wise to keep firmly in mind that 7 and ¢ are mutu-
ally interdependent.}

Horizontal tangents in the governing system (21a,b) occur when

@ =0, Il.e., when :Alﬁ. - vno.

dr 1+¢
Thus, horizontal nullclines are the straight lines n=0and e=(p—1)"".
The vertical nullcline (where de/dt =0) is the curve

IC 0 e, pmAEZONIEE)

—=
¢ I+c vpc

This curve approaches +co as ¢ decreases to zero, and it cuts the ¢
axis when ¢=£. In checking for intersections of vertical and horizontal
nullclines (the steady-state points), we observe that there are two cases,
depending on the relation between £ and (g—1)~'. This is shown in
Figure 5.6, where we have also indicated the directions of the trajectories
on the nullclines, as well as their directions on the vertical axis (Exer-
cise 8). .

Knowing the information we do, it is now possible to sketch the trajec-
tories of Figure 5.7 with quite good confidence, for there seem to be no
other reasonable alternatives, :

Note how the typical trajectory labeled A moves upward and to the left
in the beginning, because the initially large nutrient supply permits rapid
growth. This, in turn, leads to ever more rapid depletion of bacterial
nutrient. Eventually a time is reached at which the population begins to
decline; at that time, bacterial density is maximal, at a point of hori-
zontal tangency.
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m..mm_.:n 5.6, Nullclines of the system (2la,b) with the intersections of ver-
tical m_i __.mene.;m_ nullclines (steady-state points) marked by heavy dots.
Arrows indicate the directions of trajectories on the nullelines and on the
axes.

It is a recurrent theme of this book that dynamic systems should
be analyzed by examining steady-state points and their stability, con-
jecturing qualitative behavior, and testing the conjectures by means of
computer simulations, For the difference equations of Chapters 2 and
3, such simulations were relatively easy to carry out. They are more dif-
ficult for differential equations, but preprogrammed ‘‘packages’’ are
becoming available that make phase-plane analysis easier and easier.
One such package has been written by Professor G. Odell, of the Depart-
ment of Mathematical Sciences, Rensselaer Polytechnic Institute, and
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Figure 5.7, Trajectories consistent with the infarmation of Figure 5.6. The tra-

jectory marked A is discussed in the text,

was kindly used by him to produce Figure 5.8. This figure provides grat-
ifying verification of the qualitative behavior that was sketched in Figure
5.7.

The author is not expert with the computer. In an hour of need, he has
been able to induce Professor Odell to produce some desired computer
simulations. Similarly, when in need of assistance, the reader can doubt-
less enlist the services of a sympathetic computer virtuoso.

| Results of an honest test are being reported. Figure 5.7 was sketched before Figure 5.8

was constructed.

Final remarks

We have answered the various questions we posed concerning the quali-
tative behavior of the chemostat. Our calculations give strong evidence
that the chemostat always approaches a steady state. The approach is
nonoscillatory, because steady-state points are never foei.

Although eight parameters appear in our model (9), we have seen that
the major gualitative features of the system depend on whether or not the
two dimensionless parameters u and £ obey inequality (26). Figure 5.9
sums up the situation. In this figure we have chosen to present the results
in terms of u ', not p, because the former is proportional to the most
easily adjustable parameter, the flow rate Q.

In terms of the original parameters, the condition of Figure 5.9 for the
final state to contain no bacteria becomes the following constraint on the
flow parameter g=Q/V [see equation (14)]:

g>MC/(K+C). (36)

To interpret this condition, consider the (dimensional) bacteria equa-
tion (9a):

dN/dt =NMC(t)/[K+C(1)]—gN.

In this equation, the flow parameter g can be regarded as playing the role
of a death rate, and MC(¢)/[K+C(f)]isa nutrient-dependent birthrate.
The largest birthrate that can occur in the chemostat is when the nutrient
concentration C takes on its maximum possible value of C;. If and only if
this maximum birthrate exceeds the ““death rate’’ g will a nonzero pepu-
lation eventually emerge.

None of our major conclusions may seem surprising in retrospect,
but few are generally able to predict our findings without mathemat-
ical analysis, Indesd, the chemostat field began with the fundamental
theoretical papers of Novick and Szilard (1950) and Monod (1950). The
theory has become more necessary as biologists use the chemostat to
study more complicated matters, such as competition between different
organisms (Slobodkin, 1961) (see Exercise 10) and the effects of tem-
porally varying conditions (Frisch and Gotham, 1977; Smith, 1981).

Experiments have indicated that the basic theory can indeed capture
the main features of the experimental phenomena (Rubinow, 1975, Sec-
tion 1.7), but, as outlined in Exercise 13, recent measurements have pro-
vided surprises that require extensions of the analysis.
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Figure 5.9, Parameter plane indicating domains of different qualitative be-
haviors of solutions to {21}, As in (22), x ~'mg/M and fw C;/K.

Exercises

1. {a) Verify equation (21).

(b) Verify equations (23)-(26) both by proceeding directly from (21) and
by translating carlier formulas into dimensionless variables.

(c) Verify that the graphs of N and C are respectively concave down and
concave up, as depicted in Figure 5.5.

2. Instead of equation (20), introduce the variables

r=tM, ¢=C/C,, n=NIN,
(Note that these variables are dimensioniess.) Find the equations corre-
sponding to (21) in terms of the dimensionless parameters a=g/M,
B=K/C,, y=Ny/yVC;, and §=C,/C;. Bxpress e, f, 7, and § in terms
of the dimensionless parameters of (22), and thereby show that the latter
could still be used to characterize the problem.

3, For practice, repeat the stability calculations of the text using the orig-
inal equations {9) rather than the dimensionless version (21). Show that
the results of the two approaches are the same.

4. Verify equations (31) and (34).

5. Show that assumption (5} is “‘usually” appropriate, at least for suffi-
ciently small values of C. Describe circumstances, using a specific
example, under which (5) would not be a valid approximation, even for
small C.

6. Consider the case in which assumption (5), that &k and r are propor-
tional, is not made.

(a) Show that there is essentially no change in the steady states.

(b) Discuss the stability of the steady states.

(¢} Describe the effect of this generalization, if any, on the qualitative
behavior. )

7. How should the chemostat be run to maximize profit if a certain sum is
received per bacterium, taking into account the cost of critical nutrient?
Consider two cases:

(a) In the first case, no nutrient that enters the chemostat is recoverable.
(b) In the second case, all nutrient that leaves the chemostat can be
recycled.

8. Carry out the remaining analysis necessary to obtain Figure 5.6.

9. (a) Find the general solution of the linear system given by (29) and (31).
(b) Keeping in mind that exp(—gt) decays appreciably in a time of order
g~ [see equation (4.20)], shaw that if (1 +8)2 <48y, then {1+6)/2q es-
timates the time for the chemostat to approach nontrivial steady condi-
tions, provided that the system is not started too far from such conditions.
(¢) Show that if

(14+8)2> 48,

then the corresponding time is max(m,¢ ™', myq "), where —m, and
—nmt, are the roots of m*+ (1+8)m+8r=0.

10. This problem concerns the competition between two species in a chemo-

stat (or, equivalently, two species subject to indiscriminate predation or
harvesting). Let N\(t) and N,(¢) be the number of individuals in the
chemostat.

(a) We shall employ the equations

daNy Ni+ea N,
|a.m.|lw_z_ - X —gN,
aN; _ Ny+ag V) .
ar =rN,|1 ra —gN,.

Discuss the assumptions that are implicit in these equations.
(b) Show that coexistence of the two species is possible (Slobodkin,
1961) if

q q q q

K= )reaka(i= ) Ko(i=F )>anki(1-7 ),

where g<r, g<ry.

(c) Show that if g=0, then species | will always win in competition if
KooKy, KooK

(d) Given that ooy <1, ry<r,, show that, in spite of the intrinsic
superiority of species 1, if

-
Ki—apky
i =]
Kyrlt—ap Kyrg

an K, —K;
ay Kt =Kyt

<g<

then coexistence is possible. (Ecologically speaking, this shows that in-
discriminate predation can enhance the possibilities of species coexis-

tence,)
(e) Find conditions permitting coexistence when ¢g=0 but not when

qg=>0.

11. An extremely simple model for the number of bacteria N(f) in some

natural environment is

aN _ MCN ac MCN
T Yoim T8

where M, k, d, y, and I are positive constants,




