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Chapter 1

Basic concepts

1.1 Loss function and risk

Let X be an observable random vector, X ∈ X and P = {Pθ, θ ∈ Θ} be a system of
probability distributions, indexed by an unobservable parameter θ. We want to estimate
the function g(θ) : Θ 7→ R1. The observed values x of X create the data.

An estimator of g(θ) is a function T (X) : X 7→ R1. The loss incurred when we estimate
g(θ) by t is measured by the loss function L(θ, t) which should satisfy

L(θ, t) ≥ 0 ∀θ, t;

L(θ, g(θ)) = 0 ∀θ.
The quality of estimator T is measured by the risk function

R(θ, T ) = IEθ L(θ, T (X)).

We wish to get the uniformly best estimator T, which satisfies

R(θ, T ) = min with respect to T, uniformly in θ ∈ Θ.

Such estimator exists only in special cases; if it does not exist, we minimize the risk only
over a subclass of estimators, e.g.

• unbiased estimators: bias = IEθT (X)− g(θ) = 0

• median unbiased estimators: Pθ(T (X) < g(θ)) = Pθ(T (X) > g(θ)).

• If X ∼ F (x − θ) (shift parameter) and L(θ, t) = L(|θ − t|), then we consider the
equivariant estimators satisfying T (X1 + c, . . . , Xn + c) = T (X) + c.

Other possibilities:

• Instead of minimizing the risk uniformly over θ ∈ Θ, we can minimize∫
Θ

R(θ, T )w(θ)dθ = min over T with respect to the weight function w.

Such estimator is called the formal Bayesian estimator with the (generalized) prior
density w(θ)

• or sup
θ∈Θ R(θ, T ) = min (minimax estimator).

5
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1.2 Convex loss function

Convex function: φ(λx + (1− λ)y) ≤ λφ(x) + (1− λ)φ(y)
strictly convex: φ(λx + (1− λ)y) < λφ(x) + (1− λ)φ(y), x 6= y.
If φ is convex in I = (a, b) and t0 ∈ I is fixed, then there exists a straight line y = L(x) =
c(t− t0) + φ(t0) coming through the point [t0, φ(t0)] such that L(x) ≤ φ(x) ∀x ∈ I.

Theorem 1.2.1 Jensen inequality. If φ is convex on an open interval I and the random
variable X satisfies

P (X ∈ I) = 1 and |IE X| < ∞,

then
φ(IE X) ≤ IE φ(X). (1.2.1)

If φ is strictly convex and X is not constant with probability 1, then (1.2.1) holds as a
sharp inequality.

Proof. Put t0 = IE X. Let L(x) is the straight line such L(x) ≤ φ(x) coming through
point [t0, φ(t0)]. Then

E φ(X) ≥ IE L(X) = IE[c(X − IE X)] + φ(IE X) = φ(X).

If φ is strictly convex, then the line touches φ at t0 only, otherwise L(x) < φ(x). 2

Definition 1.2.1 The statistic S : X 7→ S is called sufficient for the system P if there is
a version of the conditional distribution Pθ (X ∈ A | S = s) = λs(A) independent of θ.

Theorem 1.2.2 Rao-Blackwell. Let X be an observable random vector with distribution
Pθ ∈ P = {Pϑ : ϑ ∈ Θ}. Let S be a sufficient statistic for P . Consider the estimation
problem with a strictly convex loss function L(θ, t). Let T be an estimator of g(θ) with
finite expectation and risk, i.e. R(θ, T ) = IEθ L(θ, T (X)) < ∞ ∀θ. Denote

T ∗(S) = IE{T (X)|S(X) = s}.

Then T ∗(S(X)) is an estimator satisfying R(θ, T ∗) < R(θ, T ), unless T (X) = T ∗(S(X))
with probability 1.

Proof. Because S is sufficient, T ∗(S) does not depend on θ and thus it is an estimator.
Put φ(t) = L(θ, t). Then

φ(T ∗(s)) = L(θ, T ∗(s)) = L[θ, IE(T |S = s)] = φ(IE(T |s))

< IE(φ(T )|S = s) = IE[L(θ, T (X))|S = s]

unless T (X) = T ∗(S(X)) with probability 1; hence

R(θ, T ∗) = IEθL[θ, T ∗(S(X))] < IEθL(θ, T (X)).

2
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Remark 1.2.1 If L(θ, t) is convex, but not strictly, then Theorem 1.2.2 holds with an
unsharp inequality.

Definition 1.2.2 (Admissibility). The estimator T is called inadmissible if there exists
another estimator T ′ dominating T, i.e. such that

R(θ, T ′) ≤ R(θ, T ), ∀θ, with a sharp inequality at least for one θ. (1.2.2)

The estimator T is called admissible with respect to the loss L(θ, t), if there is no estimator
T ′ satisfying (1.2.2).

If L(θ, t) is strictly convex, and an admissible estimator exists, then it is uniquely deter-
mined. More precisely,

Theorem 1.2.3 Let L(θ, t) be strictly convex and T be an admissible estimator of g(θ).
If T ′ is another estimator with the same risk and T, i.e. R(θ, T ) = R(θ, T ′) ∀θ, then
T (X) = T ′(X) with probability 1.

Proof. Put T ∗ = 1
2
(T + T ′). Then

R(θ, T ∗) <
1

2
[R(θ, T ) + R(θ, T ′)] = R(θ, T ) ∀θ,

unless T = T ′ with probability 1. But this contradicts with the admissibility of T. 2

1.3 Estimation of vector function

The situation is analogous for the estimation of the vector function g(θ) = (g1(θ), . . . , gk(θ)).
Its estimator T(X) is also a k-dimensional vector. The function φ : E 7→ R1 where E is
a convex set, is called convex, if

φ(λx1 + (1− λ)x2) ≤ λφ(x1) + (1− λ)φ(x2) ∀x1,x2 ∈ E and 0 < λ < 1.

If φ is twice differentiable in E, then φ is convex [strictly convex] iff the Hessian matrix

H =

[
∂2φ(x1, . . . , xk)

∂xi∂xj

]
i,j=1,...,k

is positively semidefinite [positively definite].

If φ is convex defined on an open convex set E ⊂ Rk, then to every fixed point t0

there exists a hyperplane

y = L(x) = φ(t0) +
k∑

i=1

ci(xi − t0i )

going through the point (t0, φ(t0)) and satisfying L(x) ≤ φ(x) ∀x ∈ E.

If X is a random vector such that P (X ∈ A) = 1 for an open convex set A and IEX
exists, then IEX ∈ A.
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Chapter 2

Unbiased estimates

2.1 Uniformly best unbiased estimate

T (X) is unbiased estimate of g(θ), if IE(T (X)) = g(θ) ∀θ ∈ Θ.

Example: Unbised estimates need not exist. Let X have binomial distribution B(n, p)
and let g(p) = 1

p
. If T is an unbiased estimate of g(p), then

n∑
i=1

T (i)

(
n
i

)
pi(1− p)n−i =

1

p
∀p ∈ (0, 1). (2.1.1)

But if p ↓ 0, then the left-hand side of (2.1.1) → T (0), while the right-hand side → ∞,
what is a contradiction with the unbiasedness.

The function g(θ) is called estimable, if there exists at least one unbiased estimate of g(θ).

Lemma 2.1.1 [Structure of the class of unbiased estimates.] If T0 is an unbiased estimate
of g(θ), then every unbiased estimate T of g(θ) can be written in the form T = T0 − U,
where U is an unbiased estimate of zero, i.e. such that IEθU = 0 ∀θ ∈ Θ.

Proof. If T0 is unbiased, then T0−U is unbiased ∀U. If T is any unbiased estimate, then
T0 − T = U is an unbiased estimate of zero and T = T0 − U. 2

Specifically, consider the quadratic loss L(θ, t) = (t− g(θ))2. Then the risk of an unbiased
estimate T is its variance:

R(θ, T ) = IEθ(T − g(θ))2 = varθT(X).

If T 0 minimizes varθT(X) ∀θ among all unbiased estimates of g(θ), then it is called best
minimum variance estimate (BMVE) of g(θ).

Denote ∆ the set of all unbiased estimates of g(θ) satisfying IEθT
2 < ∞ ∀θ ∈ Θ. Let

U be the set of all unbiased estimates of 0 which belong to ∆.

Theorem 2.1.1 Let X have distribution Pθ, θ ∈ Θ, and let T ∈ ∆. Then T is BMVE
of its expected value g(θ) if and only if

IEθ[T (X).U(X)] = 0 ∀U ∈ U and ∀θ ∈ Θ.

9
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Proof.

(i) Necessity: Let T be BMVE, IEθT = g(θ). Let U ∈ U , U 6= 0. Put T ′ = T+λU, λ ∈ R1.
Then

IEθT
′(X) = IEθT (X) = g(θ) ∀θ

⇒ varθT
′(X) ≥ varθT(X) ∀λ ⇒ IEθ(T

′)2 ≥ IEθT
2,

thus IEθT
2 + λ2IEθU

2 + 2λIEθ(T.U) ≥ IEθT
2, and

λ2IEθU
2 + 2λIEθ(T.U) ≥ 0 ∀λ. (2.1.2)

The roots of the quadratic equation λ2IEθU
2 + 2λIEθ(T.U) = 0 are

λ = 0 and λ = −2covθ(T, U)

varU
,

hence the quadratic function can be negative unless covθ(T, U) = 0.

(ii) Sufficiency: Let IEθ(T.U) = 0 ∀U ∈ U and let T ′ be an unbiased estimate of g(θ). If
varθT

′ = ∞, the T ′ cannot be better than T. Let varθT
′ < ∞. Then varθ(T−T′) < ∞

and T − T ′ ∈ U , thus

IEθ(T (T − T ′)) = 0 ⇒ IEθT
2 = IEθ(T.T ′ ⇒ IEθT

2 − g2(θ) = IEθ(T.T ′)− g2(θ)

⇒ varθT = covθ(T, T′) ⇒ 0 ≤ varθ(T− T′) = varθT + varθT
′ − 2varθT

⇒ varθT ≤ varθT
′.

2

Definition 2.1.1 The statistic S(X) is called complete for the system of distributions
P = {Pθ, θ ∈ Θ} if, for any function h(S)

IEθh(S(X)) = 0 ∀θ ⇒ h(S(X)) = 0 a.s.[Pθ], ∀θ ∈ Θ.

Theorem 2.1.2 Let X follow distribution Pθ ∈ P and let S be a complete and sufficient
statistic for P . Then every estimable function g(θ) has one and only one unbiased estimate,
which is a function of S.

Proof. Let T be an unbiased estimate of g(θ). Then T ∗(S(X)) = IE(T (X)|S(X)) is an
unbiased estimate which is a function of S.

Let T1(S) and T2(S) be two unbiased estimates of g(θ). Then IEθ(T1 − T2) = 0 ∀θ,
and because S is complete, it implies that T1 − T2 = 0 s.j. [Pθ], θ ∈ Θ. 2
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Theorem 2.1.3 (Lehmann-Scheffé). Let X follow distribution Pθ ∈ P and let S be a
complete and sufficient statistic for P . Then

(i) For every estimable function g(θ) and every loss function L(θ, t) convex in t, there
exists an unbiased estimate T of g(θ) which uniformly minimizes the risk R(θ, T ).

(ii) T is the only unbiased estimate which is a function of S. If L is strictly convex in t,
then T is the only unbiased estimate with minimum risk.

Proof. The Rao-Blackwell theorem holds for S and convex loss function. By Theorem
2.1.2 the estimate T ∗(S(X)) = IE(T (X)|S(X)) is unique, and because S is complete, it
cannot be further improved. 2

2.1.1 How to find the best unbiased estimate

Let S(X) be a complete and sufficient statistic.

Method 1: The best unbiased estimate of an estimable function g(θ) is any function
T (S) such that

IEθT (S) = g(θ) ∀θ ∈ Θ.

Method 2: Let us start with any unbiased estimate T (X). Then

T ′(X) = IE(T (X)|S) is the best unbiased estimate.
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Chapter 3

Equivariant estimators

3.1 Estimation of the shift parameter

Let X1, . . . , Xn be a sample from a distribution with distribution function F (x− θ) and
density f(x− θ). The problem is to estimate θ ∈ R1 with respect to the loss L(θ, t).

Consider the loss which is invariant to the shift, i.e. L(θ, t) = L(θ + c, t+ c) ∀c ∈ R1.
Then L(θ, t) = L(0, t− θ), hence the loss depends only on the difference t− θ. If the loss
is invariant, then the whole problem is invariant to the shift. If we estimate θ by T (X),
then a natural estimate of θ + c is T (X) + c.

Definition 3.1.1 The estimator T (X) is called equivariant (with respect to the shift) if
it satisfies

T (X1 + c, . . . , Xn + c) = T (X1 . . . , Xn) + c ∀c ∈ R and ∀X ∈ Rn.

Lemma 3.1.1 The bias, risk and variance of an equivariant estimate T (X) do not depend
on value of θ, and hence are constant with respect to θ.

Proof. If X1 has d.f. F (x−θ), then P (X1−θ ≤ z) = P (X1 ≤ z +θ) = F (z), thus X1−θ
has distribution function F (·). Then

bias = b(θ) = IEθ(T (X))− θ = IEθ(T (X1 − θ, . . . , Xn − θ)) = IE0(T (X)) = b,

varθT(X) = IEθ(T(X)− IEθT(X))2 = IEθ [T(X− θ) + θ − IEθT(X)]2

= IEθ (T (X− θ)− b)2 = IE0(T (X)− b)2,

R(T, θ) = IEθ[L(T (X)− θ)] = IEθ[L(T (X− θ))] = IE0[L(T (X))] = R(T ).

2

We shall look for an equivariant estimate with minimal risk (MRE), i.e. T ∗ such that

R(T ∗) < R(T ) for any equivariant estimator T 6= T ∗.

First we should investigate the structure of the class of equivariant estimators.

13
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Lemma 3.1.2 Let T0(X) be an equivariant estimate. Then the estimate T (X) is equiva-
riant if and only if there exists a statistic U(X), invariant to the shift, i.e. satisfying

U(X1 + c, . . . , Xn + c) = U(X1, . . . , Xn) ∀c ∈ R1, ∀X, (3.1.1)

such that
T (X) = T0(X) + U(X) ∀X. (3.1.2)

Proof.

• Let T satisfy (3.1.1) and (3.1.2). Then

T (X + c) = T0(X + c) + U(X + c) = T0(X) + c + U(X) = T (X) + c,

thus T is equivariant.

• Let T be equivariant, and let T0 be any equivariant estimator.
Put U(X) = T (X)− T0(X). Then U is invariant and T = T0 + U. 2

Lemma 3.1.3 The function U(x) is invariant if and only if it depends only on differences
yi = xi − x1, i = 2, . . . , n in case that n ≥ 2. If n = 1, then the only invariant are the
constant functions.

Proof. If n = 1, then U(x + c) ≡ U(x) iff U(x) is a constant.

Let n ≥ 2 and U(x + c) ≡ U(x). Then
U(x1, . . . , xn) = U(x1 − x1, x2 − x1, . . . , xn − x1) = U(0, y2, . . . , yn) = Ũ(y2, . . . , yn). 2

Corollary 3.1.1 Let T0 be an equivariant estimate and n ≥ 2. Then the estimator T is
equivariant if and only if there exists a function Ũ(Y2, . . . , Yn) of Y = (Y2, . . . , Yn) such
that T (X) ≡ T0(X)− Ũ(Y).

Remark 3.1.1 The differences Y2 = X2−X1, . . . , Yn = Xn−X1 determine all differences
Xi −Xj, i 6= j. Instead of Y we may take e.g. X1 − X̄, . . . , Xn − X̄.

Definition 3.1.2 The statistic S(X) is called maximal invariant with respect to the shift,
if it is invariant and if

S(X1) = S(X2) if and only if X2 = X1 + c for some c ∈ R1.

We see that Y2, . . . , Yn or X1 − X̄, . . . , Xn − X̄ are maximal invariants. Maximal
invariants are important, because of the following property:

Lemma 3.1.4 The function U(x) is invariant if and only if it is a function of a maximal
invariant.

Proof. If U is a function of S, i.e. U(x) = h(S(x)), then it is invariant.

Let U be invariant and let S(x1) = S(x2). Then x2 = x1 + c, hence U(x2) = U(x1). 2
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Theorem 3.1.1 (Minimum risk estimate). Let T0 be an equivariant estimate with a finite
risk. If for any value of differences y there exists v∗(y) which minimizes

IE0

{
L[T0(X)− v(Y)]

∣∣∣ Y = y
}

with respect to functions of y, then there exists a minimum risk estimate and is equal to

T ∗(X) = T0(X)− v∗(Y).

Proof. Let T (X) = T0(X)− v(Y). Then

Rθ(T (X), θ) = IEθ[L(T0(X)− v(Y)− θ)] = IE0{L[T0(X)− v(Y)]}

IE0

[
E0

{
L(T0(X)− v(Y))

∣∣∣Y}] =

∫
IE0

{
L [T0(X)− v(y)]

∣∣∣y} dP0(y)

should be minimized with respect to v(·). But this is minimized if the integrand in mini-
mized for every y. 2

Corollary 3.1.2 (a) If L(t− θ) = (t− θ)2, then v∗(y) = IE0

{
T0(X)

∣∣∣ Y = y
}

.

(b) If L(t − θ) = |t − θ|, then v∗(y) is the conditional median of T0(X) with respect to
the conditional distribution of X given Y = y.

Example 3.1.1 Let X1, . . . , Xn be a sample from the normal distribution N(ξ, σ2) with
σ known. Put T0(X) = X̄. Then X̄ and Y = (X2 −X1, . . . , Xn −X1) are independent,
hence when we consider IE0[L(X̄ − v(Y)|Y = y], we conclude that v(y) = const and is
determined by the condition that IE0[L(X − v)] = min . Thus, if L is a convex and odd
function, then v = 0 and X̄ is the MRE (minimum risk estimator).

Theorem 3.1.2 Let F be the class of all distribution functions with Lebesgue densities
f, which have a finite fixed variance, say σ = 1. Let X1, . . . , Xn be a sample from the
distribution with density f(x− ξ), where ξ = IE X. Let rn(f) be the risk of the MRE of ξ
with respect to the quadratic loss function. Then rn(f) is maximal over F for the normal
f.

Proof. If F is normal, then X̄ is the MRE and IE(X̄ − ξ)2 = 1/n. Because 1/n is also
the quadratic risk of X̄ for every F ∈ F , the risk of the MRE ≤ 1/n. 2

Remark 3.1.2 It follows from Corrollary 3.1.2 that the MRE should satisfy

T ∗(X) = X̄ − IE0(X̄|Y), hence

T ∗(X) = X̄ ⇐⇒ IE0(X̄|Y) = 0.

But by Theorem of Kagan-Linnik-Rao (1967), IE0(X̄|Y) = 0 is true if and only if the
distribution of X1, . . . , Xn is normal.



16

Example 3.1.2 Exponential distribution. Let X1, . . . , Xn have the distribution function

F (x− θ) =

{
1− exp{x− θ} . . . x ≥ θ

0 . . . x < θ.

Put T0(X) = X(1), where X(1) ≤ X(2) ≤ . . . ≤ X(n) are order statistics. Then

P (X(1) > x) =
n∏

i=1

P (Xi > x) = exp{−n(x− θ)},

hence the density of X(1) is n exp{−n(x− θ)}.
Because X(1) and Y are independent, the invariant function v(Y) = const, similarly

as in Example 3.1.1. We look for v such that IE0[L(X(1) − v)] = min .

If L(t− θ) = (t− θ)2, then IE0(X(1) − v)2 = min for

v = IEX(1) = n

∫ ∞

0

x exp{−nx}dx =
1

n

∫ ∞

0

y exp{y}dy =
1

n

and the MRE is T ∗(X) = X(1) − 1
n

.

3.1.1 The form of Pitman (MRE) estimator

Let X1, . . . , Xn be a sample form a distribution with density f(x− θ). Then the Pitman
(MRE) estimator with respect to quadratic loss is T ∗(X) = T0(X)− IE0[T0(X)|Y], where
T0 is an initial equivariant estimator with a finite risk. Then T ∗(X) can be also written
in the following form:

T ∗(X) =

∫∞
−∞ t · f(X1 − t) . . . f(Xn − t)dt∫∞
−∞ f(X1 − t) . . . f(Xn − t)dt

.

Proof. Put T0(X) = X1. We shall look for the conditional density of X1 given Y = y
under θ = 0. Make the substitution

yi = xi − x1, i = 2, . . . , n

x1 = x1.

Then the density of Y∗ = (X1, Y2, . . . , Yn) is

p(y∗) = f(x1, x1 + y2, . . . , x1 + yn)

and the conditional density of X1 given y = (y2, . . . , yn) is

f(x1, x1 + y2, . . . , x1 + yn)∫∞
−∞ f(u, u + y2, . . . , u + yn)du

.
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Hence,

IE(X1|Y = y) =

∫∞
−∞ uf(u, u + y2, . . . , u + yn)du∫∞
−∞ f(u, u + y2, . . . , u + yn)du

=

∫∞
−∞(X1 − t)f(X1 − t,X2 − t, . . . , Xn − t)dt∫∞

−∞ f(X1 − t, . . . , Xn − t)dt
,

where we inserted t = X1 − u, yi = Xi −X1, i = 2, . . . , n. Then

T ∗(X) = X1 − IE(X1|Y = y) = X1 −
∫∞
−∞(X1 − t)f(X1 − t,X2 − t, . . . , Xn − t)dt∫∞

−∞ f(X1 − t, . . . , Xn − t)dt

=

∫∞
−∞ t · f(X1 − t) . . . f(Xn − t)dt∫∞
−∞ f(X1 − t) . . . f(Xn − t)dt

.

2

Example 3.1.3 Let X1, . . . , Xn be a sample from the uniform distribution R(θ− 1
2
, θ+ 1

2
)

and let L(t− θ) = (t− θ)2. Then

f(x1, . . . , xn) =

{
1 . . . θ − 1

2
≤ X(1) ≤ X(n) ≤ θ + 1

2
,

0 . . . otherwise

Then, under θ = 0,

f(x1 − t, . . . , xn − t) =

{
1 . . . X(n) − 1

2
≤ t ≤ X(1) + 1

2
,

0 . . . otherwise

Put T0 = 1
2
(X(1) + X(n)). Then∫
tf(x1 − t, . . . , xn − t)dt =

∫ X(1)+
1
2

X(n)− 1
2

tdt = 1
2

[
(X(1) + 1

2
)2 − (X(n) − 1

2
)2
]

and ∫
f(x1 − t, . . . , xn − t)dt =

∫ X(1)+
1
2

X(n)− 1
2

dt = 1− (X(n) −X(1)).

Finally,

T ∗(X) =
1

2

(X(1) + X(n))(1− (X(n) −X(1)))

(1− (X(n) −X(1)))
= 1

2
(X(1) + X(n)).
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3.2 Relation of equivariance and unbiasedness

Lemma 3.2.1 Let L(t− θ) = (t− θ)2.

(i) If T (X) is equivariant and has constant bias IEθT (X)− θ = b (a non-null constant),
then T (X)− b is an equivariant and unbiased estimator, whose risk is less that the
risk of T (X).

(ii) If the MRE is uniquely determined, then it is unbiased.

(iii) If there exists a uniformly best unbiased estimate which is equivariant, then it is the
MRE.

Proof.

(i) Let T1(X) = T (X)− b. Then it is equivariant and IEθ(T1(X)) = θ + b− b = θ, and

IE0(T1(X))2 = IE0(T (X)− b)2 = IE0T
2(X)− b2 < IE0T

2(X).

(ii) Let T ∗ be the MRE and T be any equivariant estimate with finite risk. Then

T ∗(X) = T (X)− IE(T |Y), IE0(T
∗)2 < IE0T

2, IE0T
∗ = 0.

(iii) Let T be uniformly best unbiased and also equivariant. Let T1 be equivariant. Then
IEθT1 = θ + b and if b 6= 0, then IE0(T1 − b)2 < IE0T

2
1 . This implies that

IEθ(T − θ)2 = IE0(T )2 ≤ IE(T1 − b)2 ≤ IE0T
2
1 .

2

Definition 3.2.1 Estimator T of g(θ) is called risk unbiased with respect to the loss L,
if

EθL(θ, T ) ≤ IEθL(θ′, T ) ∀θ′ 6= θ.

The following theorem shows that the MRE is risk unbiased:

Theorem 3.2.1 Let X1, . . . , Xn be a sample from a distribution with the density f(x−θ).
Then the MRE with respect to the loss L(θ, t) = L(t− θ) is risk unbiased.

Proof. The risk unbiasedness means that

IEθL(T (X)− θ′) ≥ IEθL(T (X)− θ) ∀θ′ 6= θ,

otherwise speaking,

IE0L(T (X)− a) ≥ IE0L(T (X)) ∀a 6= 0.
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Let T ∗ be the MRE. Then T ∗(X) = T0(X)− v∗(Y) where

IE0[L(T0(X)− v∗(Y)|Y = y] = min .

Then

IE0[L(T (X)− a)] = IE0[L(T0(X)− v∗(Y)− a)]

= IE0{IE0[L(T0(X)− v∗(Y)− a)|Y]} ≥ IE0{IE0[L(T0(X)− v∗(Y)|Y]}
= IE0[L(T (X))]

where we used the fact that v∗(Y) + a is also an invariant function. 2
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Chapter 4

Asymptotic behavior of estimates

4.1 Consistency

Let X1, . . . , Xn be independent observations with distribution Pθ, θ ∈ Θ. We want to
estimate the function g(θ). Then the estimator Tn is called

weakly consistent estimate of g(θ) if Tn
p−→ g(θ) ∀θ ∈ Θ as n →∞

strongly consistent estimate of g(θ) if Tn → g(θ) a.s.[Pθ] ∀θ ∈ Θ as n →∞.

Let R(θ, Tn) = IEθ(T (X)− g(θ))2 be the quadratic risk. Then

Theorem 4.1.1 (i) If limn→∞R(θ, Tn) = 0 ∀θ ∈ Θ, then Tn is weakly consistent.

(ii) If

lim
n→∞

IEθTn(X) = g(θ) ∀θ ∈ Θ,

lim
n→∞

varθTn(X) = 0 ∀θ ∈ Θ

then Tn is weakly consistent.

(iii) Especially, if Tn is unbiased ∀n and limn→∞ varθTn(X) = 0 ∀θ ∈ Θ, then Tn is
weakly consistent.

Proof.

(i) By Chebyshev inequality,

Pθ(|Tn(X))− g(θ)| > ε) ≤ 1

ε2
IEθ

(
|Tn(X))− g(θ)|2

)
=

1

ε2
R(θ, Tn) → 0.

(ii)

Pθ(|Tn(X))− g(θ)| > ε) ≤ 1

ε2
IEθ

(
|Tn(X))− g(θ)|2

)
≤ 1

ε2

1

ε2
IEθ [Tn − IEθTn + IEθTn − g(θ)]2 ≤ 2

ε2

(
varθTn + (bn(θ))

2
)
→ 0.
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2

The parameter θ or the function g(θ) can be estimated by a consistent estimate only
if θ is identifiable, i.e. if [θ1 6= θ2] =⇒ [Pθ1 6= Pθ2 ].

4.2 Efficiency

Definition 4.2.1 (Limiting risk efficiency of Tn to T ∗n). Assume that two sequences
{Tn}, {T ∗n} of estimates satisfy

lim
n→∞

nrR(Tn, θ) = lim
n→∞

nrR(T ∗mn
, θ) (4.2.1)

for some sequence {mn}∞n=1 and a fixed r > 0. Then the limit

lim
n→∞

mn

n
,

if it exists and is independent of the special choice of {mn}, is called the
limiting risk efficiency of Tn with respect to T ∗n .

Definition 4.2.2 (Relative asymptotic efficiency of Tn to T ∗n). Let

√
n(Tn − g(θ))

D−→ N(0, σ2) as n →∞, (4.2.2)
√

n(T ∗mn
− g(θ))

D−→ N(0, σ2) as n →∞.

Then the limit

eT,T ∗ = lim
n→∞

mn

n
,

if it exists and is independent of the special choice of {mn}, is called the relative asymptotic
efficiency (ARE) of Tn to T ∗n .

Theorem 4.2.1 Let

√
n(Tn − g(θ))

D−→ N(0, σ2) as n →∞, (4.2.3)
√

n(T ∗n − g(θ))
D−→ N(0, σ2

∗) as n →∞.

Then

eT,T ∗ =
σ2
∗

σ2
.
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Proof. Assume (4.2.3). Then

√
n(T ∗mn

− g(θ)) =

√
n

mn

√
mn(T ∗mn

− g(θ))

and

√
n(Tn − g(θ))

D−→ N(0, σ2),

√
n

mn

→ 1

eT,T ∗
,

√
mn(T ∗mn

− g(θ))
D−→ N(0, σ2

∗),

thus eT,T ∗ = σ2
∗/σ

2. 2

Consider the system of distributions P = {Pθ; θ ∈ Θ} with densities f(x, θ) satisfying

(A0) Pθ1 6= Pθ2 for θ1 6= θ2.

(A1) B = {x : f(x, θ) > 0} is independent of θ.

(A2) Let X1, . . . , Xn be a sample from a distribution with density f(x, θ0), where θ0 ∈
I ⊂ Θ for an open interval I.

Theorem 4.2.2 Under conditions (A0)–(A2), it holds for any θ 6= θ0, θ ∈ Θ

lim
n→∞

Pθ0

{
n∏

i=1

f(Xi, θ0) >
n∏

i=1

f(Xi, θ)

}
= 1. (4.2.4)

Proof. By the law of large numbers and Jenssen inequality, as n →∞,

1

n

n∑
i=1

log
f(Xi, θ)

f(Xi, θ0)

Pθ0−→ IEθ0 log
f(X, θ)

f(X, θ0)
< log IEθ0

f(X, θ)

f(X, θ0)
= 0.

This implies

Pθ0

{
1

n

n∑
i=1

log
f(Xi, θ)

f(Xi, θ0)
> 0

}
→ 0

and that gives (4.2.4). 2

Denote

L(θ,X) = log
n∏

i=1

f(Xi, θ) (the likelihood).

The maximum likelihood estimate (MLE) of θ is defined as a solution of the maximization

L(θ,X) = max, θ ∈ Θ.

It is one of the solutions of the likelihood equation

∂L(θ,X)

∂θ
=

n∑
i=1

ḟ(Xi, θ)

f(Xi, θ)
= 0. (4.2.5)
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Assume that conditions A0–A2 are satisfied and that f(x, θ) is differentiable in θ ∈
I ⊂ Θ, where I 3 θ0. Then

Theorem 4.2.3 Under the above conditions, there exists a root θ̂n of the likelihood equa-
tion (4.2.5) such that

θ̂n

Pθ0−→ θ0

as n →∞.

Proof. Let a > 0 is such that (θ0 − a, θ0 + a) ⊂ I. Let

Sn = {x : L(θ0,x) > L(θ0 − a,x) and L(θ0,x) > L(θ0 + a,x)}.

By Theorem 4.2.2 is limn→∞ Pθ0(Sn) = 1. There is a local maximum θ̂n between θ0 − a
and θ0 + a and it satisfies L′(θ̂n) = 0. Let θ∗n be the root of L′(θ) = 0 the closest to θ0.
Then

lim
n→∞

Pθ0(|θ∗n − θ0| < a) = 1 ∀a > 0.

2

Remark 4.2.1 We know that Θ∗
n exists as the root the closest to θ0, but we are not able

to find it, because θ0 is unknown.
Everything holds only with probability tending to 1.
If the likelihood equation has only one root Tn ∀n and ∀x, then Tn is consistent estimate

of θ0.

Theorem 4.2.4 Let the conditions (A0)–(A2) be satisfied, and let it further hold

(A3)

∣∣∣∣∂3 log f(x, θ)

∂θ3

∣∣∣∣ ≤ M(x)

for x ∈ B and for |θ−θ0| < C, where M(x) is such that IEθ0M(X) < ∞. Then every con-
sistent sequence θ̂n = θ̂n(X) of roots of the likelihood equation is asymptotically normally
distributed, i.e.

L(
√

n(θ̂n − θ0))
D−→ N

(
0,

1

I(θ0)

)
where I(θ) =

∫ (∂ log f(x,θ)
∂θ

)2

f(x, θ)dµ is the Fisher information.

Some steps of the proof.

0 = n−1/2L′n(θ̂n) = n−1/2

n∑
i=1

ḟ(Xi, θ̂n)

f(Xi, θ̂n)

= n−1/2L′n(θ0) + n1/2(θ̂n − θ0) · 1
n
L′′n(θ0) + 1

2
n−1/2[n1/2(θ̂n − θ0)]

2 1
n
L′′′n (θ∗n)
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with θ∗n between θ0 and θ̂n. Then

n1/2(θ̂n − θ0) ≈ −n−1/2L′n(θ0)

n−1L′′n(θ0)
− 1

2
(θ̂n − θ0)

n−1L′′′n (θ∗n)

n−1L′′n(θ0)
.

We should show that

n−1/2L′n(θ0)
D−→ N (0, I(θ0)) (4.2.6)

− 1

n
L′′n(θ0) =

1

n

n∑
i=1

f̈(Xi, θ0)

f(Xi, θ0)
− 1

n

n∑
i=1

(
ḟ(Xi, θ0)

f(Xi, θ0)

)2

p−→ I(θ0) (4.2.7)

1

n
L′′′n (θ∗n) = Op(1). (4.2.8)

(4.2.7) follows from the central limit theorem, (4.2.8) from the law of large numbers,
(4.2.8) from the consistency of θ̂n and from (A3). Then we obtain

0 = n−1/2L′n(θ̂n) ≈ N (0, I(θ0))− n1/2(θ̂n − θ0)I(θ0) +
1

2
√

n

(√
n(θ̂n − θ0)

)2 1

n
L′′′n (θ∗n),

thus

√
n(θ̂n − θ0) ≈ −n−1/2L′n(θ0)

n−1L′′n(θ0)
− 1

2
(θ̂n − θ0)

n−1L′′′n (θ∗n)

n−1L′′n(θ0)
≈ N

(
0,

1

I(θ0)

)
+ op(1)

2

Remark 4.2.2 Such estimator is called the efficient likelihood estimator. It is usually
the maximal likelihood estimator, but not neccessary.

Corollary 4.2.1 If the likelihood equation has only one root, or if it has a multiple root
with probability tending to 0 as n →∞, then, under the conditions of Theorem 4.2.4, the
maximal likelihood estimator is asymptotically efficient.

Example 4.2.1 One-parameter exponential family.

f(x, θ) = exp{θT (x) + A(θ),

n∑
i=1

log f(Xi, θ) = θ

n∑
i=1

T (Xi) + nA(θ) = max

⇒ 1

n

n∑
i=1

T (Xi) = −A′(θ) = IEθ

(
1

n

n∑
i=1

T (Xi)

)
(likelihood equation). (4.2.9)

On the other hand, because
∫

f(x, θ)dµ = 1,

0 =

∫
(A′(θ) + T (x)) exp{θT (x) + A(θ)}dµ =⇒ A′(θ) = −IEθT (X).
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We can show that IEθT (X) is increasing in θ : Indeed,

∂

∂θ
IEθT (X) =

∫
T (x)(A′(θ)+T (x)) exp{θT (x)+A(θ)dµ = IEθT

2(X)−(IEθT (X))2 = varθT(X) > 0.

Thus the likelihood equation

IEθT (X) =
1

n

n∑
i=1

T (Xi)

has at most one solution, and the conditions of Theorem 4.2.4 are satisfied. Thus, with
probability tending to 0 the likelihood equation has one root θ̂n, which is consistent,
asymptotically efficient and asymptotically normal

√
n(θ̂n − θ)

D−→ N
(

0,
1

varθT

)
,

because

I(θ) = IEθ

[
∂ log f(X, θ)

∂θ

]2

= IEθ[T (X) + A′(θ)]2 = varθT(X).

Example 4.2.2 Truncated normal distribution. Let X1, . . . , Xn have normal distribu-
tion N (θ, 1) truncated at (a, b), a < b, with the density

p(x, θ) =

 1√
2π

exp{− (x−θ)2

2
}
/

[Φ(b− θ)− Φ(a− θ)] . . . a < x < b

0 . . . otherwise.

Thus

p(x, θ) = exp{θx− θ2

2
− x2

2
+ log

1√
2π

− log[Φ(b− θ)− Φ(a− θ)] ⇒ T (x) = x

and the likelihood equation has the form

X̄n = IEθX.

If θ → ±∞, then X
p→ a or b, thus also IEθX→a or b and IEθX is continuous, hence

the likelihood equation has a root.

4.2.1 Shift parameter

Let X1, . . . , Xn be a sample from the population with density f(x− θ). The MLE θ̂n is a
solution of

n∏
i=1

f(Xi − θ) := max
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and it is equivariant. The Pitman estimate T ∗n is asymptotically equivalent to θ̂n in the

sense that
√

n(θ̂n − T ∗n)
p→ 0 as n → ∞ (Stone 1974). The likelihood equation can be

rewritten as
n∑

i=1

f ′(Xi − θ)

f(Xi − θ)
= 0. (4.2.10)

If f is strongly unimodal, i.e. −f ′

f
is strictly increasing, then (4.2.10) has at most one

root. Because
∏n

i=1 f(xi − θ) → 0 as θ → ±∞, then
∏n

i=1 f(Xi − θ) has the maximum
inside the real line, hence the root of (4.2.10) exists and is asymptotically efficient.

4.2.2 Multiple root

Let L(θ,x) = log
∏n

i=1 f(xi, θ). Assume that the equation

L′(θ) =
n∑

i=1

f ′(Xi, θ)

f(Xi, θ)
= 0 (4.2.11)

can have a multiple root, but that there exists a consistent estimate θ̃0
n.

Theorem 4.2.5 (i) Let θ̃0
n be a consistent estimate and the conditions (A0)−−(A2) hold.

Then the root of equation (4.2.11), the closest to θ̃0
n is also consistent, and hence it

is asymptotically efficient.

(ii) Let θ̃n be a consistent initial estimate satisfying

√
n(θ̃n − θ) = Op(1) as n →∞.

Put

Tn = θ̃n −
L′(θ̃n)

L′′(θ̃n)
.

Then Tn is an asymptotically efficient estimate of θ, i.e.

√
n(Tn − θ)

D−→ N (0, 1/I(θ)).

Proof is similar to the proof of Theorem 4.2.4.


