(v) F(V) is infinite when V=V, = —C/B. Thus ¥, and ¥, have
the same sign. Usually 4 /B < 1 so | V| > V5],

(v) 1If C >0, then f(V) is increasing through V= V,, whereas if
C <0, then f(V) is decreasing through V= V..

In Figure 2.17 we show graphically that if C> 0, a hyperpolariza-
tion relative to the Goldman formula without active transport occurs.
Here the intersection of ¢¥ with the ordinate 4 /B gives the value of
yV,, in the absence of active transport, C =0 (labeled y¥;). When
active transport is included, the intersection of " with f(¥") occurs at
a smaller value (labeled y¥,). Thus a hyperpolarization relative to
YV, occurs.

Assuming only positive ions (e.g., K™ and Na™) are being pumped,
a value of C >0 implies an excess of positive ions are being pumped
out of the cell. This would be the case when there is an excess of
sodium over potassium pumping, Indeed, excessive loading of the
intracellular compartment, which occurs due to the injection of sodium
ions or by repetitive firing at a rapid rate (called retanus), often leads
to a hyperpolarization. In the latter case it is referred to as postreianic
hyperpolarization (Holmes 1962; Phillis and Wu 1981). If ¢ <0, a
depolarization, relative to the Goldman potential, occurs. Proof of
this is left as an exercise.

3

The Lapicque model of the nerve cell

31 Introduction

One fundamental principle in neural modeling is that one
should use the simplest model that is capable of predicting the
experimental phenomena of interest. A nerve-cell model must neces-
sarily contain parameters that admit of physical interpretation and
measurement, so that it is capable of predicting the different quantita-
tive behaviors of different cells.

The model we will consider in this chapter is very simple and leads
only to first-order linear differential equations for the voltage. How-
ever, when we employ the model in many situations of neurophysio-
logical interest, we find that the mathematical analysis becomes quite
difficult, due mainly to the nonlinearities introduced by the imposi-
tion of a firing threshold. This will become even more apparent in
Chapter 9, where we consider stochastic versions of this model.

The model will be called the Lapicque model after the neurophysi-
ologist who first employed it in the calculation of firing times
(Lapicque 1907). Other names for this model, which have recently
appeared in the literature are the leaky inregrator or the forgetful
integrate and fire model.

According to Eecles (1957) the resting motoneuron membrane can
be represented by the circuit shown in Figure 3.1A. A battery with a
potential difference equal to that of the resting membrane potential
maintains that potential across the membrane circuit elements consist-
ing of a resistor and capacitor in parallel. We call this a lumped model
or a point model to indicate that the whole cell (with attention
focused on the soma and dendrites) is fumped together into one
representative circuit. Hence with this model we cannot address
questions concerning the effects of input position or concerning the
interaction between inputs at various locations on the soma-dendritic
surface.
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Figure 3.1. A-Electrical circuit employed to represent the resting
nerve cell. Values of the resistance, capacitance, and resting poten-
tial are average values from Eccles (1957). B- Electrical circuit

employed in the Lapicque model for subthreshold depolarizations.

We let V(1) be the potential difference across the cell membrane,
minus the resting potential at time . That is, ¥(¢) is the depolarization
and in the resting state V' = 0. We remove the battery from the circuit
as in Figure 3.1B, where a resistance R and capacitance C are in
parallel. The depolarization varies according to the effects of the input
current 7(t), which may come from activation of synaptic inputs or
other natural means (e.g. due to a sensory input in a receptor} or
from current injection. In Chapter 7 a more realistic model for the
effects of synaptic inputs will be employed.

Subthreshold behavior

Assume for now that the membrane resistance R does not
depend on the voltage and is, in fact, constant. The current through it
is, by Ohm’s law, V/R. The current through the capacitance is
CdV/di so we must have, by conservation of current,

C—+—==I(t), >0 (3.1)

The solution of this differential equation, given an initial value F(0),
will give the time course of the depolarization for subthreshold
voltages.

Threshold
Equation (3.1) is only appropriate for subthreshold responses.
If the nerve cell under consideration is capable of generating action

4 1 R 2

Figure 3.2. Spike generation in the Lapicque model. Whenever V(1)
reaches 0(1), the threshold, an action potential is generated. The
threshold function depicted here is the constant threshold (3.2).

potentials, a threshold condition must be superimposed, because (3.1)
has no natural threshold properties (see Chapter 8). Let the threshold
depolarization for action-potential generation be 6(), 1=0. The
model nerve cell is completed by imposing the condition that when
V(() reaches (1), an action potential is generated. Following the
action potential the depolarization and the thresheld are reset, usually
to their initial values.

A simple choice for the threshold, which is appropriate for a cell
that is not firing rapidly, is to assume that it is constant at 6 until the
generation of a spike, after which it becomes infinite for the duration
of an absolute refractory period of length t. Let the sequence of times
at which action potentials occur be {7, i=1,2,...} as depicted in
Figure 3.2. Then

0, L<t<t+ig, (32)
8, otherwise. '

mALHA

Note that the spikes have no structure in this model. The output train
is completely described by the sequence of #’s. Other threshold
functions commonly employed are given in Table 3.1, In the next
three sections we study the subthreshold responses of a Lapicque
model neuron and then consider the problem of determining the
sequence of times of occurrence of spikes.

3.2 Subthreshold response to current steps

By means of intracellular current injection a neuron may be
either depolarized or hyperpolarized. The results of applying constant
depolarizing and hyperpolarizing currents for a certain length of time
are shown in Figure 3.3. Figure 3.3A shows a depolarization reaching
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a final value of about § mV in response to & current step of 3 nA
(1 nA) =107 A), whereas Figure 3.3B shows an earlier recording of
the response of a cat spinal motoneuron Lo a depolarizing and
hyperpolarizing current step. Indeed, the Lapicque model predicts
these responses.

We introduce the unit (Heaviside) step function,

loq NAP ,
E:l?. 1=0. )
Then with a maintained current of magnitude I = constant,
1) = IH(1). (3.4)
Equation (3.1) for subthreshold voltages is a first-order linear
differential equation with integrating factor exp(t/RC). Thus (see
Section 2.4) its general solution is
! I(t) t

V(1) =exp e c P\ ze dr+k|, (3.5)

where k is a constant to be determined by the initial value of V. If we
take the cell to be initially at rest, then V(0) =0, and

-1\ pd(t) #
V(1) =exp 7)) e ® e dr'. (3.6)
For a constant current we insert (3.4) in (3.6) to get
V(r)=IR(1—e YF), 120 (3.7

If the current were maintained indefinitely, then as t— co, the de-
polarization would approach the steady-state value IR. However, if the
current is switched off at r= ¢, so that

1) =1[H(1) - H(i=1)], (3.8)
then the depolarization will decay exponentially according to
dv vV
= (3.9)

&~ RC

g l«.\ln.lll.lllll.l'll

ey m

Figure 3.3, Time course of the membrane potential of a cat spinal
motoneuron under current steps. A—Response of a cell to a 3-nA
current step of duration about 25 ms. [From Barrett and Crill
(1974). Reproduced with the permission of The Physiological Society
and the authors.] B— Left column. Intracellular potential as a result
of an 8.5-nA current step that depolarized the cell (lower figure) and
another that hyperpolarized the cell (upper figure). Right column.
Corresponding extracellular potentials illustrating difficulty in mea-
surement techniques. [From Eccles (1957). Reproduced with the
permission of Johns Hopkins University Press and the author.]

with “initial” value equal to ¥(¢,). Thus the results shown in Figure
3.3 will be described by
JR(1 - e~ '/REY, O<t<ty,
V(1) = ( ) ¢ (3.10)
&meiml:\xn.umliw:u\mﬁ. NVNH.
This solution is sketched in Figure 3.4 for the case I> 0. The simple
model performs reasonably well. Furthermore, the results of the
current-step experiment enable the parameters R and C to be esti-
mated. The quantity RC has the dimensions of time and is called the
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Figure 3.4. Subthreshold response of the Lapicque model neuron to
a constant current step, switched on at =0 and off at r=1,.

time constant 7 of the membrane because in time RC the depolariza-
tion drops to e~! of its initial (nonzero) value.

3.3 Impulse response (Green’s function): EPSP and IPSP

The response of a linear system to an impulsive input is
called the impulse response or Green’s function (a term we will come
across frequently in the chapters ahead). Suppose a charge C is
delivered instantaneously at ¢ = 0 to the resting nerve cell. Then, using
the delta function introduced in Section 2.16.1, the input current is

(1) =C8(1). (3.11)
The solution of (3.1) with this input current is defined as the Green’s
function G(r). Thus G satisfies

aG G

Frikieaat (3.12)

G(t)=0, 1<0.
Inserting 7(r) given by (3.11) in (3.6) gives

QEHAM..S, Mm (3.13)

or
G(r)=H(1)e . (3.14)

integral equation,

TROM QREENS FUNCTION
w\cvnw\:\qciis% p(0) =0. (3.15)

The proof of this is left as an exercise.

It @ units of charge are delivered to the nerve cell at =0, the
response is OG(¢)/C. Thus the voltage has a discontinuity of magni-
tude Q/C at t=0.If @ > 0, an abrupt depolarization occurs at =0,
followed by -an exponential decay of the potential towards zero
(resting level) with time constant . This response can be employed as
an approximation to an EPSP. Similarly, if Q <0, an abrupt hyper-
polarization occurs corresponding to an IPSP. Such theoretical EPSPs
and IPSPs are sketched in Figure 3.5.

Using the results so far, we can make a rough estimate of the charge
delivered to a motoneuron during the generation of an EPSP. From
Figure 1.13 we see that some EPSPs have amplitudes of about 10 mV.
Using the above standard value, C =3 10~ F, the charge delivered
during this EPSP is about 3 X 10~!! C,

The equation satisfied by ¥(7) can be rearranged to give

&_\H\
H)=C|l—+—|. (3.16

(1) dar T )

Hence if V(r) and dV/di are known, we can obtain the input current,
within the framework of the present model. m%maam:mmtma. can, in
fact, find dV/dr directly with electronic circuitry. This was utilized by

Vi)

T
L
IPSP

Figure 3.5, Approximations to EPSP and IPSP in the Lapicque
model when impulsive currents are applied.



Figure 3.6. Computed current flow during the EPSP and IPSP of a
cat spinal motoneuron. The dashed lines are the currents deduced
from the Lapicque model via Equation (3.16). The solid lines are the
observed postsynaptic potentials. Note the scales for voltage and
current. [From Curtis and Eccles (1959). Reproduced with the
permission of The Physiological Society and the authors.]

Curtis and Eccles (1959) and the results they obtained for the current
that flows during an EPSP and an [PSP are shown in Figure 3.6.
According to these results, the currents that flow, while synaptic
inputs occur. rise quickly to their maximum values and decline mare
slowly. For the current generating the EPSP there is a small residual
depolarizing current and for that generating the IPSP there is an
overshoot past zero, It was further noted by Curtis and Eccles (1939)

is terminated were all QITIETEIlL. SUCH ULSUITPALIVIL Git Guuitiiis xwo
in a natural way with models that incorporate the spatial extent of the
nerve cell (see Chapter 5).

Impulsive currents lead to discontinuous voltage trajectories,
whereas the EPSPs and IPSPs of the motoneuron (Figures 1.13 and
1.15) rise smoothly froim zero to achieve their maxima apd minima.
The chief components of the current pulses in Figure 3.6 can be
approximated using various mathematical expressions. One approxi-
mation is a triangular pulse, which is studied in the next section on
repetitive stimulation. However, a commonly employed approxima-
tion is a function that has been called an alpha function by Jack et al.
(1985) and is proportional to a gamma density. For this approxima-
tion to a synaptic input current, we put

I(1) =kte ™, a«>0, (3.17)

which corresponds to delivering a total charge of k/a? to the cell, as

the reader may verify,
Assuming V(0) =0, we find that the response of the Lapicque
model neuron to such a current pulse is, from (3.6),

V()= ‘\_mm ape [prgtm—alt gy (3.18)
C o
Now put
B=1/1—a. (3.19)
Using the rule for integration by paris
‘\o\a\c%\ =[uwl§— ‘ﬁmc\&u (3.20)
we finally obtain
~1/1 :
M\Cvn\mmw% E?lbﬁwtl@ ., B=0. (3.21)
If o=1/r, then =0 and the following result is obtained:
E&u@mwl\u B=0. (3.22)
2c

Notice that if @— oo and k=a?, the pulse given by (3.17) ap-
proaches a delta function. Thus the rise time becomes smaller as
« — oo, EPSPs in response to inputs of the form of (3.17) for various
a are drawn in Figure 3.7.
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Figure 3.7. EPSP’s in the Lapicque model neuron for input currents
of the form of an alpha function (3.17) with k=C, r=1.

3.4 Subthreshold repetitive excitation

Delra-function input currents

We start with a simple situation—a train of impulse currents
at regular intervals. If these occur 4 time interval T apart, we have

. 0
I(t)=kC Y 8(t—nT), (3.23)
a=1
where k is a constant and C is the membrane capacitance. After the
first input event, (¢} will jump from zero to k, then decay exponen-
tially to kexp[—T/r] and the second input event takes V() to
kexp[~T/r] + k, then V(1) decays to (k exp[~ T /7] + k)exp] — T/7],
and so forth (see Figure 3.8).
We see that the values of F(r), just before and after the nth

impulse current is delivered, are

V(nT ) =ke 7" [1+e™ T4 ... e-=2T/7] nx?2,
(3.24)

and
V{nT*)=V(nT") + k. (3.25)

These geometric series may be summed but it is immediate that if a
steady state prevails and we denote the maxima and minima in the
steady state by V. and V. . then we must have

e =7, (3.26)

mins

V

max

A ey (3.27)

max min

asase STEADY STATE

Figure 3.8. Response of the Lapicque model to a repetitive train of
impulse currents cach of which causes V(1) to jump by k. It is
assumed that the steady-state maxima and minima are below
threshold for action-potential generation.

Solving these, we get

k
[ = (3.284)
\mmlﬂ\q
H\_.u._:._ = L= mrq.\a ¥ AmNva

If the maxima in the steady state do not rise above a threshold level
¢ (assumed constant), then the neuron will never fire, Hence a
necessary condition for firing is
Nﬂ

1 |1mbﬂ\a

=4, (3.29)
If we rearrange this expression, we get a value (the reciprocal of the T
value) for the critical frequency of inputs that is necessary to make the

cell fire

fon= =, (3.30)
1-k/0

Suppose the neuron receives multiple inputs each of which is peri-
odic and with constant magnitude. Then the input current has the
form

:;umm\mW 8(t—nT), (3.31)

J=1 n=1



where there are m inputs. k; is the strength of the jth input and 1/7;
is its frequency. The subthreshold equation is linear so the response is
just the sum of the responses to the individual inputs. The de-
termination of the steady-state response, however, is difficult unless
simplifying assumptions are made about the frequencies of the inputs.
For example, suppose the cell receives excitation as before, but now
there is also an inhibitory input with half the strength and half the
frequency. That is,

o
H)y=kC Y (8(z—nT) —18(1—2nT)). (3.32)
n=1
It is left as an exercise to show that in the steady state the maxima
and minima are
k[1+1e ™)

—\33“ _”Hlmxﬁ..\.@ » Awwwv

Vo=V, —k. (3.34)

min max

Triangular current pulses

The resulis obtained by Curtis and Eccles (1959), which are
shown in Figure 3.6 for the current that flows during postsynaptic
potentials, suggest that a good approximating function for the current
would be a triangular one. A particular form for such a current is, for
a waveform with period 7,

Jt/a, 0<t=<a,
t)={J-J(t~a)/2a, a<i<3a, (3.35)
0, Ja<t=T,

with an EPSP occurring if J is positive and an IPSP if J is negative,
The train of input pulses and the response F(r) to a single input
together with the steady-state response are sketched in Figure 3.9. The
caleulation of the response is quite involved and provides a good test
of manipulative skill with Laplace transforms. The steady-state max-
ima and minima are

v =Jr[3-2)2C, (3.36)

Vipin = J7—, (3.37)

o
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Figure 3,9, The upper graph is the train of triangular current pulses
representing repetitive synaptic excitation of the model neuron. The
response to the first current pulse has amplitude 1, and eventually
a steady state prevails with maxima V|, and minima V.

where
Mmﬂ\a»\ wmn\4+mwn\q
f=7ln j , (3.38)
g5 7] o mm.sw.mr L (3.39)
- e /=1

These results turn out to be very useful and provide us with a means
of comparing some experimental results on cat spinal motoneurons
with those predicted by our simple neuron model.



