CHAPTER 3

Mathematical Models of Neurones

3.1. Logical Neurones

3.1.1. INTRODUCTION AND DEFINITION

Probably the best-known “mathematical neurone™ is the logical or
McCulloch-Pitts neurone (McCulloch and Pitts, 1943). It may be represented
as shown in Fig. 3.1 and in its simplest possible form is a device which gives
an output (to the right) if it gets an input from at least a certain number,
say @, of its inputs (on the left). It thus has a threshold 8 which is, again in
the simplest version of the model, a constant positive integer characteristic
of the “neurone”. @ is often written into the diagram of the neurone as in
Fig. 3.1.

Fic. 3.1. Representation of logical or McCulloch-Pitts neurone.

The logical neurone purports to be an idealization of a real neurone anc
has the features of being able to be excited by its inputs (we include inhibitio:
in a moment) and of giving an output when a threshold is exceeded. It
most peculiar feature is the way in which its behavior is a function of time
It is supposed that the neurone can only change its state at one of a discret
series of equally spaced times. Thus if one of these possible times is £, an
the mext is ¢~+t. then the subsequent ones are fn+2t. fn+3t. .... Th
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output from a given neurone at time ¢ = t,-+pt arrives as an input to all
those to which it is linked, at the next time for change, i.c.at t=1, +(p+ 1.
A network of logical neurones behaves in a synchronized fashion, ¢, and ©
being the same for every neurone in it.

Biologists often criticize the logical neurone for being too unrealistic,
especially in relation to its time dependence. It is important for us to realize
that this is rather unfair. The great advantage of the logical neurone is its
simplicity, which often enables us easily to gain an insight into how a network
of nerve cells might be expected to behave. It has many realistic features
such as threshold, excitability, spatial summation and all-or-none output,
but to gain simplicity we have to pay the price of lack of realism in some
respects. This is a normal feature in the application of mathematics to the
real world, namely that we often deliberately simplify in order to achieve
mathematical tractability, whilst always recognizing the danger that such
simplification can lead to spurious results.

After these introductory remarks, we now give a more formal abstract
definition of a general logical neurone, under seven headings:

1. A logical neurone can exist in one of two states, which may be called
“active” and “inactive”,

2. It has one output, which can be connected simultaneously by one or
more links to each of an arbitrary number of other logical neurones or to
itself. This means it gives the same output along every link.

3. It has a total of n,+n, inputs, n, of which are “excitatory” and n, of
which are “inhibitory”. n, and n, can each take any non-negative integral
value.

4. 1t has a threshold 6, which is normally taken to be a positive integer,
although it could take other real values.

5. The neurone can only change its state at a discrete sequence of times
{ = ty+pt, where p can take any integral value, and we often take
to = 0, = = 1. Each neurone keeps its state unchanged during each time
interval fo+pT € t < fo+(p+ 1)1, Where 2o and 7 are constants which are
the same for every neurone of a given network. This is the assumption of
quantized time, which is the most unpalatable feature of the logical neurone.

6. A particular input is active at time to+(p+1)7 if the neurone from
which it comes was active at time #o+pt (we shall also then say that that
neurone fired at time fo+p1). We write N, for the number of excitatory
inputs which are active and I, for the number of inhibitory ones which are.
Evidently N, < n,and N; < n. N, and N; are, of course, functions of time
and this may be made explicit if necessary.

7. A neurone is active at time fo+(p+ 1)t if and only if N,—¢N; =0
at that time. ¢ is a positive real number characteristic of the neurone and
will usually be taken to be an integer. Like 6, n, and n,, ¢ may differ from

one neurone to another, although it will often be interesting to investigate
networks in which they have the same values for each neurone. Note that a
more general rule of the type ¢4 N,—¢, N, > 6 can be got into the simpler
form given above by dividing through by ¢, and writing ¢ = ¢,/dy,
0 =0,/¢,.

A logical neurone is a binary device, because it has two possible states.
It is often convenient to represent its state in binary arithmetic notation,
saying it is in the state 0 when it is inactive and in the state 1 when active,
If we have a network of » neurones we can then number those neurones
from 1 to n and represent the state of the whole network at a given time
by a binary integer. Thus if a network contains just three neurones, the
binary integer 101 signifies that neurones one and three are active, while
neurone two is inactive. Evidently, at any given time, a network of n neurones
has 2" possible states.

3.1.2. EXAMPLES

We now consider a few simple illustrative examples, using the symbol —
for an excitatory input and -+ for an inhibitory one.

1. One neurone having n, =2, n; =0, § = 1. Because m; =0 it is
unnecessary to specify ¢. The diagram is

and the neurone fires if NV, = 1, i.e. if one input or the other or both are active.
It is interesting to note that, had we set 8 = 0, we should have got an
output even if there were no input. Such a neurone could be called
“spontanecusly” active, although this would differ somewhat from the more
common usage of the word “spontaneous” given in Section 4.1.
2. One neurone having n, = n; = 1, 8 = ¢ = 1. The diagram is
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There are four possible input situations which can be tabulated most con-
veniently as follows:

N, Ny No—¢N,;

(= = I

1
1
0
0

We see that the threshold condition N,—$N, > 8 is only satisfied in one
case, namely when the excitatory input is active but the inhibitory one is
inactive. It also follows from the table that, if we set 8 = 0, the neurone is
spontancously active but could be turned off if N, = 0 and N, = 1.

3. Three neurones, all excitatory links, i.e. all n, =0.

"Brain” Output

_

|

_

2 H
C“
|

&

Input

It is easy to see that we only get an output to the right after there have been
two inputs successively on the left. One may thus think of the network
as a very primitive “brain’* which only reacts to repeated stimuli, but not to
temporally isolated ones.

4, Self-re-exciting systems,

In each of these cases a single input at the top left corner continues to
go round and round for ever unless it is “‘erased” by sending in an inhibitory

|
|
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input from the bottom left-hand side. The output from such systems can be
changed indefinitely by a single input at one time, which may be far in the
past. They could thus serve as primitive memories. It has been suggested
(see Section 6.5.1) that human and animal memory might be based on this
self-re-exciting potentiality of neural networks but it is generally considered
that this is unlikely for long-term memory.

5. Another network of three neurones.

A

We now consider an isolated network of three neurones and ask what
happens subsequently if the network starts in a particular state. Treating
this as a purely mathematical problem, it is unnecessary to ask how the
network is put into its initial state, However, it is evident that any initial
state could be achieved by suitable inputs from the outside to the three
cells,

It is convenient to use binary notation for states of individual neurones
and a vector notation for a state S of the network, thus S = (state of A, state
of B, state of C). There are eight (= 2x2x 2) possible states S and we shall
have completely characterized the behavior of the network when we have
tried each of these as initial states, We then get the following diagram

AO. .—. Hvlﬁu. Qv Ov“nou Qu Hv
0L (10—, 1, —a,0,1)
Ao» Ov cvllvAOu O. 8

which the reader may easily verify. It shows that if we start the network in
any state except the completely inactive one, it settles down to an oscillatory
activity in which B is inactive but excitation shuttles between A and C.
This concludes our examples which were given to clarify the nature of
the logical neurone. It should be emphasized that in a real brain we are
concerned with so many cells (up to 10*°), each having perhaps 10* or more
inputs, that we cannot expect to analyze its activity in the detailed way



34 MATHEMATICAL NEUROBIOLOGY

that we have in example 5 above. The sort of approach we must adopt then
will be discussed in Chapters 5 and 8.

3.1.3. ConNNECTION WITH REAL NEURONES

We have remarked already that many features of real neurones are well
represented in the logical neurone, but that the quantization of time is not
realistic. Nevertheless, we should like to have some idea of what value and
significance to assign to the time interval 7. In my opinion, © should be
regarded as an average estimate of the time taken between the firing of
one presynaptic cell and the time when the effect of that firing first has the
potential of influencing the firing of those postsynaptic cells to which the
first cell is linked. Then 7 is made up of four components, each of which
would probably be a small multiple or submultiple of 1 msec. The first, 7,
is the time for the action potential to travel down the axon to the synaptic
knobs (if the velocity of conduction is v meters/sec and the axonal length
is [ mm, then t; = /fv msec). There is then a slight delay ,, termed the
synaptic delay, before the postsynaptic potential (PSP) starts to appear
(Eccles, 1964, p. 42 gives some values of 7, as 0.2-2 msec). The PSP then
appears, giving 7;. Whether 73 should be the time to the peak of the PSP or
until it has, say, half decayed from its peak, is a little unclear; probably
the latter. Anyway 7 again is probably usually a few msec (see Eccles
loc. cit)). Finally, 7, is the time of rise of an action potential from the
threshold to its peak. 7, is probably typically less than 1 msec. Thus we
should think of © = 7, +7,+73-+7, as being a few msec, probably usually
less than 10 msec.

Although this gives a way of assigning a value to 7, it does not make the
quantization acceptable. It requires that we should only allow a cell to fire
at the times 7,+pt. The arbitrariness of the choice of 7, is immediately
apparent: since there is normally no synchronization in the real system,
there is no reason to prefer any one value of 7, over another.

We shall not pursue this undoubted defect of the logical neurone any
further here, but merely remind the reader that these “neurones” are useful
in theoretical discussions because of their relative simplicity, and mention
two other points. The first is that we have not explicitly considered the
question of refractoriness (Section 2.2.4). The refractory period would
normally be less than 7 and so the very fact that a logical neurone cannot
fire twice in less than  seconds is sufficient to deal with it. Were that not the
case, one could introduce into the definition of the logical neurone the
requirement that it could not fire again until at least x7 seconds after it last
did so, for some fixed integer x > 1. The second is that habituation can
easily be incorporated into the definition by imposing some restriction on
the number of times a logical neurone can fire in a given period. For example,
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one could require that it cannot fire at time ¢, + p if it has fired more than
a times in the time interval fo+(p—Db)t < t < fo+pt, where a and b are
fixed integers (note that the refractory period is given by the special case
a=0,b=x-1)

3.2, Real Time Neurones

3.2.1. Basic DEFINITION

From a functional point of view we know a very great deal about the
activity of a neurone when we have a record of its internal electrostatic
potential and of how this has been altered by EPSP’s and IPSP’s due to
activity in aftached cells. This suggests that we may define a much more
realistic mathematical neurone by concentrating attention on this internal
potential as a measure of the state of a neurone, which is thus characterized
by a parameter V' (Gluss, 1967; Griffith, 1967a). It is most convenient to
choose ¥ so that its physical significance would be the deviation of the
internal potential from its resting value of around —70 mV. So the resting
potential corresponds to ¥ = 0.

n

. 7
>

Fia. 3.2. Time courss of ¥ for a “real time” neurone with reset to zero assump-
tion, (Compare with Fig. 2.3)

Three things can happen to V (see Fig. 3.2 for illustration).

1. If a presynaptically attached, i.e. input, cell fires at time ¢, then at time
t+68 we alter ¥ to V'+n. & represents the delay between the time the input
cell reaches its threshold to firing and the peak of the resulting EPSP or IPSP.
d is the same as 1 as defined in Section 3.1.3, providing , is taken as some-



where between zero and the time to the peak of the PSP. n corresponds
to the height of the EPSP, in which case it is positive, or the IPSP, in which
case it is negative.

2. At any time ¢’ at which ¥ changes from being <@ to being > 6, we
say the cell fires. 0 is called the threshold. For ¢ <7 < '+R, we set
V() = oo (or some large value > 6). We then put V(¢'+R) = 0. R is called
the refractory period (it corresponds to the absolute refractory period of a
real neurone). Both R and @ are fixed constants characteristic of the cell.

3. At all times not covered by rules 1 and 2, V satisfies the differential

equation
— ==l 1
T 1
¢ is a fixed positive constant, characteristic of the cell, and corresponds to an
average estimate of the time constant of decay of isolated EPSP’s or IPSP’s.
¢! is probably of the order of a few msec.

3.2.2. REMARKS

There is no reason why 8, R and e should not differ from one neurone to
another nor why & and # should not alter from one synapse to another.

Although it is natural to interpret ¥ as being related to the internal
potential, there is another interpretation which might be more correct for
some neurones. We remarked earlier (Section 2.2.4) that the time course of
a PSP is a combination of the effects of the discharge of the membrane
capacity and of the enzymatic destruction of the transmitter. In the limiting
case of a very short electrical time constant and long life of transmitter,
the PSP would strictly follow the transmitter concentration on the post-
synaptic membrane. ¥ could then be interpreted as “total transmitter level”
at all input synapses to the cell, counting transmitter at excitatory synapses
as “positive” and at inhibitory ones as “negative”. Since there is no reason
to expect the internal potential to follow the transmitter level during an
action potential, this would mean that we could consider replacing rule 2
above with the following extreme alternative: at any time ¢’ at which
V(t") = 8 we say the cell fires, providing it has not fired previously in the
period t'—=R < t < t’. In that case ¥(¢) would satisfy the equation (1) at
all times not covered by rule 1 alone.

We thus have two possible limiting versions of the model, one in which ¥
is reset to zero at time R after the cell fires and the other in which V is
unaffected by the actual firing of the cell. It is probable that the first is
usually nearer to the truth (see Eccles, 1964, Section 4B) and in its strict
form implies that the value of ¥ after a firing is totally unaffected by the
extent to which ¥ exceeds the threshold @ at the time of firing. This is

obviously not so with the second version, with which it is obviously possible
in principle for ¥ to become so large that, in the absence of further input,
it would cause the cell to fire twice or more successively. Using equation (1),
this would happen if ¥ were suddenly raised to a value V, satisfying
Vo = 0 %, It is probable that the repetitive response of certain cells in the
spinal cord (Renshaw cells, see Eccles, 1964, pp. 119-121) is largely due to
this kind of mechanism.

Habituation as an effect on the threshold of a cell may be conveniently
introduced by allowing 6 to vary with time according to the following rules:

1. When the cell fires alter 6 to 6+ 5.

2. At all other times @ satisfies

do

o = —hE—0o) @

k, § and 0, are positive constants characteristic of the cell.

3.3. Computer Simulations

3.3.1. LoGICAL NEURONES

Many workers have simulated neural networks on a digital computer
(see, e.g. Farley and Clark, 1961, and Harmon and Lewis, 1966). We shall
not discuss detailed programming problems here but draw attention to a
few numerical points relating to the space and time requirements for such
simulations.

With a network of » neurones we have the following space requirements:

1. Values of 8 and ¢ for each neurone, For a general network we need to
store 2n numbers but, if we assume all neurones have the same values for
these parameters, we need only store 2.

2. Connectivity of the network. For each neurone we must say how many
links it has to each other neurone and whether they are excitatory or inhibitory
(by putting + or — in front of the number), This requires up to »* numbers.
Alternatively we could give a rule to determine whether neurone x is linked
to neurone y or not. For example, we could say that if the remainder after
dividing xy by n lies between 1 and 10 we have one excitatory link from
neurone x to neurone y but otherwise there are no links. Such rules are
easy to program, require a space in the store which is essentially independent
of n, and can be useful in setting up pseudo-random networks to simulate
the random networks discussed in Chapter 3.

3. Present and Immediately preceding state of network. The present state
is always calculated from the preceding state, and the latter must generally
be stored until the present one has been completed. This means storing
2n numbers, each being 0 or 1,
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Thus as far as space requirements are concerned, a computer can simulate
a network containing about as many neurones as it can store numbers.
In other words, even 10'® is not out of range providing the connectivity is
largely specified by giving rules rather than actually enumerating all the
links (which for the human brain would still only need 10'* or so numbers,
rather than n? = 1029),

In considering time requirements, the important time is the time T
required to calculate the new state of the network from the preceding one.
If each neurone is linked to g others then this is approximately given by
T =~ n(gt,+1t,), where ¢, is the time required to calculate the contribution
of a given link to the sum N,—¢@N, and ¢, is the time to see whether the
resulting sum is 6. As a consequence, the time requirements impose a
much more serious restriction on the size of network which can be examined
than do the space requirements. For example, if g¢; +¢, = 100 psec and
n = 10% 10% or 10!, T'= 1 sec, 1 min 40 sec or 11} days respectively,

Thus, even if we knew all the necessary parameters, putting a McCulloch-
Pitts version of the human brain on a computer would pose more of a
problem of speed than of storage space. In view of the great speed of a
modern computer, this must appear something of a paradox. In fact it is
resolved by realizing that the normal version of digital computer is ill-
designed for handling this sort of simulation because its central arithmetic
unit can only operate at one time, albeit very fast, on a very small amount
of the data in its store. If we knew enough to simulate the human brain,
we would use separate electronic circuits for each neurone (quite realistic
analog circuits even for neurones operating continuously in time have
been described, see Harmon, 1959, 1961) and would have these circuits
working simultaneously in parallel. Thus the time problem would be
removed and, in fact, the artificial brain could be built to operate faster than
the real one because the electronic time constants could certainly be in the
microsecond and probably the nanosecond range (if memory could be
suitably incorporated). If the latter were achieved, such an artifact could
get through 100 years (= 3 x 10° sec) of human thought in about 50 minutes.

3.3.2. REaL TiME NEURONES

With a digital computer simulation, under each neurone at time ¢ we need
the current value of ¥ (and of 6 if it is allowed to vary) and also the times of
firing of all attached presynaptic neurones back to the times t—§. By storing
and continually updating this information we calculate the evolution of
activity in the network as a function of time. Two points may be made about
programming such a calculation. First, because a cell can only fire when an
impulse arrives from another cell (i.e. on an upward jump of n, see Fig. 3.2),
we need only calculate ¥ at such times (which are known because it is known
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when the input cell has fired). Hence to advance the computer simulation
of the network by a given finite time 8¢ we need only perform a finite number
of calculations, even though ¥ is a function of the continuous variable 1.
Secondly, although it may seem necessary to calculate continually which cell
fires next in the whole network, this is not so because no cell can influence
another until at least &, (the smallest of the delays J) after it has fired.
Hence we can most conveniently perform the calculation by going through
the neurones in order and calculating for each if and when it fires in the
next time interval &, This simplifies the programming problem con-
siderably, and was used in my previous work (Griffith, 1967a, Chapters 4
and 5).

Finally, the time and space requirements are considerably increased,
depending on circumstances, by a factor of ten at the very least or probably
much more.

3.4. Symbolic Logic and Switching Circuits

3.4.1. SympoLic Locic

McCulloch and Pitts (1943) pointed out an interesting isomorphism
between the input-output relations of their idealized neurones and the truth
functions of symbolic logic. This has attracted a lot of attention and many
people have thought that it casts great light upon brain function and the
neural basis of the logic of human thought. Personally I do not believe that
this is so, at least to date, nor do I think that the logical notation which thus
becomes available to describe neural activity has much real use. I think the
latter because the logical expressions required to describe a neurone seem to
me much more cumbersome and difficult to manipulate than other more
usual ones, especially when any large number of neurones or interconnections
are being considered, and because of the difficulty (Kleene, 1956) of dealing
with networks which, like examples 4 and 5 of Section 3.1.2, have any
re-entrant paths (which probably includes all networks of any biological
interest). Not everyone would agree with this verdict and so we give here a
brief introduction to the matter to help the reader form his own opinion
(for a clear elementary account of symbolic logic, see Basson and O’Connor,
1965).

The relevant part of symbolic logic is concerned with the question of the
truth of composite statements, given the truth or falsity of the constituent
simpler ones. In elementary logic there are only two alternatives considered:
everything is either true or false. Composite statements are formed from
simpler ones by combining them, using certain logical symbols. We now
introduce some of these, using symbols like x or y to stand for thesimple
statements.
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1. Or. The symbol is ¥ and from x and y we can construct xV'y (also y¥x
which is identically the same). The definition of a logical symbol is exhibited
by a so-called truth table which shows whether xVy is true or false when
you know whether each of x and y separately are. The defining truth table
in this case is:

x y xVy
True True True
True False True
False True True
False False False

Thus, in ordinary English, the logical “or” means “either one or the other
or both”.

2. And. The symbol is a dot ,” and from x and y we construct x.y. Again
we can write a truth table. This time we shall note the binary character of
the alternative “true” or “false” and write a “I° to indicate “true” and a
0" to indicate false, obtaining the table:

x.y

®
~

(==
(=T =R
(= Nl

3. “Not” is written ~, and logical implication (i.e. if this, then that) is
written o. The truth tables are:

x ~X x y x=2)
1 0 1 1 1
0 1 1 0 0
_— 0 1 1
' 0 0 1

x o y is identically the same as (~ x)¥y, i.e. if the first of these statements
is true so is the second and vice-versa, and as the reader will readily see on
examining its truth table does not have quite the same meaning as impli-
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cation does in ordinary English (we do not normally say that a false pro-
position implies the truth of a true proposition). However, this is the way
in which logicians have found it useful to define it. )

McCulloch and Pitts now draw attention to the fact that if we let *0” in
the truth function correspond to “not firing” and “1” to “firing”, then the
truth functions are very like certain simple McCulloch-Pitts neurones. The
corresponding neurones are:

X
¥

X
b
X
Ve
The truth tables we have given are also the tables showing the input-output

relations of these neurones. Conversely, any neurone can be represented
by a truth function. Suppose the neurone is

Ne

having 7, excitatory inputs which we represent by Xy, X3,...s Xy, and m
inhibitory inputs represented by X, 41, ..., X+ Any total specification
of input is given uniquely by specifying the value of each x; = 0 or 1. There
are thus 2"*" possible different total inputs which we can number using a
parameter & = 1,2, ...,2"*™. For example, the total input in which an im-
pulse arrives along every individual input might be that with & = 1. It occurs
if and only if the truth value of

Xy =X1.%2. %3 000 Xnim

is 1. For every o there will be a corresponding X,. For some « the neurone
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will fire (because N,—¢N, = 0). Let the set of all such « be called S. Then

the expression
X= V X,

allgin§

represents the neurone as a truth function.
We now give a worked example in order to clarify the derivation. We

consider the following neurone

and let ¢ = 1. Evidently the neurone fires if either two of xy, x, and x; fire
but not x, or if all of x;, x, and x; fire, irrespective of whether x, does
or not. This gives five total inputs which cause the neurone to fire, which
we shall number from 1 to 5, with corresponding X,:
X =%1.%;.X5.%4
X, =X1.%3.%3.~ Xy
Xy =X1.%3.~X3.~ Xy
X=X, ~X3.X3.~Xy
Xg=rmX{.X2.X3.~ Xy
5=(1,2,3,4,5
X=X, VX, VX VX, VX5
We can simplify X slightly into the form
X = (xy % x)V{((x1 XV (01 . X3)V (%2 X3)) . ~ X4}
but we see that it is in any case quite complicated even for this neurone
which has only 4 inputs.

We have only established the isomorphism for single neurones, but it is
easy to extend it by induction to networks without re-entrant paths and, in
the other direction, to more complicated logical expressions (which then
generally correspond to networks rather than to single neurones). For this
and discussion, see McCulloch and Pitts (1943), Kleene (1956).

I

3.4.2. SWITCHING CIRCUITS

These are used extensively in digital computers and digital equipment
generally (for introductory account, see Oppenheimer, 1966). Nowadays
they are usually bought as standard modules (complete circuits) each of
which gives as its output a definite logical function of its input. Both input
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and output are standardized electric voltage pulses of height typically a
few volts and duration typically from a few nanoseconds to a few micro-
seconds. Probably the most extensively used basic units are the AND, OR,
NAND and NOR gates. Examples of these follow: :

X ——>— X —>—
% Mg X x VX Vs
Xp e Xz ———
X3 —— X3 ——
AND OR
K| X ——
X2 ~{ X.%g X3) X2 —>— ~(xVxa Vx3)
—— — e
X3 ———] X3 —>—
NAND NOR

and show the relation between input and output. NAND and NOR gates
are more common in practice than one might perhaps expect because of the
relative ease of making circuits to perform their functions. It is clear that
if we have just two inputs x; and x, then AND and OR gates perform the
basic logical functions X, . x; and x, ¥x,, while with only one input x; NAND
or NOR perform the function ~ x,. We have seen already that we can build
truth functions corresponding to an arbitrary logical neurone and therefore
we can also construct a switching circuit to represent it, using these gates,
although not necessarily very economically, Incidentally, the AND and OR
gates actually shown above represent logical neurones having n, = 3, n, = 0
and @ = 3 and | respectively. Finally, note that arbitrary networks of logical
neurones, even with re-entrant paths, can be built out of these switching
modules. If one was actually doing this, it would be natural to keep the
output of all the neurones in the network synchronized using gates controlled
by a master clock multivibrator.

3.5, Further Mathematical Features of McCulloch-Pitts Networks

3.5.1. MaTrix FORMULATION OF ACTIVITY OF A NETWORK

We saw in example 5 of Section 3.1.2 that the present state of a network
could be conveniently represented as a vector having 0’ and 1's for its
elements. The threshold condition for a logical neurone involves the
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TABLE 1.1
Some data for average human brains, (From Blinkov and Glezer, 1968)

% of brain weight

w_,mwu s@mﬁ? male 1400 gm Cerebral hemispheres 88
Brain weight, female 1300 gm Cerebellum 10
Brain volume 1200 ml Brain stem 2

Spinal cord weight ~ 27-38 gm
Spinal cord length 42 cm

The development of the brain as a whole in relation to the spinal cord is
also rather extreme in man, as is illustrated in Table 1.2, and this has also

TABLE 1.2

Spinal cord weight as percentage of brain weight. (From Blinkov
and Glezer, 1968)

Animal 9z
Man 2
Macaque monkey 12
Domestic cat 24
Tortoise 120

been considered to be a reason for man’s intellectual predominance. Another
thing which has been noted in this connection is the high degree of folding
(called convolution) of the surface part (cerebral cortex) of the cerebral
hemispheres, thus giving a relatively large surface to volume ratio, although
man is not the most extreme animal in this respect (see Table 1.3). All these

TABLE 1.3

Areas of outer surface of cerebrum and of the cerebral cortex in cm®
(From Elias and Schwartz, 1969)

Animal Outer surface  Cerebral cortex Ratio
Kangaroo 530 74-9 1.41
Fox 68 135 2.01
Man 795 2275 2.86
Bottlenose dolphin (Atlantic) 567 2700 4.47
Bottlenose dolphin (Pacific) 693 3343 4.75
False killer whale 1488 7392 497
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arguments are extremely superficial however and, until we do understand
in considerable detail how the human brain works, we cannot possibly tell
whether similar things could be done by brains lacking particular gross
features which happen to be always present in the brains of mentally normal
humans.

With a digital computer one might well expect that, other things being
equal, the larger it is or the more circuits or store that it has, the more things
will it be able to do. Therefore it is natural to ask whether larger brains are
generally better brains, and especially whether man’s brain is the largest
of the lot. The answer to the latter question is that man does have one of
the largest brains but not the largest. A selection of average or typical brain
weights is given in Table 1.4 and illustrates this point (also see the Frontis-
piece). There is, however, considerable variation in weight from one specimen

TABLE 1.4

Brain weights in grams for various animals. (Crile and Quiring, 1940;
Tower, 1954; Blinkov and Glezer, 1968)

Animal Weight Animal Weight
Fin whale 6785 Domestic cat 25
Indian elephant 4400 Alligator 84
Porpoise (dolphin) 1735 Tortoise 03
Man 1400 Field mouse 02
Walrus 1126 Common toad 0-07
QOrangutan 372 Cockroach 0-0002

to another, as is shown in Table 1.5. Over a large range of size there does
not seem to be any clear-cut relation between intelligence and brain size,

which is rather surprising.

TABLE 1.5
Weight of certain normal human brains in grams. (From Cobb, 1965)
P:wnw_wmn bushwoman 794 European man (average) 1400
Anatole France (at 80) 1017 Thackeray 1658
Japanese woman (average) 1250 Bismarck 1807
Walt Whitman 1282 Cuvier 1830

European woman (average) 1300 Daniel Webster 1895

It has also been suggested that the percentage of brain relative to the body
is especially relevant to intelligence. There would seem to be much less
reason to expect this and Table 1.6 shows some obstacles that this view faces.



