Theory of point estimation

Jana Jurečková Charles University in Prague

Contents

1	Basic concepts		5
	1.1	Loss function and risk	5
	1.2	Convex loss function	6
	1.3	Estimation of vector function	7
2	Unbiased estimates		
	2.1	Uniformly best unbiased estimate	9
		2.1.1 How to find the best unbiased estimate	11
3	Equivariant estimators		13
	3.1	Estimation of the shift parameter	13
		3.1.1 The form of Pitman (MRE) estimator	16
	3.2	Relation of equivariance and unbiasedness	18
4	Asymptotic behavior of estimates 2		21
	4.1	Consistency	21
	4.2	Efficiency	22
	_	4.2.1 Shift parameter	26
		4.2.2 Multiple root	27

Chapter 1 Basic concepts

1.1 Loss function and risk

Let **X** be an observable random vector, $\mathbf{X} \in \mathcal{X}$ and $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ be a system of probability distributions, indexed by an unobservable parameter θ . We want to estimate the function $g(\theta) : \Theta \mapsto \mathbb{R}^1$. The observed values **x** of **X** create the data.

An estimator of $g(\theta)$ is a function $T(\mathbf{X}) : \mathcal{X} \mapsto \mathbb{R}^1$. The loss incurred when we estimate $g(\theta)$ by t is measured by the loss function $L(\theta, t)$ which should satisfy

$$L(\theta, t) \ge 0 \qquad \forall \theta, t;$$

$$L(\theta, g(\theta)) = 0 \quad \forall \theta.$$

The quality of estimator T is measured by the risk function

$$R(\theta, T) = I\!\!E_{\theta} L(\theta, T(\mathbf{X}))$$

We wish to get the uniformly best estimator T, which satisfies

 $R(\theta, T) = \min$ with respect to T, uniformly in $\theta \in \Theta$.

Such estimator exists only in special cases; if it does not exist, we minimize the risk only over a subclass of estimators, e.g.

- unbiased estimators: bias = $\mathbb{E}_{\theta}T(\mathbf{X}) g(\theta) = 0$
- median unbiased estimators: $P_{\theta}(T(\mathbf{X}) < g(\theta)) = P_{\theta}(T(\mathbf{X}) > g(\theta)).$
- If $X \sim F(x \theta)$ (shift parameter) and $L(\theta, t) = L(|\theta t|)$, then we consider the equivariant estimators satisfying $T(X_1 + c, ..., X_n + c) = T(\mathbf{X}) + c$.

Other possibilities:

• Instead of minimizing the risk uniformly over $\theta \in \Theta$, we can minimize

$$R(\theta, T)w(\theta)d\theta = \min$$
 over T with respect to the weight function w.

Such estimator is called the formal Bayesian estimator with the (generalized) prior density $w(\theta)$

• or $\sup_{\theta \in \Theta} R(\theta, T) = \min$ (minimax estimator).

1.2 Convex loss function

Convex function: $\phi(\lambda x + (1 - \lambda)y) \leq \lambda \phi(x) + (1 - \lambda)\phi(y)$ strictly convex: $\phi(\lambda x + (1 - \lambda)y) < \lambda \phi(x) + (1 - \lambda)\phi(y), x \neq y$. If ϕ is convex in I = (a, b) and $t_0 \in I$ is fixed, then there exists a straight line $y = L(x) = c(t - t_0) + \phi(t_0)$ coming through the point $[t_0, \phi(t_0)]$ such that $L(x) \leq \phi(x) \quad \forall x \in I$.

Theorem 1.2.1 Jensen inequality. If ϕ is convex on an open interval I and the random variable X satisfies

$$P(X \in I) = 1$$
 and $|I\!\!E X| < \infty$,

then

$$\phi(\mathbb{E} \ X) \le \mathbb{E} \ \phi(X). \tag{1.2.1}$$

If ϕ is strictly convex and X is not constant with probability 1, then (1.2.1) holds as a sharp inequality.

Proof. Put $t_0 = \mathbb{E} X$. Let L(x) is the straight line such $L(\mathbf{x}) \leq \phi(x)$ coming through point $[t_0, \phi(t_0)]$. Then

$$E \phi(X) \ge \mathbb{I} E L(X) = \mathbb{I} E[c(X - \mathbb{I} E X)] + \phi(\mathbb{I} E X) = \phi(X).$$

If ϕ is strictly convex, then the line touches ϕ at t_0 only, otherwise $L(x) < \phi(x)$. \Box

Definition 1.2.1 The statistic $S : \mathcal{X} \mapsto \mathcal{S}$ is called sufficient for the system \mathcal{P} if there is a version of the conditional distribution $P_{\theta}(\mathbf{X} \in \mathbf{A} \mid S = s) = \lambda_s(\mathbf{A})$ independent of θ .

Theorem 1.2.2 Rao-Blackwell. Let \mathbf{X} be an observable random vector with distribution $P_{\theta} \in \mathcal{P} = \{P_{\vartheta} : \vartheta \in \Theta\}$. Let S be a sufficient statistic for \mathcal{P} . Consider the estimation problem with a strictly convex loss function $L(\theta, t)$. Let T be an estimator of $g(\theta)$ with finite expectation and risk, i.e. $R(\theta, T) = \mathbb{E}_{\theta} L(\theta, T(\mathbf{X})) < \infty \quad \forall \theta$. Denote

$$T^*(S) = \mathbb{I}\!\!E\{T(\mathbf{X})|S(\mathbf{X}) = s\}.$$

Then $T^*(S(\mathbf{X}))$ is an estimator satisfying $R(\theta, T^*) < R(\theta, T)$, unless $T(\mathbf{X}) = T^*(S(\mathbf{X}))$ with probability 1.

Proof. Because S is sufficient, $T^*(S)$ does not depend on θ and thus it is an estimator. Put $\phi(t) = L(\theta, t)$. Then

$$\begin{split} \phi(T^*(s)) &= L(\theta, T^*(s)) = L[\theta, I\!\!E(T|S=s)] = \phi(I\!\!E(T|s)) \\ &< I\!\!E(\phi(T)|S=s) = I\!\!E[L(\theta, T(\mathbf{X}))|S=s] \end{split}$$

unless $T(\mathbf{X}) = T^*(S(\mathbf{X}))$ with probability 1; hence

$$R(\theta, T^*) = \mathbb{E}_{\theta} L[\theta, T^*(S(\mathbf{X}))] < \mathbb{E}_{\theta} L(\theta, T(\mathbf{X})).$$

Remark 1.2.1 If $L(\theta, t)$ is convex, but not strictly, then Theorem 1.2.2 holds with an unsharp inequality.

Definition 1.2.2 (Admissibility). The estimator T is called inadmissible if there exists another estimator T' dominating T, i.e. such that

 $R(\theta, T') \leq R(\theta, T), \quad \forall \theta, \quad with \ a \ sharp \ inequality \ at \ least \ for \ one \ \ \theta.$ (1.2.2)

The estimator T is called admissible with respect to the loss $L(\theta, t)$, if there is no estimator T' satisfying (1.2.2).

If $L(\theta, t)$ is strictly convex, and an admissible estimator exists, then it is uniquely determined. More precisely,

Theorem 1.2.3 Let $L(\theta, t)$ be strictly convex and T be an admissible estimator of $g(\theta)$. If T' is another estimator with the same risk and T, i.e. $R(\theta, T) = R(\theta, T') \quad \forall \theta$, then $T(\mathbf{X}) = T'(\mathbf{X})$ with probability 1.

Proof. Put $T^* = \frac{1}{2}(T + T')$. Then

$$R(\theta, T^*) < \frac{1}{2} [R(\theta, T) + R(\theta, T')] = R(\theta, T) \quad \forall \theta$$

unless T = T' with probability 1. But this contradicts with the admissibility of T. \Box

1.3 Estimation of vector function

The situation is analogous for the estimation of the vector function $\mathbf{g}(\theta) = (g_1(\theta), \ldots, g_k(\theta))$. Its estimator $\mathbf{T}(\mathbf{X})$ is also a k-dimensional vector. The function $\phi : E \mapsto \mathbb{R}^1$ where E is a convex set, is called convex, if

$$\phi(\lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2) \le \lambda \phi(\mathbf{x}_1) + (1-\lambda)\phi(\mathbf{x}_2) \quad \forall \mathbf{x}_1, \mathbf{x}_2 \in E \text{ and } 0 < \lambda < 1.$$

If ϕ is twice differentiable in E, then ϕ is convex [strictly convex] iff the Hessian matrix

$$\mathbf{H} = \left[\frac{\partial^2 \phi(x_1, \dots, x_k)}{\partial x_i \partial x_j}\right]_{i,j=1,\dots,k}$$

is positively semidefinite [positively definite].

If ϕ is convex defined on an open convex set $E \subset \mathbb{R}^k$, then to every fixed point \mathbf{t}^0 there exists a hyperplane

$$y = L(\mathbf{x}) = \phi(\mathbf{t}^0) + \sum_{i=1}^k c_i(x_i - t_i^0)$$

going through the point $(\mathbf{t}^0, \phi(\mathbf{t}^0))$ and satisfying $L(\mathbf{x}) \leq \phi(\mathbf{x}) \quad \forall \mathbf{x} \in E$.

If **X** is a random vector such that $P(\mathbf{X} \in A) = 1$ for an open convex set A and $\mathbb{E}\mathbf{X}$ exists, then $\mathbb{E}\mathbf{X} \in A$.

Chapter 2

Unbiased estimates

2.1 Uniformly best unbiased estimate

 $T(\mathbf{X})$ is unbiased estimate of $g(\theta)$, if $\mathbb{E}(T(\mathbf{X})) = g(\theta) \quad \forall \theta \in \Theta$.

Example: Unbised estimates need not exist. Let X have binomial distribution B(n,p) and let $g(p) = \frac{1}{p}$. If T is an unbiased estimate of g(p), then

$$\sum_{i=1}^{n} T(i) \begin{pmatrix} n \\ i \end{pmatrix} p^{i} (1-p)^{n-i} = \frac{1}{p} \quad \forall p \in (0,1).$$
(2.1.1)

But if $p \downarrow 0$, then the left-hand side of $(2.1.1) \rightarrow T(0)$, while the right-hand side $\rightarrow \infty$, what is a contradiction with the unbiasedness.

The function $g(\theta)$ is called estimable, if there exists at least one unbiased estimate of $g(\theta)$.

Lemma 2.1.1 [Structure of the class of unbiased estimates.] If T_0 is an unbiased estimate of $g(\theta)$, then every unbiased estimate T of $g(\theta)$ can be written in the form $T = T_0 - U$, where U is an unbiased estimate of zero, i.e. such that $\mathbb{E}_{\theta}U = 0 \quad \forall \theta \in \Theta$.

Proof. If T_0 is unbiased, then $T_0 - U$ is unbiased $\forall U$. If T is any unbiased estimate, then $T_0 - T = U$ is an unbiased estimate of zero and $T = T_0 - U$.

Specifically, consider the quadratic loss $L(\theta, t) = (t - g(\theta))^2$. Then the risk of an unbiased estimate T is its variance:

$$R(\theta, T) = I\!\!E_{\theta}(T - g(\theta))^2 = \operatorname{var}_{\theta} T(\mathbf{X}).$$

If T^0 minimizes $\operatorname{var}_{\theta} T(\mathbf{X}) \quad \forall \theta$ among all unbiased estimates of $g(\theta)$, then it is called best minimum variance estimate (BMVE) of $g(\theta)$.

Denote Δ the set of all unbiased estimates of $g(\theta)$ satisfying $\mathbb{E}_{\theta}T^2 < \infty \quad \forall \theta \in \Theta$. Let \mathcal{U} be the set of all unbiased estimates of 0 which belong to Δ .

Theorem 2.1.1 Let **X** have distribution P_{θ} , $\theta \in \Theta$, and let $T \in \Delta$. Then T is BMVE of its expected value $g(\theta)$ if and only if

$$\mathbb{E}_{\theta}[T(\mathbf{X}).U(\mathbf{X})] = 0 \quad \forall U \in \mathcal{U} \quad and \quad \forall \theta \in \Theta.$$

Proof.

(i) Necessity: Let T be BMVE, $\mathbb{E}_{\theta}T = g(\theta)$. Let $U \in \mathcal{U}, \ U \neq 0$. Put $T' = T + \lambda U, \ \lambda \in \mathbb{R}^1$. Then

$$\mathbb{E}_{\theta}T'(\mathbf{X}) = \mathbb{E}_{\theta}T(\mathbf{X}) = g(\theta) \quad \forall \theta$$

$$\Rightarrow \operatorname{var}_{\theta}T'(\mathbf{X}) \ge \operatorname{var}_{\theta}T(\mathbf{X}) \quad \forall \lambda \Rightarrow \operatorname{E}_{\theta}(T')^{2} \ge \operatorname{E}_{\theta}T^{2},$$
thus $\mathbb{E}_{\theta}T^{2} + \lambda^{2}\mathbb{E}_{\theta}U^{2} + 2\lambda\mathbb{E}_{\theta}(T.U) \ge \mathbb{E}_{\theta}T^{2}, \text{ and}$

$$\lambda^{2}\mathbb{E}_{\theta}U^{2} + 2\lambda\mathbb{E}_{\theta}(T.U) \ge 0 \quad \forall \lambda.$$
(2.1.2)

The roots of the quadratic equation $\lambda^2 E_{\theta} U^2 + 2\lambda E_{\theta} (T.U) = 0$ are

$$\lambda = 0$$
 and $\lambda = -\frac{2\mathrm{cov}_{\theta}(\mathrm{T},\mathrm{U})}{\mathrm{var}\mathrm{U}}$,

hence the quadratic function can be negative unless $cov_{\theta}(T, U) = 0$.

(ii) Sufficiency: Let $\mathbb{E}_{\theta}(T.U) = 0 \quad \forall U \in \mathcal{U} \text{ and let } T' \text{ be an unbiased estimate of } g(\theta).$ If $\operatorname{var}_{\theta} T' = \infty$, the T' cannot be better than T. Let $\operatorname{var}_{\theta} T' < \infty$. Then $\operatorname{var}_{\theta}(T-T') < \infty$ and $T - T' \in \mathcal{U}$, thus

$$\mathbb{E}_{\theta}(T(T-T')) = 0 \Rightarrow \mathbb{E}_{\theta}T^{2} = \mathbb{E}_{\theta}(T.T' \Rightarrow \mathbb{E}_{\theta}T^{2} - g^{2}(\theta) = \mathbb{E}_{\theta}(T.T') - g^{2}(\theta)$$

$$\Rightarrow \operatorname{var}_{\theta}T = \operatorname{cov}_{\theta}(T,T') \Rightarrow 0 \leq \operatorname{var}_{\theta}(T-T') = \operatorname{var}_{\theta}T + \operatorname{var}_{\theta}T' - 2\operatorname{var}_{\theta}T$$

$$\Rightarrow \operatorname{var}_{\theta}T \leq \operatorname{var}_{\theta}T'.$$

Definition 2.1.1 The statistic $S(\mathbf{X})$ is called complete for the system of distributions $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ if, for any function h(S)

$$\mathbb{E}_{\theta}h(S(\mathbf{X})) = 0 \quad \forall \theta \Rightarrow h(S(\mathbf{X})) = 0 \ a.s.[P_{\theta}], \ \forall \theta \in \Theta.$$

Theorem 2.1.2 Let X follow distribution $P_{\theta} \in \mathcal{P}$ and let S be a complete and sufficient statistic for \mathcal{P} . Then every estimable function $g(\theta)$ has one and only one unbiased estimate, which is a function of S.

Proof. Let T be an unbiased estimate of $g(\theta)$. Then $T^*(S(\mathbf{X})) = \mathbb{E}(T(\mathbf{X})|S(\mathbf{X}))$ is an unbiased estimate which is a function of S.

Let $T_1(S)$ and $T_2(S)$ be two unbiased estimates of $g(\theta)$. Then $\mathbb{E}_{\theta}(T_1 - T_2) = 0 \quad \forall \theta$, and because S is complete, it implies that $T_1 - T_2 = 0$ s.j. $[P_{\theta}], \ \theta \in \Theta$. \Box **Theorem 2.1.3** (Lehmann-Scheffé). Let X follow distribution $P_{\theta} \in \mathcal{P}$ and let S be a complete and sufficient statistic for \mathcal{P} . Then

- (i) For every estimable function $g(\theta)$ and every loss function $L(\theta, t)$ convex in t, there exists an unbiased estimate T of $g(\theta)$ which uniformly minimizes the risk $R(\theta, T)$.
- (ii) T is the only unbiased estimate which is a function of S. If L is strictly convex in t, then T is the only unbiased estimate with minimum risk.

Proof. The Rao-Blackwell theorem holds for S and convex loss function. By Theorem 2.1.2 the estimate $T^*(S(\mathbf{X})) = \mathbb{E}(T(\mathbf{X})|S(\mathbf{X}))$ is unique, and because S is complete, it cannot be further improved.

2.1.1 How to find the best unbiased estimate

Let $S(\mathbf{X})$ be a complete and sufficient statistic.

Method 1: The best unbiased estimate of an estimable function $g(\theta)$ is any function T(S) such that

$$I\!\!E_{\theta}T(S) = g(\theta) \quad \forall \theta \in \Theta.$$

Method 2: Let us start with any unbiased estimate $T(\mathbf{X})$. Then

 $T'(\mathbf{X}) = \mathbb{I}(T(\mathbf{X})|S)$ is the best unbiased estimate.

Chapter 3

Equivariant estimators

3.1 Estimation of the shift parameter

Let X_1, \ldots, X_n be a sample from a distribution with distribution function $F(x - \theta)$ and density $f(x - \theta)$. The problem is to estimate $\theta \in \mathbb{R}^1$ with respect to the loss $L(\theta, t)$.

Consider the loss which is invariant to the shift, i.e. $L(\theta, t) = L(\theta + c, t + c) \quad \forall c \in \mathbb{R}^1$. Then $L(\theta, t) = L(0, t - \theta)$, hence the loss depends only on the difference $t - \theta$. If the loss is invariant, then the whole problem is invariant to the shift. If we estimate θ by $T(\mathbf{X})$, then a natural estimate of $\theta + c$ is $T(\mathbf{X}) + c$.

Definition 3.1.1 The estimator $T(\mathbf{X})$ is called equivariant (with respect to the shift) if it satisfies

 $T(X_1 + c, \dots, X_n + c) = T(X_1, \dots, X_n) + c \quad \forall c \in \mathbb{R} \quad and \quad \forall \mathbf{X} \in \mathbb{R}^n.$

Lemma 3.1.1 The bias, risk and variance of an equivariant estimate $T(\mathbf{X})$ do not depend on value of θ , and hence are constant with respect to θ .

Proof. If X_1 has d.f. $F(x-\theta)$, then $P(X_1-\theta \le z) = P(X_1 \le z+\theta) = F(z)$, thus $X_1-\theta$ has distribution function $F(\cdot)$. Then

bias
$$= b(\theta) = I\!\!E_{\theta}(T(\mathbf{X})) - \theta = I\!\!E_{\theta}(T(X_1 - \theta, \dots, X_n - \theta)) = I\!\!E_0(T(\mathbf{X})) = b,$$

 $\operatorname{var}_{\theta} \operatorname{T}(\mathbf{X}) = \operatorname{E}_{\theta}(\operatorname{T}(\mathbf{X}) - \operatorname{E}_{\theta}\operatorname{T}(\mathbf{X}))^2 = \operatorname{E}_{\theta}[\operatorname{T}(\mathbf{X} - \theta) + \theta - \operatorname{E}_{\theta}\operatorname{T}(\mathbf{X})]^2$
 $= I\!\!E_{\theta}(T(\mathbf{X} - \theta) - b)^2 = I\!\!E_0(T(\mathbf{X}) - b)^2,$
 $R(T, \theta) = I\!\!E_{\theta}[L(T(\mathbf{X}) - \theta)] = I\!\!E_{\theta}[L(T(\mathbf{X} - \theta))] = I\!\!E_0[L(T(\mathbf{X}))] = R(T).$

We shall look for an equivariant estimate with minimal risk (MRE), i.e. T^* such that

 $R(T^*) < R(T)$ for any equivariant estimator $T \neq T^*$.

First we should investigate the structure of the class of equivariant estimators.

Lemma 3.1.2 Let $T_0(\mathbf{X})$ be an equivariant estimate. Then the estimate $T(\mathbf{X})$ is equivariant if and only if there exists a statistic $U(\mathbf{X})$, invariant to the shift, i.e. satisfying

$$U(X_1 + c, \dots, X_n + c) = U(X_1, \dots, X_n) \quad \forall c \in \mathbb{R}^1, \ \forall \mathbf{X},$$
(3.1.1)

such that

$$T(\mathbf{X}) = T_0(\mathbf{X}) + U(\mathbf{X}) \qquad \forall \mathbf{X}.$$
(3.1.2)

Proof.

• Let T satisfy (3.1.1) and (3.1.2). Then

$$T(\mathbf{X} + c) = T_0(\mathbf{X} + c) + U(\mathbf{X} + c) = T_0(\mathbf{X}) + c + U(\mathbf{X}) = T(\mathbf{X}) + c_{\mathbf{X}}$$

thus T is equivariant.

• Let T be equivariant, and let T_0 be any equivariant estimator. Put $U(\mathbf{X}) = T(\mathbf{X}) - T_0(\mathbf{X})$. Then U is invariant and $T = T_0 + U$.

Lemma 3.1.3 The function $U(\mathbf{x})$ is invariant if and only if it depends only on differences $y_i = x_i - x_1$, i = 2, ..., n in case that $n \ge 2$. If n = 1, then the only invariant are the constant functions.

Proof. If
$$n = 1$$
, then $U(x + c) \equiv U(x)$ iff $U(x)$ is a constant.
Let $n \geq 2$ and $U(\mathbf{x} + c) \equiv U(\mathbf{x})$. Then
 $U(x_1, \ldots, x_n) = U(x_1 - x_1, x_2 - x_1, \ldots, x_n - x_1) = U(0, y_2, \ldots, y_n) = \tilde{U}(y_2, \ldots, y_n).$

Corollary 3.1.1 Let T_0 be an equivariant estimate and $n \ge 2$. Then the estimator T is equivariant if and only if there exists a function $\tilde{U}(Y_2, \ldots, Y_n)$ of $\mathbf{Y} = (Y_2, \ldots, Y_n)$ such that $T(\mathbf{X}) \equiv T_0(\mathbf{X}) - \tilde{U}(\mathbf{Y})$.

Remark 3.1.1 The differences $Y_2 = X_2 - X_1, \ldots, Y_n = X_n - X_1$ determine all differences $X_i - X_j, i \neq j$. Instead of **Y** we may take e.g. $X_1 - \bar{X}, \ldots, X_n - \bar{X}$.

Definition 3.1.2 The statistic $S(\mathbf{X})$ is called maximal invariant with respect to the shift, if it is invariant and if

$$S(\mathbf{X}_1) = S(\mathbf{X}_2)$$
 if and only if $\mathbf{X}_2 = \mathbf{X}_1 + c$ for some $c \in \mathbb{R}^1$

We see that Y_2, \ldots, Y_n or $X_1 - \overline{X}, \ldots, X_n - \overline{X}$ are maximal invariants. Maximal invariants are important, because of the following property:

Lemma 3.1.4 The function $U(\mathbf{x})$ is invariant if and only if it is a function of a maximal invariant.

Proof. If U is a function of S, i.e. $U(\mathbf{x}) = h(S(\mathbf{x}))$, then it is invariant.

Let U be invariant and let $S(\mathbf{x}_1) = S(\mathbf{x}_2)$. Then $\mathbf{x}_2 = \mathbf{x}_1 + c$, hence $U(x_2) = U(x_1)$. \Box

Theorem 3.1.1 (*Minimum risk estimate*). Let T_0 be an equivariant estimate with a finite risk. If for any value of differences **y** there exists $v^*(\mathbf{y})$ which minimizes

$$\mathbb{E}_0\left\{ L[T_0(\mathbf{X}) - v(\mathbf{Y})] \middle| \ \mathbf{Y} = \mathbf{y} \right\}$$

with respect to functions of \mathbf{y} , then there exists a minimum risk estimate and is equal to

$$T^*(\mathbf{X}) = T_0(\mathbf{X}) - v^*(\mathbf{Y}).$$

Proof. Let $T(\mathbf{X}) = T_0(\mathbf{X}) - v(\mathbf{Y})$. Then

$$R_{\theta}(T(\mathbf{X}), \theta) = \mathbb{E}_{\theta}[L(T_0(\mathbf{X}) - v(\mathbf{Y}) - \theta)] = \mathbb{E}_0\{L[T_0(\mathbf{X}) - v(\mathbf{Y})]\}$$
$$\mathbb{E}_0\left[E_0\left\{L(T_0(\mathbf{X}) - v(\mathbf{Y})) \middle| \mathbf{Y}\right\}\right] = \int \mathbb{E}_0\left\{L\left[T_0(\mathbf{X}) - v(\mathbf{y})\right] \middle| \mathbf{y}\right\} dP_0(\mathbf{y})$$

should be minimized with respect to $v(\cdot)$. But this is minimized if the integrand in minimized for every **y**.

Corollary 3.1.2 (a) If
$$L(t-\theta) = (t-\theta)^2$$
, then $v^*(\mathbf{y}) = \mathbb{E}_0\left\{T_0(\mathbf{X}) \mid \mathbf{Y} = \mathbf{y}\right\}$.

(b) If $L(t - \theta) = |t - \theta|$, then $v^*(\mathbf{y})$ is the conditional median of $T_0(\mathbf{X})$ with respect to the conditional distribution of \mathbf{X} given $\mathbf{Y} = \mathbf{y}$.

Example 3.1.1 Let X_1, \ldots, X_n be a sample from the normal distribution $N(\xi, \sigma^2)$ with σ known. Put $T_0(\mathbf{X}) = \bar{X}$. Then \bar{X} and $\mathbf{Y} = (X_2 - X_1, \ldots, X_n - X_1)$ are independent, hence when we consider $\mathbb{E}_0[L(\bar{X} - v(\mathbf{Y})|\mathbf{Y} = \mathbf{y}]$, we conclude that $v(\mathbf{y}) = const$ and is determined by the condition that $\mathbb{E}_0[L(\mathbf{X} - v)] = min$. Thus, if L is a convex and odd function, then v = 0 and \bar{X} is the MRE (minimum risk estimator).

Theorem 3.1.2 Let \mathcal{F} be the class of all distribution functions with Lebesgue densities f, which have a finite fixed variance, say $\sigma = 1$. Let X_1, \ldots, X_n be a sample from the distribution with density $f(x - \xi)$, where $\xi = \mathbb{I} \mathbb{E} X$. Let $r_n(f)$ be the risk of the MRE of ξ with respect to the quadratic loss function. Then $r_n(f)$ is maximal over \mathcal{F} for the normal f.

Proof. If F is normal, then \overline{X} is the MRE and $\mathbb{I}\!\!E(\overline{X} - \xi)^2 = 1/n$. Because 1/n is also the quadratic risk of \overline{X} for every $F \in \mathcal{F}$, the risk of the MRE $\leq 1/n$. \Box

Remark 3.1.2 It follows from Corrollary 3.1.2 that the MRE should satisfy

$$T^{*}(\mathbf{X}) = \bar{X} - \mathbb{E}_{0}(\bar{X}|\mathbf{Y}), \quad hence$$
$$T^{*}(\mathbf{X}) = \bar{X} \iff \mathbb{E}_{0}(\bar{X}|\mathbf{Y}) = 0.$$

But by Theorem of Kagan-Linnik-Rao (1967), $\mathbb{E}_0(\bar{X}|\mathbf{Y}) = 0$ is true if and only if the distribution of X_1, \ldots, X_n is normal.

Example 3.1.2 *Exponential distribution.* Let X_1, \ldots, X_n have the distribution function

$$F(x-\theta) = \begin{cases} 1 - \exp\{x-\theta\} & \dots & x \ge \theta \\ 0 & \dots & x < \theta. \end{cases}$$

Put $T_0(\mathbf{X}) = X_{(1)}$, where $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ are order statistics. Then

$$P(X_{(1)} > x) = \prod_{i=1}^{n} P(X_i > x) = \exp\{-n(x-\theta)\},\$$

hence the density of $X_{(1)}$ is $n \exp\{-n(x-\theta)\}$.

Because $X_{(1)}$ and **Y** are independent, the invariant function $v(\mathbf{Y}) = const$, similarly as in Example 3.1.1. We look for v such that $\mathbb{E}_0[L(X_{(1)} - v)] = \min$.

If $L(t-\theta) = (t-\theta)^2$, then $\mathbb{I}_0(X_{(1)}-v)^2 = \min$ for

$$v = I\!\!E X_{(1)} = n \int_0^\infty x \exp\{-nx\} dx = \frac{1}{n} \int_0^\infty y \exp\{y\} dy = \frac{1}{n}$$

and the MRE is $T^*(\mathbf{X}) = X_{(1)} - \frac{1}{n}$.

3.1.1 The form of Pitman (MRE) estimator

Let X_1, \ldots, X_n be a sample form a distribution with density $f(x - \theta)$. Then the Pitman (MRE) estimator with respect to quadratic loss is $T^*(\mathbf{X}) = T_0(\mathbf{X}) - \mathbb{E}_0[T_0(\mathbf{X})|\mathbf{Y}]$, where T_0 is an initial equivariant estimator with a finite risk. Then $T^*(\mathbf{X})$ can be also written in the following form:

$$T^*(\mathbf{X}) = \frac{\int_{-\infty}^{\infty} t \cdot f(X_1 - t) \dots f(X_n - t) dt}{\int_{-\infty}^{\infty} f(X_1 - t) \dots f(X_n - t) dt}$$

Proof. Put $T_0(\mathbf{X}) = X_1$. We shall look for the conditional density of X_1 given $\mathbf{Y} = \mathbf{y}$ under $\theta = 0$. Make the substitution

$$y_i = x_i - x_1, \quad i = 2, \dots, n$$

 $x_1 = x_1.$

Then the density of $\mathbf{Y}^* = (X_1, Y_2, \dots, Y_n)$ is

$$p(\mathbf{y}^*) = f(x_1, x_1 + y_2, \dots, x_1 + y_n)$$

and the conditional density of X_1 given $\mathbf{y} = (y_2, \ldots, y_n)$ is

$$\frac{f(x_1, x_1 + y_2, \dots, x_1 + y_n)}{\int_{-\infty}^{\infty} f(u, u + y_2, \dots, u + y_n) du} \; .$$

Hence,

$$I\!\!E(X_1|\mathbf{Y}=\mathbf{y}) = \frac{\int_{-\infty}^{\infty} uf(u, u+y_2, \dots, u+y_n) du}{\int_{-\infty}^{\infty} f(u, u+y_2, \dots, u+y_n) du}$$
$$= \frac{\int_{-\infty}^{\infty} (X_1-t)f(X_1-t, X_2-t, \dots, X_n-t) dt}{\int_{-\infty}^{\infty} f(X_1-t, \dots, X_n-t) dt},$$

where we inserted $t = X_1 - u$, $y_i = X_i - X_1$, i = 2, ..., n. Then

$$T^{*}(\mathbf{X}) = X_{1} - I\!\!E(X_{1}|\mathbf{Y} = \mathbf{y}) = X_{1} - \frac{\int_{-\infty}^{\infty} (X_{1} - t)f(X_{1} - t, X_{2} - t, \dots, X_{n} - t)dt}{\int_{-\infty}^{\infty} f(X_{1} - t, \dots, X_{n} - t)dt}$$
$$= \frac{\int_{-\infty}^{\infty} t \cdot f(X_{1} - t) \dots f(X_{n} - t)dt}{\int_{-\infty}^{\infty} f(X_{1} - t) \dots f(X_{n} - t)dt} .$$

Example 3.1.3 Let X_1, \ldots, X_n be a sample from the uniform distribution $R(\theta - \frac{1}{2}, \theta + \frac{1}{2})$ and let $L(t - \theta) = (t - \theta)^2$. Then

$$f(x_1, \dots, x_n) = \begin{cases} 1 & \dots & \theta - \frac{1}{2} \le X_{(1)} \le X_{(n)} \le \theta + \frac{1}{2} \\ 0 & \dots & \text{otherwise} \end{cases}$$

Then, under $\theta = 0$,

$$f(x_1 - t, \dots, x_n - t) = \begin{cases} 1 & \dots & X_{(n)} - \frac{1}{2} \le t \le X_{(1)} + \frac{1}{2} \\ 0 & \dots & \text{otherwise} \end{cases}$$

Put $T_0 = \frac{1}{2}(X_{(1)} + X_{(n)})$. Then

$$\int tf(x_1 - t, \dots, x_n - t)dt = \int_{X_{(n)} - \frac{1}{2}}^{X_{(1)} + \frac{1}{2}} tdt = \frac{1}{2} \left[(X_{(1)} + \frac{1}{2})^2 - (X_{(n)} - \frac{1}{2})^2 \right]$$

and

$$\int f(x_1 - t, \dots, x_n - t) dt = \int_{X_{(n)} - \frac{1}{2}}^{X_{(1)} + \frac{1}{2}} dt = 1 - (X_{(n)} - X_{(1)}).$$

Finally,

$$T^*(\mathbf{X}) = \frac{1}{2} \frac{(X_{(1)} + X_{(n)})(1 - (X_{(n)} - X_{(1)}))}{(1 - (X_{(n)} - X_{(1)}))} = \frac{1}{2}(X_{(1)} + X_{(n)}).$$

3.2 Relation of equivariance and unbiasedness

Lemma 3.2.1 Let $L(t - \theta) = (t - \theta)^2$.

- (i) If $T(\mathbf{X})$ is equivariant and has constant bias $\mathbb{I}_{\theta}T(\mathbf{X}) \theta = b$ (a non-null constant), then $T(\mathbf{X}) - b$ is an equivariant and unbiased estimator, whose risk is less that the risk of $T(\mathbf{X})$.
- (ii) If the MRE is uniquely determined, then it is unbiased.
- (iii) If there exists a uniformly best unbiased estimate which is equivariant, then it is the MRE.

Proof.

(i) Let $T_1(\mathbf{X}) = T(\mathbf{X}) - b$. Then it is equivariant and $\mathbb{E}_{\theta}(T_1(\mathbf{X})) = \theta + b - b = \theta$, and

$$I\!\!E_0(T_1(\mathbf{X}))^2 = I\!\!E_0(T(\mathbf{X}) - b)^2 = I\!\!E_0 T^2(\mathbf{X}) - b^2 < I\!\!E_0 T^2(\mathbf{X})$$

(ii) Let T^* be the MRE and T be any equivariant estimate with finite risk. Then

$$T^*(\mathbf{X}) = T(\mathbf{X}) - \mathbb{E}(T|\mathbf{Y}), \quad \mathbb{E}_0(T^*)^2 < \mathbb{E}_0 T^2, \quad \mathbb{E}_0 T^* = 0.$$

(iii) Let T be uniformly best unbiased and also equivariant. Let T_1 be equivariant. Then $I\!\!E_{\theta}T_1 = \theta + b$ and if $b \neq 0$, then $I\!\!E_0(T_1 - b)^2 < I\!\!E_0T_1^2$. This implies that

$$I\!\!E_{\theta}(T-\theta)^2 = I\!\!E_0(T)^2 \le I\!\!E(T_1-b)^2 \le I\!\!E_0T_1^2.$$

Definition 3.2.1 Estimator T of $g(\theta)$ is called risk unbiased with respect to the loss L, if

$$E_{\theta}L(\theta,T) \leq I\!\!E_{\theta}L(\theta',T) \quad \forall \theta' \neq \theta.$$

The following theorem shows that the MRE is risk unbiased:

Theorem 3.2.1 Let X_1, \ldots, X_n be a sample from a distribution with the density $f(x-\theta)$. Then the MRE with respect to the loss $L(\theta, t) = L(t - \theta)$ is risk unbiased.

Proof. The risk unbiasedness means that

$$\mathbb{E}_{\theta}L(T(\mathbf{X}) - \theta') \ge \mathbb{E}_{\theta}L(T(\mathbf{X}) - \theta) \qquad \forall \theta' \neq \theta,$$

otherwise speaking,

$$I\!\!E_0 L(T(\mathbf{X}) - a) \ge I\!\!E_0 L(T(\mathbf{X})) \qquad \forall a \neq 0.$$

Let T^* be the MRE. Then $T^*(\mathbf{X}) = T_0(\mathbf{X}) - v^*(\mathbf{Y})$ where

$$\mathbb{E}_0[L(T_0(\mathbf{X}) - v^*(\mathbf{Y})|\mathbf{Y} = \mathbf{y}] = \min.$$

Then

$$\mathbb{E}_0[L(T(\mathbf{X}) - a)] = \mathbb{E}_0[L(T_0(\mathbf{X}) - v^*(\mathbf{Y}) - a)]$$

= $\mathbb{E}_0\{\mathbb{E}_0[L(T_0(\mathbf{X}) - v^*(\mathbf{Y}) - a)|\mathbf{Y}]\} \ge \mathbb{E}_0\{\mathbb{E}_0[L(T_0(\mathbf{X}) - v^*(\mathbf{Y})|\mathbf{Y}]\}$
= $\mathbb{E}_0[L(T(\mathbf{X}))]$

where we used the fact that $v^*(\mathbf{Y}) + a$ is also an invariant function.

Chapter 4 Asymptotic behavior of estimates

4.1 Consistency

Let X_1, \ldots, X_n be independent observations with distribution $P_{\theta}, \theta \in \Theta$. We want to estimate the function $g(\theta)$. Then the estimator T_n is called

weakly consistent estimate of $g(\theta)$ if $T_n \xrightarrow{p} g(\theta) \qquad \forall \theta \in \Theta \text{ as } n \to \infty$

strongly consistent estimate of $g(\theta)$ if $T_n \to g(\theta) \ a.s.[P_{\theta}] \quad \forall \theta \in \Theta \text{ as } n \to \infty.$

Let $R(\theta, T_n) = \mathbb{E}_{\theta}(T(\mathbf{X}) - g(\theta))^2$ be the quadratic risk. Then

Theorem 4.1.1 (i) If $\lim_{n\to\infty} R(\theta, T_n) = 0$ $\forall \theta \in \Theta$, then T_n is weakly consistent. (ii) If

$$\lim_{n \to \infty} \mathbb{E}_{\theta} T_n(\mathbf{X}) = g(\theta) \qquad \forall \theta \in \mathbf{\Theta},$$
$$\lim_{n \to \infty} \operatorname{var}_{\theta} T_n(\mathbf{X}) = 0 \qquad \forall \theta \in \mathbf{\Theta}$$

then T_n is weakly consistent.

(iii) Especially, if T_n is unbiased $\forall n$ and $\lim_{n\to\infty} \operatorname{var}_{\theta} T_n(\mathbf{X}) = 0$ $\forall \theta \in \Theta$, then T_n is weakly consistent.

Proof.

(i) By Chebyshev inequality,

$$P_{\theta}(|T_n(\mathbf{X})) - g(\theta)| > \varepsilon) \le \frac{1}{\varepsilon^2} I\!\!E_{\theta} \left(|T_n(\mathbf{X})) - g(\theta)|^2 \right) = \frac{1}{\varepsilon^2} R(\theta, T_n) \to 0.$$

(ii)

$$P_{\theta}(|T_{n}(\mathbf{X})) - g(\theta)| > \varepsilon) \leq \frac{1}{\varepsilon^{2}} \mathbb{E}_{\theta} \left(|T_{n}(\mathbf{X})| - g(\theta)|^{2} \right) \leq \frac{1}{\varepsilon^{2}}$$
$$\frac{1}{\varepsilon^{2}} \mathbb{E}_{\theta} \left[T_{n} - \mathbb{E}_{\theta} T_{n} + \mathbb{E}_{\theta} T_{n} - g(\theta) \right]^{2} \leq \frac{2}{\varepsilon^{2}} \left(\operatorname{var}_{\theta} T_{n} + (\operatorname{b}_{n}(\theta))^{2} \right) \to 0.$$

4.2 Efficiency

Definition 4.2.1 (Limiting risk efficiency of T_n to T_n^*). Assume that two sequences $\{T_n\}, \{T_n^*\}$ of estimates satisfy

$$\lim_{n \to \infty} n^r R(T_n, \theta) = \lim_{n \to \infty} n^r R(T_{m_n}^*, \theta)$$
(4.2.1)

for some sequence $\{m_n\}_{n=1}^{\infty}$ and a fixed r > 0. Then the limit

$$\lim_{n \to \infty} \frac{m_n}{n},$$

if it exists and is independent of the special choice of $\{m_n\}$, is called the limiting risk efficiency of T_n with respect to T_n^* .

Definition 4.2.2 (Relative asymptotic efficiency of T_n to T_n^*). Let

$$\sqrt{n}(T_n - g(\theta)) \xrightarrow{\mathcal{D}} N(0, \sigma^2) \quad as \quad n \to \infty,$$

$$\sqrt{n}(T^*_{m_n} - g(\theta)) \xrightarrow{\mathcal{D}} N(0, \sigma^2) \quad as \quad n \to \infty.$$
(4.2.2)

Then the limit

$$e_{T,T^*} = \lim_{n \to \infty} \frac{m_n}{n},$$

if it exists and is independent of the special choice of $\{m_n\}$, is called the relative asymptotic efficiency (ARE) of T_n to T_n^* .

Theorem 4.2.1 Let

$$\sqrt{n}(T_n - g(\theta)) \xrightarrow{\mathcal{D}} N(0, \sigma^2) \quad as \quad n \to \infty,$$

$$\sqrt{n}(T_n^* - g(\theta)) \xrightarrow{\mathcal{D}} N(0, \sigma_*^2) \quad as \quad n \to \infty.$$
(4.2.3)

Then

$$e_{T,T^*} = \frac{\sigma_*^2}{\sigma^2}.$$

Proof. Assume (4.2.3). Then

$$\sqrt{n}(T_{m_n}^* - g(\theta)) = \sqrt{\frac{n}{m_n}}\sqrt{m_n}(T_{m_n}^* - g(\theta))$$

and

$$\sqrt{n}(T_n - g(\theta)) \xrightarrow{\mathcal{D}} N(0, \sigma^2), \qquad \sqrt{\frac{n}{m_n}} \to \frac{1}{e_{T, T^*}}, \\
\sqrt{m_n}(T^*_{m_n} - g(\theta)) \xrightarrow{\mathcal{D}} N(0, \sigma^2_*),$$

thus $e_{T,T^*} = \sigma_*^2 / \sigma^2$.

Consider the system of distributions $\mathcal{P} = \{P_{\theta}; \theta \in \Theta\}$ with densities $f(x, \theta)$ satisfying

- $(A_0) P_{\theta_1} \neq P_{\theta_2} \text{ for } \theta_1 \neq \theta_2.$
- $(A_1) B = \{x : f(x, \theta) > 0\}$ is independent of θ .
- (A₂) Let X_1, \ldots, X_n be a sample from a distribution with density $f(x, \theta_0)$, where $\theta_0 \in \mathcal{I} \subset \Theta$ for an open interval \mathcal{I} .

Theorem 4.2.2 Under conditions (A_0) – (A_2) , it holds for any $\theta \neq \theta_0, \ \theta \in \Theta$

$$\lim_{n \to \infty} P_{\theta_0} \left\{ \prod_{i=1}^n f(X_i, \theta_0) > \prod_{i=1}^n f(X_i, \theta) \right\} = 1.$$
(4.2.4)

Proof. By the law of large numbers and Jenssen inequality, as $n \to \infty$,

$$\frac{1}{n}\sum_{i=1}^{n}\log\frac{f(X_{i},\theta)}{f(X_{i},\theta_{0})} \xrightarrow{P_{\theta_{0}}} \mathbb{I}_{\theta_{0}} \log\frac{f(X,\theta)}{f(X,\theta_{0})} < \log \mathbb{I}_{\theta_{0}}\frac{f(X,\theta)}{f(X,\theta_{0})} = 0.$$

This implies

$$P_{\theta_0}\left\{\frac{1}{n}\sum_{i=1}^n \log \frac{f(X_i,\theta)}{f(X_i,\theta_0)} > 0\right\} \to 0$$

and that gives (4.2.4).

Denote

$$L(\theta, \mathbf{X}) = \log \prod_{i=1}^{n} f(X_i, \theta)$$
 (the likelihood).

The maximum likelihood estimate (MLE) of θ is defined as a solution of the maximization

$$L(\theta, \mathbf{X}) = \max, \ \theta \in \mathbf{\Theta}.$$

It is one of the solutions of the likelihood equation

$$\frac{\partial L(\theta, \mathbf{X})}{\partial \theta} = \sum_{i=1}^{n} \frac{\dot{f}(X_i, \theta)}{f(X_i, \theta)} = 0.$$
(4.2.5)

Assume that conditions $A_0 - A_2$ are satisfied and that $f(x, \theta)$ is differentiable in $\theta \in \mathcal{I} \subset \Theta$, where $\mathcal{I} \ni \theta_0$. Then

Theorem 4.2.3 Under the above conditions, there exists a root $\hat{\theta}_n$ of the likelihood equation (4.2.5) such that

$$\hat{\theta}_n \xrightarrow{P_{\theta_0}} \theta_0$$

as $n \to \infty$.

Proof. Let a > 0 is such that $(\theta_0 - a, \theta_0 + a) \subset \mathcal{I}$. Let

$$S_n = \{ \mathbf{x} : L(\theta_0, \mathbf{x}) > L(\theta_0 - a, \mathbf{x}) \text{ and } L(\theta_0, \mathbf{x}) > L(\theta_0 + a, \mathbf{x}) \}.$$

By Theorem 4.2.2 is $\lim_{n\to\infty} P_{\theta_0}(S_n) = 1$. There is a local maximum $\hat{\theta}_n$ between $\theta_0 - a$ and $\theta_0 + a$ and it satisfies $L'(\hat{\theta}_n) = 0$. Let θ_n^* be the root of $L'(\theta) = 0$ the closest to θ_0 . Then

$$\lim_{n \to \infty} P_{\theta_0}(|\theta_n^* - \theta_0| < a) = 1 \qquad \forall a > 0.$$

Remark 4.2.1 We know that Θ_n^* exists as the root the closest to θ_0 , but we are not able to find it, because θ_0 is unknown.

Everything holds only with probability tending to 1.

If the likelihood equation has only one root $T_n \forall n \text{ and } \forall \mathbf{x}$, then T_n is consistent estimate of θ_0 .

Theorem 4.2.4 Let the conditions (A_0) – (A_2) be satisfied, and let it further hold

$$(A_3) \qquad \left| \frac{\partial^3 \log f(x,\theta)}{\partial \theta^3} \right| \le M(\mathbf{x})$$

for $\mathbf{x} \in B$ and for $|\theta - \theta_0| < C$, where $M(\mathbf{x})$ is such that $\mathbb{E}_{\theta_0}M(\mathbf{X}) < \infty$. Then every consistent sequence $\hat{\theta}_n = \hat{\theta}_n(\mathbf{X})$ of roots of the likelihood equation is asymptotically normally distributed, *i.e.*

$$\mathcal{L}(\sqrt{n}(\hat{\theta}_n - \theta_0)) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, \frac{1}{\mathcal{I}(\theta_0)}\right)$$

where $\mathcal{I}(\theta) = \int \left(\frac{\partial \log f(x,\theta)}{\partial \theta}\right)^2 f(x,\theta) d\mu$ is the Fisher information.

Some steps of the proof.

$$0 = n^{-1/2} L'_n(\hat{\theta}_n) = n^{-1/2} \sum_{i=1}^n \frac{f(X_i, \hat{\theta}_n)}{f(X_i, \hat{\theta}_n)}$$

= $n^{-1/2} L'_n(\theta_0) + n^{1/2} (\hat{\theta}_n - \theta_0) \cdot \frac{1}{n} L''_n(\theta_0) + \frac{1}{2} n^{-1/2} [n^{1/2} (\hat{\theta}_n - \theta_0)]^2 \frac{1}{n} L''_n(\theta_n^*)$

$$n^{1/2}(\hat{\theta}_n - \theta_0) \approx -\frac{n^{-1/2}L'_n(\theta_0)}{n^{-1}L''_n(\theta_0)} - \frac{1}{2}(\hat{\theta}_n - \theta_0)\frac{n^{-1}L''_n(\theta_n^*)}{n^{-1}L''_n(\theta_0)}.$$

We should show that

$$n^{-1/2}L'_{n}(\theta_{0}) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \ \mathcal{I}(\theta_{0})) \tag{4.2.6}$$

$$-\frac{1}{n}L_n''(\theta_0) = \frac{1}{n}\sum_{i=1}^n \frac{\ddot{f}(X_i,\theta_0)}{f(X_i,\theta_0)} - \frac{1}{n}\sum_{i=1}^n \left(\frac{\dot{f}(X_i,\theta_0)}{f(X_i,\theta_0)}\right)^2 \xrightarrow{p} \mathcal{I}(\theta_0)$$
(4.2.7)

$$\frac{1}{n}L_n'''(\theta_n^*) = O_p(1).$$
(4.2.8)

(4.2.7) follows from the central limit theorem, (4.2.8) from the law of large numbers, (4.2.8) from the consistency of $\hat{\theta}_n$ and from (A₃). Then we obtain

$$0 = n^{-1/2} L'_n(\hat{\theta}_n) \approx \mathcal{N}(0, \mathcal{I}(\theta_0)) - n^{1/2} (\hat{\theta}_n - \theta_0) \mathcal{I}(\theta_0) + \frac{1}{2\sqrt{n}} \left(\sqrt{n}(\hat{\theta}_n - \theta_0)\right)^2 \frac{1}{n} L'''_n(\theta_n^*),$$

thus

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \approx -\frac{n^{-1/2}L'_n(\theta_0)}{n^{-1}L''_n(\theta_0)} - \frac{1}{2}(\hat{\theta}_n - \theta_0)\frac{n^{-1}L''_n(\theta_n^*)}{n^{-1}L''_n(\theta_0)} \approx \mathcal{N}\left(0, \frac{1}{\mathcal{I}(\theta_0)}\right) + o_p(1)$$

Remark 4.2.2 Such estimator is called the efficient likelihood estimator. It is usually the maximal likelihood estimator, but not necessary.

Corollary 4.2.1 If the likelihood equation has only one root, or if it has a multiple root with probability tending to 0 as $n \to \infty$, then, under the conditions of Theorem 4.2.4, the maximal likelihood estimator is asymptotically efficient.

Example 4.2.1 One-parameter exponential family.

$$f(x,\theta) = \exp\{\theta T(\mathbf{x}) + A(\theta),$$

$$\sum_{i=1}^{n} \log f(X_i,\theta) = \theta \sum_{i=1}^{n} T(X_i) + nA(\theta) = \max$$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} T(X_i) = -A'(\theta) = \mathbb{E}_{\theta} \left(\frac{1}{n} \sum_{i=1}^{n} T(X_i)\right) \quad \text{(likelihood equation). (4.2.9)}$$

On the other hand, because $\int f(x,\theta)d\mu = 1$,

$$0 = \int (A'(\theta) + T(x)) \exp\{\theta T(x) + A(\theta)\} d\mu \implies A'(\theta) = -\mathbb{E}_{\theta} T(X).$$

We can show that $I\!\!E_{\theta}T(X)$ is increasing in θ : Indeed,

$$\frac{\partial}{\partial \theta} \mathbb{I}_{\theta} T(X) = \int T(x) (A'(\theta) + T(x)) \exp\{\theta T(\mathbf{x}) + A(\theta) d\mu = \mathbb{I}_{\theta} T^2(X) - (\mathbb{I}_{\theta} T(X))^2 = \operatorname{var}_{\theta} T(X) > 0.$$

Thus the likelihood equation

$$I\!\!E_{\theta}T(X) = \frac{1}{n}\sum_{i=1}^{n}T(X_i)$$

has at most one solution, and the conditions of Theorem 4.2.4 are satisfied. Thus, with probability tending to 0 the likelihood equation has one root $\hat{\theta}_n$, which is consistent, asymptotically efficient and asymptotically normal

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, \frac{1}{\operatorname{var}_{\theta} \mathrm{T}}\right),$$

because

$$\mathcal{I}(\theta) = I\!\!E_{\theta} \left[\frac{\partial \log f(X,\theta)}{\partial \theta} \right]^2 = I\!\!E_{\theta} [T(X) + A'(\theta)]^2 = \operatorname{var}_{\theta} T(X).$$

Example 4.2.2 Truncated normal distribution. Let X_1, \ldots, X_n have normal distribution $\mathcal{N}(\theta, 1)$ truncated at (a, b), a < b, with the density

$$p(x,\theta) = \begin{cases} \frac{1}{\sqrt{2\pi}} \exp\{-\frac{(x-\theta)^2}{2}\} / [\Phi(b-\theta) - \Phi(a-\theta)] & \dots & a < x < b\\ 0 & \dots & otherwise. \end{cases}$$

Thus

$$p(x,\theta) = \exp\{\theta x - \frac{\theta^2}{2} - \frac{x^2}{2} + \log\frac{1}{\sqrt{2\pi}} - \log[\Phi(b-\theta) - \Phi(a-\theta)] \Rightarrow T(x) = x$$

and the likelihood equation has the form

$$\bar{X}_n = I\!\!E_\theta X.$$

If $\theta \to \pm \infty$, then $X \xrightarrow{p} a$ or b, thus also $\mathbb{E}_{\theta} X \to a$ or b and $\mathbb{E}_{\theta} X$ is continuous, hence the likelihood equation has a root.

4.2.1 Shift parameter

Let X_1, \ldots, X_n be a sample from the population with density $f(x - \theta)$. The MLE $\hat{\theta}_n$ is a solution of

$$\prod_{i=1}^{n} f(X_i - \theta) := \max$$

and it is equivariant. The Pitman estimate T_n^* is asymptotically equivalent to $\hat{\theta}_n$ in the sense that $\sqrt{n}(\hat{\theta}_n - T_n^*) \xrightarrow{p} 0$ as $n \to \infty$ (Stone 1974). The likelihood equation can be rewritten as

$$\sum_{i=1}^{n} \frac{f'(X_i - \theta)}{f(X_i - \theta)} = 0.$$
(4.2.10)

If f is strongly unimodal, i.e. $-\frac{f'}{f}$ is strictly increasing, then (4.2.10) has at most one root. Because $\prod_{i=1}^{n} f(x_i - \theta) \to 0$ as $\theta \to \pm \infty$, then $\prod_{i=1}^{n} f(X_i - \theta)$ has the maximum inside the real line, hence the root of (4.2.10) exists and is asymptotically efficient.

4.2.2 Multiple root

Let $L(\theta, \mathbf{x}) = \log \prod_{i=1}^{n} f(x_i, \theta)$. Assume that the equation

$$L'(\theta) = \sum_{i=1}^{n} \frac{f'(X_i, \theta)}{f(X_i, \theta)} = 0$$
(4.2.11)

can have a multiple root, but that there exists a consistent estimate $\tilde{\theta}_n^0$.

- **Theorem 4.2.5 (i)** Let $\tilde{\theta}_n^0$ be a consistent estimate and the conditions $(A_0) -(A_2)$ hold. Then the root of equation (4.2.11), the closest to $\tilde{\theta}_n^0$ is also consistent, and hence it is asymptotically efficient.
- (ii) Let $\tilde{\theta}_n$ be a consistent initial estimate satisfying

$$\sqrt{n}(\tilde{\theta}_n - \theta) = O_p(1) \quad as \quad n \to \infty.$$

Put

$$T_n = \tilde{\theta}_n - \frac{L'(\theta_n)}{L''(\tilde{\theta}_n)}$$

Then T_n is an asymptotically efficient estimate of θ , i.e.

$$\sqrt{n}(T_n - \theta) \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1/\mathcal{I}(\theta)).$$

Proof is similar to the proof of Theorem 4.2.4.