1 neory of the action potential 110

includes active dendritic spines (Shepherd et al. 1985). It has been
postulated that enhanced propagation of voltage changes induced by
synaptic input can occur because spine-spine excitations occur in a
way similar to the saltatory conduction of spikes in a myelinated
nerve.

Propagation in nerve bundies

When several nerve axons form a nerve tract, there is the
possibility of electrical interactions between individual fibers through
the extracellular space. This was demonstrated by Katz and Schmidt
(1940) who found that when a pulse in one fiber was followed by a
faster pulse in an adjacent fiber, the second pulse would catch up with
the first and the two pulses would travel together in a locked-in
fashion.

There have been a few theoretical investigations of such interac-

tions. Scott and Luzader (1979) and Eilbeck, Luzader, and Scott
(1981) employed the coupled Fitzhugh-Nagumo-type equations

Coy = (=)o = aty +f(0y) —wy, (8.217)
wy, = b(p, —yw), (8.218)
vy, = (=)o, =~ apy o+ f(03) —wy, (8.219)
wy = b(v,—vw,), (8.220)

where a < 1 is a coupling parameter. The solutions of the traveling-
wave equations were expanded as a perturbation series in powers of &
and an expression obtained for the first-order term in the correction
to the speed of propagation when f(-) was piecewise linear.

Bell (1981) has considered a pair of coupled Hodgkin-Huxley
axons and provided conditions for the existence of a traveling-pulse
solution on both fibers. A result was also obtained in the case of n > 2
fibers and for other dynamical equations representing the behavior of
active membrane (Bell and Cook 1978, 1979).

9

The stochastic activity of neurons

.91 Introduction

All of the models of nerve-cell activity we have considered
thus far have been deterministic. They have consisted of a differential
equation (with a threshold condition imposed) or a system of differen-
tial equations in conjunction with a given input current and given
boundary-initial-value conditions.

To illustrate, consider the linear Lapicque model of Chapter 3. If
V(t) is the depolarization at time #, C is the neuron capacitance, R is
the neuron resistance, and I(¢) is the input current, then

cdv/at+V/R=I(t), >0,V<8,V({0)=0, (9.1

with a spike generated when V¥ reaches or exceeds 6. If I{r) is
constant, then the predicted time between action potentials is always
the same and is given by (3.52). If I(t) =I,+ Lcos(wt + ¢), repre-
senting a cyclic input, the time interval between spikes is variable (see
Figure 3.21) but the sequence of times of occurrence of spikes is
completely and uniquely determined.

Such deterministic models are inadequate for the description of the
activity of real neurons. Assuming for now that the mathematical
model (differential equations, boundary conditions, threshold condi-
tion, if necessary) is valid, the input current is rarely, if ever, known
with certainty. This is true even in controlled experiments such as the
current-injection experiments described in Chapter 1 and analyzed in
Chapter 8. Even in those experiments the time between action poten-
tials is variable.

In most experimental studies of the activity of nerve cells in more
natural conditions, very little, if anything, is known about the inputs
to the cell under study. Indeed, one of the challenges has been to
ascertain the nature of the input even in relatively simple situations
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(see Section 6.5) Certain sensory inputs may be controlled but still
the actual inputs to the nerve cells are not known. The observed
quantity is the train of spikes, or possibly the time course, of the
intracellular or extracellular potential, not the input currents, and so
forth.

Although action potentials are not instantaneous, it is customary to
assign them occurrence times, which may, for example, be the time at
which the voltage apparently attains threshold.

Definition

Let {0, k=0,1,2,...} be a sequence of times at which a
nerve cell emits action potentials, with ©,=0 and ©,<©, <
@, < ---. The kth interspike interval (ISI) is

T,=0,-09,,, k=12,.. (8.2)

The first measurements that revealed the variability of the ISI were
on the muscle spindles of frogs (Brink, Bronk, and Larrabee 1946;
Buller, Nicholls, and Strom 1953; Hagiwara 1954). Under conditions
of constant tension of the muscle, the ISIs were quite variable and this
variability was greatest when the muscle was in its unstretched state.
Some results from one such experiment are shown in Figure 9.1,
where 1, the value of T, is plotted against k. It can be seen that
there is a tendency for the interspike intervals to become longer and
longer (adaptation), but there is also a haphazard fluctuation.

Spontaneous activity
The term spontaneous activity with reference to neural activ-
ity is not well defined, It may be loosely described as the activity of a
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Figure 9.1, Length of interspike intervals versus order of appearance
for a muscle spindle held at fixed tension. [From Buller et al. (1953).
Reproduced with the permission of The Physiological Society and
the authors.]
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Figure 9.2. Spike trains from a pyramidal tract cell of a monkey
while the animal was awake (upper two traces) and asleep {lower
two traces), [From Evarts (164). Reproduced with the permission of
The American Physiological Society and the author.]

neuron, with focus on the collection of action potentials it emits, in
the absence of an intended input or when there is no obvious input
from other cells. The majority of, but not all, CNS neurons exhibit
spontaneous activity consisting of an irregular train of impulses.
Examples are shown in Figure 9.2, where the spiking activity of a
pyramidal tract cell of a monkey is shown during periods when the
animal was awake and asleep. It can be seen that the description of
such spike trains, short of enumerating all the occurrence times of
impulses, is difficult. Usually the collection of interspike intervals is
collected into a histogram; examples from another experiment are
shown in Figure 9.3.

" Given that a sequence of occurrence times of action potentials
characterizes the activity of a nerve cell, it is then of interest to see
how the train of impulses changes under various conditions. Since the
spike trains themselves and the dypamical processes that cause them
are usvally random, it is clear that models of the activity of real
neurons must be stochastic and not deterministic. The introduction of
randomness makes the mathematical theory more difficult and pro-
gress has been made only with what are physically very simple
models. Previous works dealing with the stochastic aspects of neural
activity are those of Goel and Richter-Dyn (1974), Holden (1976b),
MacGregor and Lewis (1977), Ricciardi (1977), and Sampath and
Srinivasan (1977).

There have been numerous experimental studies of the stochastic
activity of nerve cells. We will mention some representative ones but
do not have space to describe the resuits. In the investigations of the
following list, the focus is sometimes on the spontaneous activity or
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Figure 9.3. Histograms of ISIs for a cell in the cat visual cortex
when the animal was “sitting in complete darkness awake, but
relaxed” (upper figure) and when it was “alarmed by a hissing
noise.” [From Burns and Webb (1976). Reproduced with the permis-
sion of The Royal Society and the authors.]

on the effects of various influences such as state of arousal, learning,
drugs, sensory inputs, epileptogenesis, radiation, and so forth. For
studies on muscle spindles, in addition to the references already given,
see Stein and Matthews (1965); on cells of the awuditory system, see
Gerstein and Kiang (1960), Grossman and Viernstein (1961), Rodieck,
Kiang, and Gerstein (1962), Goldberg, Adrian, and Smith (1964),
Pfeiffer and Kiang (1965), Gerstein, Butler, and Erulkar (1968),
Molnar and Pfeiffer (1968), Kiang and Moxon (1974), Johnson and
Kiang (1976), and Ryan and Miller (1977); on cells in the wvisual
pathway, see Levick et al. (1961), Bishop, Levick, and Williams (1964),
and Burke and Sefton (1966a,b); on cells in the cerebral cortex
including pyramidal cells, see Evarts (1964), Koike et al. (1970),
Whitsel, Roppolo, and Werner (1972), O’Brien, Packham, and Brun-
nhoelzl (1973), Stertade, Wyzinski, and Apostol (1973), Wyler and
Fetz (1974), Burns and Webb (1976), Webb (1976a,b), Whitsel,
Schreiner, and Essick (1977), and Schreiner, Essick, and Whitsel
(1978); on hippecampal pyramids, see Bassant (1976); on chemorecep-
tors, see Silk and Stein (1966); on cells of the dorsalspinocerebellar
tract, see Jansen, Nicolaysen, and Rudjord (1966) and Pyatigorskii
(1966); on spinal motoneurons, see Calvin and Stevens (1968); on cells
of the thalamus, see Poggio and Viernstein (1964), Nakahama et al.

(1966), Baker (1971), Lamarre, Filion, and Cordeau (1971), Dormont
(1972), and Benoit and Chataigner (1973); on cells of the amygdaloid
complex, see Eidelberg, Goldstein, and Deza (1967); on Purkinje cells
of the cerebellum, see Braitenberg et al. (1965), Peliet et al. (1974), and
Woodward, Hoffer, and Altman (1974); on cells in certain in-
vertebrates, see Firth (1966), Junge and Moore (1966), Buno, Fuentes,
and Segundo (1978), and Holden and Ramadan (1979); on cells of the
vestibular system, see Wylie and Pelpel (1971), Goldberg, Fernandez,
and Smith (1982), and Goldberg, Smith, and Fernandez (1984); and
on cells of the reticular formation, see Sparks and Travis (1968) and
Syka, Popelar, and Radil-Weiss (1977). In addition, in some experi-
ments nerve cells have been deliberately subjected to random stimula-
tion (Wilson and Wyman 1965; Redman and Lampard 1967, 1968;
Redman, Lampard, and Annal 1968; Lampard and Redman 1969,

" Guttman, Feldman, and Lecar 1974; Bryant and Segundo 1976).

Synaptic noise

Noise has also been observed in other nerve-cell preparations.
Fatt and Katz (1952) observed randomly occurring synaptic potentials
called miniature endplate potentials (m.e.p.p.’s) at the frog neuro-
muscular function. Their amplitudes were on the order of 0.5mV and
their frequencies were between 0.1 to 100 impulses/s for various
muscle fibers. These spontaneous potentials have been important in
helping elucidate the nature of synaptic transmission and are studied
in Sections 9.3 and 9.4. Spontaneous miniature EPSP’s.and IPSP’s
have also been observed in spinal motoneurons of the frog (Katz and

"Miledi 1963) and the cat (Calvin and Stevens 1968) as well as in

pyramidal cells of the cat motor cortex (Watanabe and Creutzfeldt
1966). Sometimes these spontaneous postsynaptic potentials are re-
ferred to as synaptic noise.

Membrane noise

Even when apparently steady conditions prevail, there are
observed small fluctuations in the electrical potential across the
nerve-cell membrane. These fluctuations have been attributed to the
back-and-forth motion of ions and electrons due to thermal agitation
(Brownian motion), the discrete nature of currents through the mem-
brane (shot noise), and conductance changes induced by the random
opening and closing of ion channels. These random fluctuations in
membrane potential may be collectively referred to as membrane

noise.



9.2 Probability and random variables

Probability enters modeling when we do not know, or cannot
prescribe with certainty, the conditions or mechanisms that prevail in
the system of interest. For example, it is not possible to predict the
times of occurrence of the action potentials in Figure 9.2. On the basis
of an ISI histogram all we can do, on the basis of collected data, is
make statements of the kind, “there is a 40% chance that a spike will
occur in the next10 ms.” Statements such as this can be collected into
more precise statements in terms of random variables and random
processes. We will give a brief review of some of the basic
concepts—texts such as Feller (1968) and Chung (1979) should be
consulted for thorough introductory treatments. A wide range of
applications is considered in Tuckwell (1988a).

When an experiment is performed whose outcome is uncertain, the
collection of possible elementary outcomes is called a sample space.
Roughly speaking, a random variable is an observable that takes on
numerical values with certain probabilities. It is a real-valued function
defined on the elements of a sample space. We adopt the convention
that random variables themselves are "denoted by capital letters,
whereas the values they take on are denoted by lowercase letters.

Discrete random variables take on finitely many or countably
infinitely many values. The most important such random variables for
us are binomial and Poisson. )

A binomial random variable X has the probability law

Pe=Pr{X=k)= QTJ,;. k=0,1,2,...,n, (9.3)

where0 <p <1, g=1-p, and n is a positive integer. The number of
heads in n tosses of a coin that has probability p of landing heads has
this probability law.

A Poisson random variable with parameter A >0 takes on non-
negative integer values and has the probability law

e~ Nk
Pe=PrH{X=k)=—;—, k=012,... (9.4)
For both of these random variables the total probability mass is unity
Y p=1 (3.5)
k

Continuous random variables take on a continuum of values. For
any random variable the distribution function is

F(x)=Pr{X<x). (9.6)

Usually the probability law of a continuous random variable can be
expressed through its probability density p(x), which is the derivative
of its distribution function. Then, roughly speaking, p(x)dx is the
probability that the random variable takes on values in (x, x + dx]. In
what follows two kinds of continuous random variables are important.
One is the normal, or Gaussian, random variable with density

2
p(x)= . nxLl?mllnwv;_' —w<x<o, (9.7)

V27o?

where u and o2 are constants. The other has a gamma density

p(x)=(A/T(r))(Ax)"le™, x>0, (9.8)
where A >0 and r> 0 are constants and T'(r) = /5"~ *x" "' dx is the

_ gamma function. A special case is that of an exponentially distributed

random variable with r=1 so the density is p(x)=2Ae **. For

continuous random variables the total probability is also unity
??v&ur (9.9)

where the range of integration is (—o0,00) for a normal random
variable and (0, o0) for a gamma variate.

Mean, variance, and covariance
The mean, or expected value, of an integer-valued random

variable is
E[X]=Xkp,. . (9.10)
k

This gives E[ X]= np for the binomial and E{X]=A for the Poisson
random variable.
For continuous random variables,

ENTFE&_ (9.11)

This gives E[X]=p for the normal and E[X]=r/A for the gamma
random variable, Note that expectation is a linear operation, so
E[aX + bY]| = aE[ X]+ bE[Y].

The second moment is E[X?] and the variance, which tells us how
much scatter there is about the mean, is

var[X] = E[(x- E[X])’] = E[x?] - E}[X].  (9.12)

The variances of the random variables considered above are: bi-
nomial, npg; Poisson, A; normal, 6% and gamma, r/A%



Conditional probability and independence

Let A and B be two random events. The conditional probabil-
ity of A4 given B is defined as

Pr{A4|B} =Pr{AB)/Pr{B}, (9.13)
where AB means both 4 and B occur and it is assumed that
Pr{ B} 0. That is, only those occurrences of A that are simultaneous
with those of B are taken into account. This extends to random
variables. For example, if X and Y are two random variables, defined
on the same sample space, taking on values x;, i=1,2, and y,
J=1,2,..., respectively, then the conditional probability that X = x,
given Y=y, is

Pr{X=x|Y=y} =Pr{X=x,Y=y,}/Pr{Y=y}.

(9.14)
Note that (9.13) rearranges to Pr{ AB} = Pr{ B}Pr{A|B}.
The conditional expectation of X given Y =y, is
m?_wuiu.ma_ﬁxuﬁ_?i. (9.14A)
The expected value of XY is
mmkﬁwﬂm}&wulknktwnkw. (9.15)

and the covariance of two random variables X and Y is

Covl X, Y] = E[(X- E[X])(¥ - E[Y])] = E[xY] - E[ X]E[Y].
(9.16)

The covariance is a measure of the linear dependence of X and Y.

If X and Y are independent, the value of Y should have no
influence on the probability that X takes on its values, Hence we may
define X and Y as independent if

Pr{X=x|Y=y}=Pr{X=x}, (9.17)
for all i, j. Equivalently, Pr{ X =x, Y=y} =Pr{X=x}Pr{Y =y},
which leads, in the case of independent random variables, to

E[XY]=E[X)E[Y]. (9.174)
It also follows that if X and.Y are independent, Cov[ X, Y] =0 (but

note that Cov[ X, ¥]=0 does not always imply that X and Y are
independent). If X,,i=1,2,..., n, are mutually independent, then

5.% w x| = ¥ Var X]. (9.17B)

i=1 i=1

If A,,i=1,2,..., n, are mutually exclusive events and at least one
must occur, and B is another event, then

n
Pr(B) = ¥, Pr(4,)Pr{BI4,}, (917)
i=1
which is the law of total probability.
Finally, the characteristic function of a random variable X is
defined as the expectation of the complex random variable exp(iuX),
where u varies from —oo to +c0:

dy(u)=E[e™¥], ue(-o0,00). (9.18)
(Here i = y—1.) Characteristic functions are important because there

is a one-to-one correspondence between them and distribution func-

tions.
It is left as an exercise to show that if X is Poisson with parameter

A, then

x(u) =exp[A(e*~1)], (9.184)
whereas if X is normal with mean p and variance o2,
dx(u) = explipu — 1u%?]. (9.18B)

9.3 The quantum hypothesis in synaptic transmission

In this section we will obtain a probabilistic description of
the small voltage changes that occur at spontaneously active synapses.
This will be done in the context of nerve-muscle synapses but the
same kind of stochastic model should apply at synapses within the
nervous system.

In Section 9.1 we mentioned Fatt and Katz’s (1952) discovery of
randomly occurring miniature endplate potentials at the frog neuro-
muscular junction, An example of the records they obtained is shown
in Figure 9.4. The mean amplitude of the m.e.p.p.’s was about 0.5mV.
This should be compared with the normal postsynaptic response, the
endplate potential (e.p.p.), which results when a nerve impulse invades
the presynaptic terminal. The e.p.p. has an amplitude between 50 and
70mV (Kuffler and Nicholls 1976).

In a reduced Ca?* bathing solution the amplitude of the e.p.p. is
reduced. Fatt and Katz observed that in such low Ca®* solutions the
amplitudes of the reduced e.p.p.’s were approximately in multiples of
the amplitudes of the spontaneous m.e.p.p.’s. The quantum hypothesis
(del Castillo and Katz 1954) was advanced that the normal e.p.p. is
the result of the almost simultaneous occurrence of several m.e.p.p.’s.
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Figure 9.4. Randomly occurring postsynaptic potentials (m.e.p.p.’s)
recorded intracellulatly from frog muscle fiber. Several records are
shown from the same fiber. [From Fatt and Katz (1952). Repro-
duced with the permission of The Physiological Society and the
authors.]

It was speculated that the transmitter (acetylcholine) was, in fact,
released in packets containing several thousand molecules correspond-
ing to the quantal EPSP’s mentioned in Section 1.5. Furthermore, it
seemed likely that the synaptic vesicles of diameter about 5004, seen
with the electron microscope to reside in the presynaptic terminal,
were, in fact, the packets of transmitter.

Probability model

We assume there are n sites within the nerve terminal at
which transmitter release may occur. When an action potential in-
vades the terminal, release occurs at a random number M of sites. The
amplitude of the response due to release at each site is random, that at
the ith active site being ¥;. Each of the ¥;’s is assumed to have the
same probability distribution and the sites act independently of each
other. The amplitude of the e.p.p. is then

V=V, + V4 - + Vi (9.19)

This is a sum in which the number of terms is random.

In the first instance we would assume that M is binomial with
parameters n and p, where p is the probability that a site is active.
However, if p is small we may use the Poisson approximation to the
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Figure 9.5. Histogram of the amplitudes of the spontaneous
m.e.p.p.’s. The smooth curve is a normal density. [From Boyd and
Martin (1956). Reproduced with the permission of The Physiological
Society and the authors.]

binomial, which has the advantage that now the distribution of M
contains only one parameter, A = np, the mean number of active sites.
The value of A can be estimated from the fraction of trials, which
result in no response, that is, i

Pr{M=0}=e> (9.20)

When M has a Poisson distribution, the random sum V is said to
have a compound Poisson distribution.

Figure 9.5 shows the histogram of amplitudes of the miniature
spontaneous potentials in one preparation. The smooth curve through
the histogram is a normal probability density with the same mean and
variance. Thus we assume that the ¥’s are normal with mean p and
variance o2, We are now able to find the density of the amplitude of
the e.p.p. V.

The law of total probability gives

o0
Pr{v<V<v+do}= 3. Pr{o<V<v+do|M=m)}Pr{M=m)
m=0

(9.21)

The conditional probability that ¥ € (v, v + dv) given M = m is found
as follows, If M =m >0, then there are exactly m terms in the sum
(9.19)

V=V+V+- - +V,. (9.22)
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These terms are independent and each is normally distributed. A basic
theorem on the sum of independent normal random variables (Parzen
1962, page 17) tells us that V' is normally distributed with mean

E[VIM =m]=mE[V,] = mu, (9.23)
and variance
Var[V|M = m] = mVar[V}] = mo?. (9.24)

In the case m=0 the amplitude has a density, which is a delta
function concentrated at v = 0 with weight e,

Putting all this together, we arrive at the probability density of the
amplitude of the e.p.p.,

2 A ~{v=mp)
.“:\Aevnnxglyv*m?v‘?_\m'“ﬂwlamp 5_%&96 Auﬁau.c.v “‘
. (9.25)

which agrees with the formula of Bennett and Florin (1974). It is left
as an exercise to show that
E[V]=Ap, (9.25A)
Var[F] =A(p? +0?). (9.25B)
Figure 9.6 shows the histogram of amplitudes of the endplate
potentials along with the density predicted by (9.25). It can be seen
that there is good agreement between the experimental and theoretical
result, thus substantiating the quantum hypothesis. Note that since
the normal e.p.p. is about 50 mV, then as many as 100 or more quanta
are released when the action potential invades the terminal. Support-
ing evidence for the quantum hypothesis has been obtained in other
preparations {see Martin (1977)]. However, a gamma, rather than a
normal, density has sometimes been needed for the unit response [see,
for example, Bornstein (1978)] and a binomial analysis has sometimes
been required when the Poisson approximation has proven inadequate
(Miyamoto 1975; Volle and Branisteanu 1976). Brown, Perkel, and
Feldman (1976) showed, with the aid of computer simulation, that
spatial and temporal nonuniformities in the release parameters can
easily lead to erroneous estimates of these quantities.

9.4 The Poisson process

A random process is a family of random variables. We will
only be concerned with families of random variables parameterized by
a continuous index #, the time. The chief physical random processes
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Figure 9.6. Histogram of amplitudes of the e.p.p. The smooth curve
is the density of a compound Poisson random variable as given by

(9.25). [From Boyd and Martin 1956). Reproduced with the permis-
sion of The Physiological Society and the authors.]

with which we will be concerned are the nerve membrane potential
and the number of synaptic inputs.

A random variable has a fixed probability law, which is easy to
describe, but the probability laws of continuous-time random processes
are complicated. If we let X(r) denote the value of a general random
process at time ¢, the whole process is the family { X(z), f = 0}, which
we sometimes abbreviate to X. .

The first random process we examine is the simple Poisson process.
This is important for several reasons:

(i) it is a basic, much studied process and can be used as a
standard against which some physical processes can be com-
pared;

(ii) it may be used to synthesize more complicated processes of
interest;

(iii) it forms a useful approximation for the inputs to a cell when
these are many and unsynchronized.

There are many equivalent definitions of the Poisson process [see,
for example, Parzen (1962)] one of which is as follows.
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Definition
{N(r), t<0} is a simple Poisson process with intensity or
mean rate A if:

(a) N(O)=0;

(b) given any 0=1,<#; <ty < +++ <1, , <t,, the random vari-
ables N(t,)— N(t,_,), k=1,2,..., n, are mutually indepen-
dent; and

() for any 0 <#, <t,, N(#;)— N(#;) is a Poisson random vari-
able with probability distribution

(A1~ M..vv»nx_uﬁlzﬂpl 1))
k!
k=0,1,2,.... (9.26)

s

Pr{N(1,) - N(n) =k} =

Property (2) is just a starting condition. Property (b) puts the
Poisson process in the class of processes with independent increments.
Property (c) tells us that the increments are stationary (since only time
differences matter) with Poisson distributions. The meaning of A will
become clear shortly.

From (9.26) with #; =0 and r,=1, we see that N(¢) is a Poisson
random variable with mean and variance equal to Az. Also, with 1, =1
and t, =+ At, we find

(A Ar)*exp(—2 Ar)
k!

Pr{N(r+At)~N(1)=k}

1-AAt+o0(A1), k=0,

={AAt+o(Ar), k=1,
o At), k=2,
(9.27)

where o(A7) means terms that, as At — 0, approach zero faster than
At itself. Hence, in very small time intervals, the process is most likely
to stay unchanged (k = 0) or undergo a step increase of unity (k= 1).
The value of N(z) will be the number of unit step changes that have
occurred in (0, ¢]. A typical realization (sample path, trajectory) of the
process will appear as sketched in Figure 9.7A.

In Figure 9.7B we have inserted a cross on the z-axis at the times
when N(t) jumps by unity. Each cross may be associated with the
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Figure 9.7. A-Realization of a Poisson process. B— Associated
realization of the Poisson point process. C—Hypothetical spike train.

occurrence of a certain kind of event such as a postsynaptic potential
or an action potential. The crosses (points) form a realization of a
Poisson point process and N(t) thus records or counts the number of
events in (0, ¢]. Figure 9.7C shows a hypothetical spike train, which
can be associated with the point process.

The waiting time to an event

Consider any s> 0 and let T; be the time to the first event
occurring after s. Then we find that T, is exponentially distributed with
mean 1/A.

Progf. The probability that one has to wait longer than ¢ for the first

event is the probability that there are no events in (s, s + ¢]. Thus

Pr{T,>1} =Pr{N(s+1) - N(s)=0}=e7™, ¢>0.
(9.28)

Thus the distribution function of T; is 1—e™* and hence the
probability density function p, of T is

pie)=Xe™™, >0, (9.29)

as required. Since s was completely arbitrary, it could have coincided
with the time of an event. It may be shown, in fact, that the time
interval between events is exponentially distributed with mean 1/X. Since
the average waiting time between events is 1/A, there are, roughly
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Figure 9.8. Histogram of time intervals between m.e.p.p.’s at the
frog neuromuscular junction. [From Fatt and Katz (1952). Repro-
duced with the permission of The Physiological Society and the

authors.}

speaking, on average A events per unit time. Thus A is called the mean
rate or intensity.

Figure 9.8 shows the histogram, obtained by Fatt and Katz (1952),
of time intervals between the spontaneous miniature endplate poten-
tials at the frog neuromuscular junction. The histogram has the shape
of an exponential distribution. Fatt and Katz were thus led to make
their Poisson hypothesis, that the arrival times of the m.e.p.p.’s con-
stituted a Poisson point process [see Van de Kloot, Kita, and Cohen
(1975)].

The Poisson process as a primitive model for nerve-cell activity

Let the depolarization of a nerve cell be {¥(t), t=0}.
Suppose that excitatory inputs occur at random in accordance with
events in a simple Poisson process { N(t), ¢ =0} with mean rate A.
Each excitatory input causes ¥’ to increase by ag. When J reaches or
exceeds the constant threshold level # > 0, the cell emits an action
potential. Then

V(t)=agN(1), V<8,¥(0)=0. (9.30)
In this primitive nerve-cell model, what is the probability distribution
of the time interval between action potentials?

To answer this we first ask what is the waiting time T, until the kth

event in a simple Poisson process after the arbitrary time point 5. We
will show that T, has a gamma density with parameters k and \.

Proof. The kth event will occur in (s +¢, s+t + At] if and only if
there are k — 1 events in (s, s + f] and one event in (s + 1, s + £ + At].

1t follows that

e MAr) T Ar

Pr{T.&(t,t +At]} = +o(Ar), k=12,...

(k—1)
- (9.31)
Hence the density of T}, is
A(Ar)* e
- 9.32
hwmav C«I.C_ s >0, A U

as required.

Hence we find that the waiting time for the kth event has a gamma
density with parameters k and X. Thus T}, has mean k/A and variance
k/A2, Some gamma dendities are illustrated in Figure 9.9.

To return to the primitive nerve-cell model, an action potential is
emitted when V reaches or exceeds #, or, equivalently, when N
reaches or exceeds #/ay. Letting [x] denote the largest integer less
than x we find that 1+ [8/a ] excitatory inputs are required. Hence
the time interval between action potentials has a gamma density with
parameters 1 + [6/ag] and A. The mean time interval between action
potentials is (1 +[8/az]/A.

The gamma densities, in fact, resemble the ISI histograms obtained
for many nerve cells and have often been fitted to them [see, for
example, Stein (1965)]. However, the model employed to derive the
gamma densities incorporates no decay of membrane potential be-
tween excitatory inputs. Only when the cell has an exceedingly large

Py ﬂ_.w Py *o.m
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Figure 9.9. Gamma densities for A =1 and k=1, 2, and 4. [Adapted
from Cox and Miller (1965).]



time constant and the rate of incoming excitation is very fast will this
approximation be valid. Finally, we note that when #/a is large the
gamma density becomes approximately that of a normal random
variable.

9.5 Poisson excitation with Poisson inhibition

We will here consider another primitive model for nerve-cell
activity in which excitation and inhibition arrive according to inde-
pendent Poisson processes. This gives what is commonly called a
birth-and-death process, which in this case Feller calls a randomized
random walk. Much of what follows is taken from Feller’s treatment
(1966). Again we ignore the decay of membrane potential between
inputs. Despite the unphysiological nature of the model, it is useful
because:

(i) the model can be analyzed completely thereby providing a
standard with which to compare other models and also real
nerve cells; and

(ii) in a limiting case we obtain a Wiener process (see the next
section), which is useful in many situations.

Let ¥(1), t = 0, be the depolarization at time ¢. We assume that the
number of excitatory inputs in (0, ] is Ng(¢), where Ny is a Poisson
process with mean rate Ag, and that the number of inhibitory inputs
is N;(t), where N, is a Poisson process with mean rate A, Each
excitatory input makes ¥ jump up by unity, whereas each inhibitory
input causes ¥ to jump down by unity, Thus

V(1) =Ng(2) = Ni(r),  ¥(0)=0,¥<4. (9.33)

The first thing we find is the probability distribution of ¥(¢) when
there is no threshold for action potentials.

Consider what may happen in (¢, ¢ + At]. A jump in Ny occurs with
probability AgAt+o(Af), a jump in N; occurs with probability
A; At + o(At), and with probabilities 1 — A z Az + o(Az) and 1 — A, Az
+ o(At), respectively, Ny and N; remain unchanged. The probability
of a jump of either kind in ¥ in (1, t + At] is thus (A g+ A ;) At + o(Ar)
and the probability of no jump is (1 —AgAt+o(An))1—A;Ar+
o(At))=1—(Ag+A;) At + o(Ar). The times at which ¥ changes are
thus a Poisson point process with mean rate A =Ag+ A,. In fact, if
we let N(f) be the number of jumps (of either kind) of ¥ in (0, ¢],
then

N(1) = Ng(1) + Ny(2), (9.34)
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and {N(z), 1= 0} is a Poisson process with mean rate A. From the
definition of conditional probability we find

Pr(¥ jumps by +1in (#,7+ At]| a jump in ¥ occurs in (1, ¢ + At])

=Ag/A=p, - (933)
Pr(¥ jumps by —1in (¢, ¢+ Az]| a jump in ¥ occurs in (1,1 + A])
=A/A=gq, (9.36)
and p+g=1.
We seek

m=0,+1,+2,...,
(9.37)

Pu(t) =Pr{¥V(1) = m|V(0) =0},

which is the conditional probability that ¥(¢) = m for an initial value
zero. Such a quantity is an example of a fransition probability, which
we associate with a class of processes called Markov to which the
process ¥ belongs. We will for convenience drop the reference to the
initial state and consider m > 0.

Let the process ¥ be at m at ¢ and suppose that n > m jumps have
occurred, of which n, were +1 and n, were —1. Then we must have

n=n,+n,, : (9.38A)

m=n,—n,, (9.38B)
and hence

ny=(m+n)/2, (9.38C)

n=m+2n,. (9.38D)

The probability that ¥(t) = m if n jumps have occurred in (0, ¢] is the
probability that a binomial random variable with parameters n and p
takes the value n,. That is,

Pr{¥(¢) = m|n jumps in (0, ]} Tﬂvﬁa_na\:_

n
| ntm h?.ri\um.?ui\u.
2
(9.39)
By the law of total probability,
Pr{V(t)=m}= 3 Pr{¥V(¢) =m|n jumpsin (0, ]}
nz=m
XPr{n jumpsin (0,]}. (9.40)
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Since » jumps in (0, ¢] has probability e “(\#)"/n!, we find

Ao Awuvs :h_ﬁ (n+m)/2,(n—m)/2
Pult)=e™ % P q ., (941)

n=nt n! 2

where the prime on the summation sign indicates that summation is
over either even or odd n depending on whether m is even or odd,
respectively.

Utilizing (9.38) and the fact that n=m, m+2, m+4,... implies
n,=0,1,2,..., this becomes

' 2 (M)t A3+N=u

Pu(t) =™ JTme )t mt T;:s:. (9.42)
ny=-

In terms of the modified Bessel function,

o0 1 X\ 2k+p
L= X »_H?Ii;mv _ (9.43)

we get

Ap m/2
?SHTI; e, (266X,

9.51 Time of first passage to threshold

We assume that there is a fixed threshold #, which when
reached by V leads to the emission of an action potential. The
threshold condition is an imposed one and after a spike the potential
is artificially reset to zero, possibly after a dead time or refractory
period. Passage to time-varying thresholds in this model does not
seem to have been considered.

We let @ be a positive integer and seek the time of first passage of V'
to 8, which is identified with the interspike interval. To find the
probability distribution of the first-passage time, we employ the
method of images in the symmetric case (Ap=A;) and the renewal
equation in the asymmetric case.

(A) Symmetric case: method of images

We will first find p*(¢), the probability that the randomized
random walk is at level m at ¢ but has stayed below & up to time .
This is in distinction to p,,(¢), which includes passages below, to, and
above 0. Consider Figure 9.10, where a randomized walk process U is
shown starting from the image point 28 and having the value m at ¢.
There is a one-to-one correspondence between such paths of U and

!
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Figure 9.10. Paths considered in the method of images.

those of V that start at 0, touch and /or cross the level 8 in (0,t), and
end up at m at . By symmetry the probability assigned to such paths
is Pyg_m(t). These paths are excluded in computing p,* so we have

P (1) =P (1) = P20-(2). (9.44)
To obtain the probability density fy(¢) of the time of first passage

to level 6, note that a first passage to § occurs in (1, t + Ar] if ¥V has
stayed below @ in (0, ¢], is, in fact, at §—1 at ¢, and a jump of +1
occurs in (¢, t + At]. The probability of a jump of +1 in (¢, ¢+ At] is
A g At =(A/2) At. Putting these probabilities together gives

$o(1) At =pg 1 (1)(A/2) Ar. (9.45)
Utilizing (9.43) and (9.44) and the fact that Ay =X, we find

A

filt) = Mmu!—?iﬂ»m& — Iy (2hgt)],
A more succinct expression results on using the recurrence relation for
the modified Bessel function,

t>0. (9.46)

Tg_1(x) = Jgs1(x) = (20/x) Lp(x), (9.47)
whereupon
fo(1) =(8/1)e M0 1),  t>0. (9.48)

(B) General case: the renewal equation

When the rates of arrival of jumps up and down are not
equal, we resort to another method for obtaining fy(¢). The idea on
which the method is based is illustrated in Figure 9.11. A path is
shown starting at zero and attaining the value m > @ at . Since m > 0,
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Figure 9.11. Paths that lead to the renewal equation.

such a path must have at some time before ¢ passed through the level
¢ and, in particular, at some time ¢’ <t done this for the first time.
Integrating over all such paths gives, using a continuous version of the
law of total probability,

(1) = \c Fo(t') a2 = 1) dit". (9.49)

This integral equation is called a renewal equation, which we will solve
using Laplace transform methods. Note that the probability of a
transition from @ at ¢ to m at ¢ is the same as the probability of a
transition from O at time zero to m — @ at 1 — ¢’ (spatial and temporal
homogeneity).

Equation (9.49) is a convolution of fy and p,,_s. From Table 3.2 we
see that the Laplace transform of the convolution of two functions is
the product of their Laplace transforms. Thus, denoting Laplace

transforms by the extra subscript L, s

Pui(8) o1 () Pmeen(s),  (m<8) & (9.50)
where s is the transform variable, Rearranging this gives the following
useful relation:

10.005) = P (5)/Pu0.2(5): (@51
The transforms on the right can be found as series. From (9.42) and
Table 3.2, we find

N @ (M) (i 2m,) L
Qﬂmywua?: = M ga §+ap~vﬁ tmagn

ny=0

y...ussyEsiﬁE
¥ T,l T::L. G.é

Utilizing the property Z{e“f(1)} = f,(s — ¢), we find

£ o) ()

Vﬁwa ny=0
.\..FM.?VI?+>V,. m Apgq :.A§|a+m=» '
om0 ?+5~ m=8+n,

(9.53)

It is left as an exercise to show that this is the Laplace transform of
the required first-passage time density,
>mv 0/2 = (Ag+hp)t

.ﬁcnm?l

I

- L(26Agh;),  1>0. (9.54)

Moments of the firing time

Let T, be the (random) time taken for ¥ to reach ¢ from the
initial state zero (resting state). Then 7, has the probability density
function f;. The nth moment of T, is

By= \o " infy (1) dt. (9.55)

When n =0 we obtain the total probability mass of T, concentrated
on (0, c0). That is,

b= Be(Ty< 0} = [“fo(e) .  (956)

A series mnuqamobnwmon o».:mm probability can be found but it is
difficult to sum the series. However, by applying Theorem 7.1 of
Karlin and Taylor (1975) on the probability of extinction in a general
birth-and-death process, we find
1, AgzAg,
Pr{T, <o} = ﬁﬁwg . (9.57)

A

Thus, if the mean rate of excitation is greater than or equal to the
mean rate of inhibition, the time to reach threshold is finite with
probability one. On the other hand, if the mean rate of inhibition is
greater than that of excitation, the threshold may never be reached,
which implies that the neuron may never fire an action potential.
Note, however, that this result is obtained in a model that neglects the
decay of potential between inputs.

If A <A, the mean firing time is infinite as T has some probabil-
ity mass at #=co. When A > A, the mean and variance of the firing
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time can be found with the aid of the following relation (Gradshteyn
and Ryzhik 1965, page 708):

-3 .a!
~ex],(Bx) dx = . .
AR = e
This yields
8
mSTiym:?. Ag>Ap, (9.59)
(A +A;
/\mﬂﬁm‘vu_ﬂﬂiml. VMVWT ﬁmev
E I

The coefficient of variation, the standard deviation divided by the
mean, is
Ap+A, V2 061
Zressw) Bk )
which indicates that the coefficient of variation is inversely proportional
to the square root of the threshold for fixed rates of excitation and
inhibition. When A=A, although T} < co with probability one, the
mean (and higher-order moments) of T is infinite.
‘Note that we have assumed that the excitatory and inhibitory jumps
of ¥ are of unit size. If instead the jumps have magnitude a, so that

V(1) =a[Ng(2) - Ni(1)], (9.62)
then with a threshold 6 > 0, not necessarily an integer, the time to get
to threshold will be the time for the process with unit jumps to reach
[1+8/a).

cviT,] IA

Tails of the firing-time density
Using the following asymptotic relation for the modified
Bessel function at large arguments (Abramowitz and Stegun 1965,

page 377),
Lix) ~ — T-Efﬁ:. (9.63)

x—=o0 V27X 8x
we deduce that when there is Poisson excitation and inhibition,
8\ 1 e~ 1=y )
fol2) ~ mﬁwl_.v &iwnwb_\u 1372

XAHI 46%2—1 AHW i (9.64)

|+|
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whereas when there is Poisson excitation only, we have the exact
result

fole) = [Ns(0=1)1] 18-, (9.65)

Thus the density of the first-passage time to level @ is quite different
in its tails, depending on the presence or absence of inhibition.

9.6 The Wiener process
We will soon proceed to more realistic models, which incor-
porate the decay of membrane potential between synaptic inputs.
Before doing so, we consider an approximation to the process V'
defined in the previous section. The approximating process is a
Wiener process (or Brownian motion), which belongs to the general
class of Markov processes called diffusion processes. These general
concepts will be explained later. Gerstein and Mandelbrot (1964)
pioneered the use of the Wiener process in neural modeling.
Diffusion processes have trajectories that are continuous functions
of t, in distinction to the randomized random walk whose sample
paths are discontinuous. The study of diffusion processes is often less
difficult than that of their discontinuous counterparts chiefly because
the equations describing their important properties are differential
equations about which more is known than differential-difference
equations, which arise for discontinuous processes. Among the rea-
sons for studying the Wiener process as a model for nerve membrane
potential are:
(@) it is a thoroughly studied process and many of the relevant
mathematical problems have been solved; and

(i) from the Wiener process we may construct many other more
realistic models of nerve-cell activity.

The Wiener process as a limiting case of a random walk
Consider the process defined by
V(1) =a[Ng(1) - N,(2)], =0, (9.66)

where a is a constant, and Ny and N, are independent Poisson
processes with mean rates Ag=A,=A. The process ¥, has jumps up
and down of magnitude a. We note that

E[V, ()] =alAg—A,)t=0, (9.67)

Var[V,(1)] = a?[Var[ Ng(1)] + Var[ N, (2)]] = 2a%Ac.
(9.68)



The o_.pE.sﬁnnmme function of ¥,(r) is
¢a(u; 1) = E [exp(iuv,(1))]
= E[exp(iua(Ny(1) = N;(1)))]
= E[exp(iuaNg (1)) E [exp(—iual,(1))]  (9.69)
by the independence of N and N,. From manmn.E 9.2 we find

&u(u; 1) =exp{At(e™ + e 2)). (9.70)
To standardize the random variables V,(z), we let
A=1/2a%, (9.71)

so that V,(t) has mean zero and variance ¢ for all a. It is left as an
exercise to show that
lim ¢, (u; 1) = ™4 = (u; 1). (5:72)
a—
Thus, from Section 9.2, we see that ¢(u;¢) is the characteristic
function of a normal random variable with mean zero and variance z.
One way to characterize the distance between two random variables
is by the differences between their distribution functions. Let { X,
n=1,2,...} be a sequence of random variables with distribution
function F. If
lim F,(x)=F(x),
| n—oo
for all points x at which F is continuous, we say the sequence { X, }
converges in distribution to X. We write

d
X, 5 x.

A basic theorem of probability theory [see, for example, Ash (1970),
page 171] tells us that to establish convergence in distribution it is
sufficient to prove convergence of the corresponding sequence of
characteristic functions. Hence as a— 0, the sequence of random
variables ¥,(7) converges in distribution to a normal random variable
with mean zero and variance 7. We let this limiting variable be W(¢),

V()3 W). (0.73)

The process {W(?), t =0} is called a standard Wiener process and
more will be said about the convergence of ¥, to W in Section 9.9.

The “standard” refers to the values of the mean and variance,
E[w(n)] =0, (9.79)
Var[W(t)] =t. (9.75)

Definition and some properties of W

In the above limiting procedure, we obtained W by letting
the jump size in the random walk become smaller, whereas the rates at
which the jumps arrived became faster. Thus W has sample paths,
which are, in fact, continuous. So far we have only considered W(r),
the value of W at time t. A definition of the process { W(z), t = 0} is
the following.

Definition
{W(r), t=0} is a standard Wiener process (Brownian mo-
tion) if:
(@) W(O)=0;
(b) givenany 0 <ty <t <ty < --+ <t,_, <t,, the random vari-
ables W(g) — W(t,_), k=1,2,..., n, are independent; and
(©) for any 0 <t, <t,, W(t,) —W(t;) is a normal random vari-
able with mean zero and variance #, — t;.

Note that {V,(r)) satisfies (a), (b), and (c) asymptotically as a — 0.
Thus W shares with the Poisson process the property of having
stationary independent increments. The density of W(¢) is
(31) = 7=
)=
fwlx 2t

Hn
mvalmL. -0 <x<oo,t>0.
(9.76)

An attempt is made in Figure 9.12 to depict some sample paths for W,
Although the paths of W are smooth enough to be continuous, they

wit)

AN
T

Figure 9.12. A sketch of two sample paths of W,
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are, with probability one, nondifferentiable, Nevertheless, the “deriva-
tive” of W, denoted by w, is called white noise and is a useful
concept. Whenever w appears in an equation, an integration is
implied,

Wiener process with drift
We may construct new processes from W by multiplying it
by a constant and adding a linear drift. Thus

X(t)=xg+oW(t) +ut, ¢>0, (9.77)

where X(0) = x, defines a Wiener process with variance parameter o
and drift parameter p. Linear operations on Gaussian (normal)
processes, such as W, produce Gaussian processes. Since

E[X(1)] =xq +pt, (9.78)
Var [ X(1)] = 0%, (9.79)
the density of X(1) is
1 (x—xg—pr)?
Fr(x,t) = Ny e%ﬁl mhwu y  —w<x<oco, >0,

(9.80)
As t = 0%, fy(x,t) approaches 8(x — xp).

The nerve-cell model

It is the Wiener process with drift that Gerstein and
Mandelbrot (1964) employed as an approximate model for nerve
membrane potential. Roughly speaking, the following correspon-
dences prevail between the original random-walk and its smoothed
version. If excitation and inhibition arrive at the occurrence times of
jumps in the two independent Poisson processes Ny and N, with
mean rates Ay and A,, and each excitatory input causes the depolar-
ization ¥{(z) to jump up by ag =0 whereas each inhibitory input
causes ¥(7) to jump down by a 72 0 units, then

V(1) =agNg(t) - a,N,(¢), t20. (9.81)

To obtain an approximation to ¥ with continuous sample paths, we
use a Wiener process with drift that has the same mean and variance
as V. Thus in (9.77) we put

B=agAz—a,, (9.82)

o=yajAz+ai\,. (9.83)

|
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We have, of course, left something out as we have not performed any
limiting operations on the jump amplitudes or the mean rates to
obtain the continuous process from the discontinuous one. We have
made what has been called the usual diffusion approximation (Walsh
1981a) in the hope that the original process and the approximating
smooth process go to the same places at about the same times.

9.6.1  First-passage time to threshold

We again endow our model with a threshold condition,
namely, that an action potential occurs when the approximating
process X reaches the level #, assumed constant, for the first time.

The firing time is then the random variable
Ty=inf{#)X(1)=8),  X(0)=x,<84. (9.84)

The density of T, can be found in closed form, first by the method of
images when there is no drift, and second by the renewal-equation
approach when drift is present.

(A) The drift p=0: method of images

We use essentially the same argument as for the symmetric
randomized random walk. The rransition probability density function
of X is defined as

p(x,t)x,) .Hm\n.hvl X(r) < x]X(0) Hk.oT (9.85)

and for the unrestricted process this is given by (9.80). We have,
roughly speaking,

Pr{X(¢) & (x,x+ dx]|X(0) = xo) =p(x, t|xo) dx. (9.86)

28-x
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Figure 9.13. Paths of X for the mathad af imana



Referring to Figure 9.13, consider a path starting at x, and touching
or rising above the level 8 in (0, #). For each such path there is one
from the image point 26 — x,, to x. Hence

Pr{ X(z) € (x, x +dx] and X(¢") <8 for all /' € (0,#) | X(0) = x, }.
=[p(x, t]xe) —p(x, 1120 — x,)] dx. (9.87)

Integrating over all x less than ¢ and noting that if X has stayed
below @ up to t, then T, > ¢,

Pr(T,> ¢} = Pr{ max X(1') <1X(0) = x,)

Ost'se

= [ [p(e.tlxo) =p(x. 1126 - x)] ax
(9.88)
Now (again roughly speaking) transitions from 26 — x, to x occur
with the same probabilities as transitions from x, to 28 —x, so
p(x, 1|20 — x4) =p(26 — x, t|x,). Thus, since Pr{T;>1}=1-Pr{T,
<t}, t>0,
0
Pr{Tyst)=1- [ [p(x tlxg) = p(20 - x, 1]x,)] dx.
(9.89)

Changing variables in the second integral yields
.\\ (x, £]xg)
2 s dx
A P [xo

1

Pr{T, <t}

- ||uv dx.  (9.90)

With the additional change of variable z = (x ~ Hav\n_\w , we get

N 00
=1/ — -z2/2
Pr(Ty<1) =/ - b-é\sﬁ.m dz. (9.91)

But the distribution function of T is Fy(¢)=Pr{T,<t}, and its
derivative is the density f; of T,. Differentiating (9.91), we obtain the
following expression for the density of the first-passage time to level
for the driftless Wiener Process:

8—x, Amlaovu
ot T 20%

folt) = V t>0,0>x,.

(9.92)
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Letting ¢ — oo in (9.91), we see immediately that passage to level 8 is
certain.

(B) The general case including p+ 0: renewal equation
‘Using the same argument as for the general randomized
random walk, we obtain the renewal equation

la;_k&n.\_.uf__v,u?Tzs%. x>0, (9.93)

Taking Laplace transforms and rearranging gives

hhﬁku h_.x.av
pr(x s510) ©59

With the aid of the standard transform (Abramowitz and Stegun
1965, page 1026),

.Qﬁlwlnxuﬁlmz Hhmlrm. k=0, (9.95)

g@.h?v =

we find

o

-E%d.li

rlx=) 7

1
e ] ]
(9.96)
where ¢ = —p?/202 It is left as an exercise to show that the Laplace

transform of the first-passage time density is

fo.1(5) -si ) ?Latqé. (997)

The inversion of this transform is facilitated by another standard
result (Abramowitz and Stegun 1965, page 1026),

mxuﬁlm: =exp(—kvs), k=0, (9.98)

k-
kg
A 2yme?
which yields the inverse Gaussian density:

6-x, leol__:vu
1O = |-

t>0,0>x,.

>

(9.99)
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Moments of the firing time
We may find the probability that X ever reaches # by
utilizing the relation

o.60) = [[*1(e) dt = Pe(T, < o). (9.100)
From (9.97)
m —
b_%vn%_%?; __;_v_. (9.101)

since ,\r|~ = || must be nonnegative. Since |p|=p if p = 0and |p|= —p
if p <0, we have ‘
1, pz0,

2| (8 —x,)

mﬂLl s

Pr{Ty< o0} = (9.102)

, p<0.

Thus, if the drift is zero or toward the threshold, an action potential is
generated in a finite time with probability one. On the other hand, as
with the random-walk model, if the drift is away from the barrier so
that agAg<a,A,, there is probability 1— exp[—2 |p|(8— x,)/0%]
that no action potential is ever generated (an eternally silent cell).

In the case p >0 the mean waiting time for the occurrence of an
action potential can be found from

dfy (s '
E[T}=- B.1(s) , (9.103)
Rm. s=0
and the second moment can be found from
d%, (s
E[T?] = |b_hpﬁ )| (9.104)
ds
s=0
It is an exercise to show that
8-x
E[T]= o (9.105)
I
6 — 2
vaz)= 0% 002, (9:106

When p =0 the first- and higher-order moments of T are infinite, as
they must also be when p <0. :

In terms of the original physiological parameters of the model,
assuming the initial value of the membrane potential is resting level,
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the mean ISI is
[}

aghg—ash;’

E[T,]= (9.107)

and the variance is
0(aihp+ aii;)

R aghp>ah;. (9.108)
?m»mla..?.vu ErEm

Var[T,] =

This gives a coefficient of variation of
1/2

afdg+ajh;

cv[r] = (9.109)

Again, for fixed values of the remaining parameters, the coefficient of
variation of the ISI is inversely proportional to the square root of the
threshold.

A numerical example

With time in units of the membrane time constant and
voltages in millivolts, we will find the mean, variance, coefficient of
variation, and density of the firing time for the following parameter
values: 8=10mV, az=a,=1mV, Ay =25, and A;=0.5. Then

E[T,]=5,
varl7,] = %,
cv[T,]1=027.

The density of T is sketched-in Figure 9.14.

f (1)

o] 3 + t
2 4 6 8 10

Figure 9.14, Density of the firing time for the Wiener process with
drift model with parameters as given in the text.
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Figure 9.15. The fitting of an experimental ISI histogram to the
first-passage time density of a Wiener process with drift. [From
Gerstein and Mandelbrot (1964). Reproduced from The Biophysical
Journal by copyright permission of The Biophysical Society.]

Although the Wiener process with drift has a poor physiological
foundation as a model for nerve-cell membrane potential, formula
(9.99) for the first-passage time density has been successfully fitted to
the ISI histograms of real neuroms. For example, Gerstein and
Mandelbrot (1964) putf,(¢) in the form

£o(t) = Kr~*%exp(—a/t - bt), (9.110)

regarding a and b as parameters with K determined by the normal-
ization condition [$°f;(¢) dt = 1. One case of their fitting procedure is
shown in Figuré 9.15 for a cell in the cat cochlear nucleus. Although
the agreement between experimental and theoretical firing-time distri-
butions is excellent in this and other cases, the fitting procedure is of
limited use. The model itself does not incorporate the realities of
nerve-cell behavior, and the parameters are not related to the physio-
logical variables.

9.7 Markov processes
In the following few sections we will need some basic results
fram tha thearv of Markan nracesces. This section contains a brief

review of the pertinent results. Technicalities are omitted as only the
applications are needed. For advanced mathematical details and
foundations see such books as those of Dynkin (1965), Breiman
(1968), and Gihman and Skorohod (1972, 1974, 1975, 1976).

To say that { X(1); t =0} = X is a Markov process is to say that if
X is known at time s, then the probabilities that X takes on its
various possible values at any future time are completely determined.

Transition probability functions

Markov processes are characterized by their transition prob-
ability functions. Let { X(t), t = 0} be a Markov process in continuous
time. Suppose at time s, X is known to have the value x. We call

Py, tlx,5)=Pr{X(¢t) <y|X(s)=x}, s=<z, (9111)

the transition probability distribution function.
If P is differentiable in y, its derivative is the transition probability
density function

p(y, 2%, 5)=3P/3y(y, t|x, ). (9.112)

Processes for which the transition probabilities depend only on time
differences t — s are called temporally homogeneous. All of the random
processes considered thus far in this chapter, being processes with
independent increments, are Markov processes and are also tempor-
ally homogeneous. We will only be concerned in the sequel with
temporally homogeneous Markov processes.

Example

The Wiener process with drift parameter p and variance
parameter o2 considered in the previous section has the transition
probability distribution function

1 msa% (z-x-pt=5)]

Py, tjx,5)= ——=—
O tixis)= iy 2=
(9.113)
and transition probability density function
v tlns) = e —exp (mx—p(t=9))’
PR ES y2me?(t—s) 20%(t—s)
(9.114)



Infinitesimal generators

Markov processes admit a characterization through operators
that describe the changes in the process in small time intervals, Let X
be a Markov process in continuous time. Then the infinitesimal
operator, or infinitesimal generator, of X is defined for suitable
functions f through

() = tim ELXCE80) /(X)X =]
Arlo At
(9.115)
The infinitesimal operator of a process can be calculated from a
knowledge of its transition probability function. In the theory of
Markov processes it is shown how the reverse step can be carried out
through the Kolmogorov partial differential equations.

Examples
(1) Poisson process. For the Poisson process, if X(t)= x, then X(¢ +
At)=x+1 with probability A Az+ o(At) and X(z+ At)=x with
probability 1 — A Ar + o(At). Thus

E[f(X(z+81)) = F(X(£)1X(1) =x]

=AAf(x+1)+ (1 =AAr)f(x) - f(x) +o(Ar).

Putting this in (9.114) and carrying out the limiting operation gives

(F)(x) =A[f(x+1) = f(x)].
(ii) Randomized random walk. A similar calculation shows that for
the process of Equation (9.81) .

(fWx) =Apf(x+ag) +Af(x—a;) = (Ag+A)f(x).

(iii) Wiener process with drift. For the Wiener process with drift, use
of (9.114) leads to

o? d? dj
() )= T h +

Diffusion processes
Roughly speaking, diffusion processes are continuous-time
Markov processes whose sample paths are continuous. Such processes
are characterized by their infinitesimal mean
E[Xx(t+ Ar) — X(2)| X(1) =x]
A110 At

. (9.116)

and infinitesimal variance
Var[ X(r + Ar) — X(2)|1 X(1) = x]
2 = Ii
B*(x) = lim v
The infinitesimal generator of such a process is

(1)) =ae) &L+ D ST, (o:119)

Diffusion processes can be described by their stochastic differential
equations. The process with infinitesimal generator (9.118) has the
stochastic differential '

dX =a( X) dt+ B(X) dW, (9.119)

where W is a standard Wiener process. The differential relation is
defined by its integral version

X(t) =X, + h ‘a( X(¢)) di’' + h ‘B(X(r)) dW(r), (9.120)

(6.117)

where the initial condition is X(0) = X,,.

The first integral in (9.120) is a Riemann integral but the second is
a stochastic intégral with respect to W (Itd 1951; Stratonovich 1966).
This integral is defined and some of its properties ‘are given, for
example, in Jaswinski (1970).

Processes with jumps

Consider a Markov random process Y that has jumps of
various magnitudes. Let »(¢, 4) record the number of jumps of ¥ up
to time ¢ that have magnitudes in the set 4. Suppose for fixed
A, »(t, A) is a temporally homogeneous Poisson process with mean
rate TI(A) depending on 4. Then E[»(z, A)] = tTI(4). Suppose fur-
ther that if 4, i=1,2,...,n, are disjoint sets, then »(t, A,),
¥(t, Ay),..., »(1, A,) are mutually independent.

If we integrate over all possible jump amplitudes, we recover the

original process Y,

¥(e) = [ur (s, du), (9.121)
3
and the total jump rate (i.e., mean rate of jumps of all magnitudes) is
A= \ TI(du). (9.122)
R

The process Y is a compound Poisson process. If the rate measure I



it

has a density so that II(du) = 7(u) du, then

>u\.~a?§=. . (9.123)

Example
For the randomized random walk, jumps of magnitude +ay
and —a; occur with mean rates A and A, respectively. Then

a(u) =Ag8(u—ag) +A;8(u+a;)
and the total mean rate of jumps is

A= .\i:v%l»m.f.?:
”

A stochastic differential equation can be written down, which
describes a general Markov process with diffusion and jump compo-
nents

dX=a(X)di+B(X)dW+ ??5;&. du).  (9.124)
R
Again the differential is an abbreviation for the integral equation

X(r) = x(0) + \Q “w(X(r) dv’ + h "B(X(1)) aw (1)

+ \o_hiis“ u)w(dt’, du), G.E&

where the third integral is a stochastic integral with respect to ». It
may be shown (Gihman and Skorohod 1972) that the infinitesimal
generator of the process defined by (9.125) is

() =a(e) L BV ET (st i - s

(9.126)

First-exit times

The part of the theory that concerns us most is the theory of
exit times as these directly relate to the random firing of neurons.
Suppose X(0) =x where a < x <b. The first-exit time of X from the
interval (a, b) is the random variable

T, (x) =inf(#|X(¢) & (a,b)}, X(0)=xe&(a,b).
(9.127)

frr mrmem e e —

Let the distribution function of T,,(x) be

Fo(x, 1) =Pr{T,(x) <1} (9.128)
Then (Tuckwell 1976a) F,, can be found as the solution of
" @F,
q”wukﬁz x€(a,b), t>0, (9.129)

where & is a partial differential-integral operator, the infinitesimal
operator of x. The initial condition is

0, x€(a,b),
= 130
F,,(x,0) T. <& (a.b). (9.130)
and with boundary conditions
Fo(x,t)=1, x¢&(a,b),120. (9.131)

Differentiating F,, with respect to ¢, we get the density of the
first-exit time f,,(x, ), which satisfies the same equation (9.129) as
F,, with boundary conditions
fun(x,8)=8(2), x¢&(a,b), (9.132)
fon(x,0)=0, x€(a,b). (9.133)
In the case of diffusion processes, where exit from (a, b) is attained by
hitting either a or b, the condition x & (g, b) can be replaced by

x=qgorx=>h. .
The moments of the first-exit time are defined through

toas(X)= [T0f(x 1) dt, n=0,12,.. (9.134)
(1]

These satisfy the recursion system of equations

APy, ap = ~PPp-1,ab x&(a,b). (9.135)
When n=0, one obtains the probability u, ., that X ever leaves
(a, b) and for this the boundary condition is

poaw(¥)=1  x&(a,b). (9.136)
For the first- w.sa higher-order moments of T,(x), the boundary
conditions are

Bpap(x)=0, x&(a,b),n=12,.., (9.137)
and p,, ,, is bounded on (a, b), if (a, b) is a finite interval. Exit times

from intervals such as (— oo, b) are obtained by letting 4 » —co in
the results for finite intervals.



