Introduction to Spatial Data Mining

/.1 Pattern Discovery

/.2 Motivation

7.3 Classification Techniques

7.4 Association Rule Discovery Techniques
7.5 Clustering

7.6 Outlier Detection
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Learning Objectives

# Learning Objectives (LO)
# LO1: Understand the concept of spatial data mining (SDM)

e Describe the concepts of patterns and SDM
e Describe the motivation for SDM

=z LO2 : Learn about patterns explored by SDM

=z LO3: Learn about techniques to find spatial patterns
¥ Focus on concepts not procedures!
¥ Mapping Sections to learning objectives

m LO1 - /.1

m LO2 - /7.2.4

= LO3 - /.3-7.6
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Examples of Spatial Patterns

LY

¢ Historic Examples (section 7.1.5, pp. 186)
= 1855 Asiatic Cholera in London : A water pump identified as the source
= Fluoride and healthy gums near Colorado river
= Theory of Gondwanaland - continents fit like pieces of a jigsaw puzlle
% Modern Examples
=z Cancer clusters to investigate environment health hazards
=z Crime hotspots for planning police patrol routes
=z Bald eagles nest on tall trees near open water
= Nile virus spreading from north east USA to south and west
= Unusual warming of Pacific ocean (El Nino) affects weather in USA
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What is a Spatial Pattern ?

*What is not a pattern?

* Random, haphazard, chance, stray, accidental, unexpected

» Without definite direction, trend, rule, method, design, aim, purpose
* Accidental - without design, outside regular course of things

* Casual - absence of pre-arrangement, relatively unimportant

» Fortuitous - What occurs without known cause
*What is a Pattern?

* A frequent arrangement, configuration, composition, regularity
* A rule, law, method, design, description
* A major direction, trend, prediction

* A significant surface irregularity or unevenness
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What is Spatial Data Mining?

L
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Metaphors
= Mining nuggets of information embedded in large databases
e Nuggets = interesting, useful, unexpected spatial patterns
e Mining = looking for nuggets
=z Needle in a haystack
Defining Spatial Data Mining
=z Search for spatial patterns
= Non-trivial search - as “automated” as possible—reduce human effort
= Interesting, useful and unexpected spatial pattern

L
wr
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What is Spatial Data Mining? - 2

L
wr

Non-trivial search for interesting and unexpected spatial pattern

Non-trivial Search
= Large (e.g. exponential) search space of plausible hypothesis
=z Example - Figure 7.2, pp. 186

= EX. Asiatic cholera : causes: water, food, air, insects, ...; water delivery
mechanisms - numerous pumps, rivers, ponds, wells, pipes, ...

Interesting

= Useful in certain application domain

= EX. Shutting off identified Water pump => saved human life
Unexpected

=z Pattern is not common knowledge

=z May provide a new understanding of world

= Ex. Water pump - Cholera connection lead to the “germ” theory

L
wr

&
w
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What is NOT Spatial Data Mining?

¢ Simple Querying of Spatial Data
= Find neighbors of Canada given names and boundaries of all countries
= Find shortest path from Boston to Houston in a freeway map
=z Search space is not large (not exponential)
% Testing a hypothesis via a primary data analysis
=z EX. Female chimpanzee territories are smaller than male territories
= Search space is not large !
=z SDM: secondary data analysis to generate multiple plausible hypotheses
# Uninteresting or obvious patterns in spatial data

= Heavy rainfall in Minneapolis is correlated with heavy rainfall in St. Paul,
Given that the two cities are 10 miles apart.

=z Common knowledge: Nearby places have similar rainfall
¢ Mining of non-spatial data
= Diaper sales and beer sales are correlated in evenings

=z GPS product buyers are of 3 kinds:
e outdoors enthusiasts, farmers, technology enthusiasts
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Why Learn about Spatial Data Mining?

™
W

Two basic reasons for new work
=z Consideration of use in certain application domains
= Provide fundamental new understanding

Application domains

= Scale up secondary spatial (statistical) analysis to very large datasets
e Describe/explain locations of human settlements in last 5000 years
e Find cancer clusters to locate hazardous environments
e Prepare land-use maps from satellite imagery
* Predict habitat suitable for endangered species

= Find new spatial patterns
e Find groups of co-located geographic features

&
w

% Exercise. Name 2 application domains not listed above.
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Why Learn about Spatial Data Mining? - 2

¢ New understanding of geographic processes for Critical questions
= EX. How is the health of planet Earth?
=z EX. Characterize effects of human activity on environment and ecology
=z EX. Predict effect of El Nino on weather, and economy

Traditional approach: manually generate and test hypothesis

= But, spatial data is growing too fast to analyze manually
o Satellite imagery, GPS tracks, sensors on highways, ...

=z Number of possible geographic hypothesis too large to explore manually
e Large number of geographic features and locations
o Number of interacting subsets of features grow exponentially
e Ex. Find tele connections between weather events across ocean and land areas
SDM may reduce the set of plausible hypothesis
= Identify hypothesis supported by the data
= For further exploration using traditional statistical methods

&
w

&
w
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Spatial Data Mining: Actors
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Domain Expert -
= Identifies SDM goals, spatial dataset,
=z Describe domain knowledge, e.g. well-known patterns, e.g. correlates
= Validation of new patterns
Data Mining Analyst
=z Helps identify pattern families, SDM techniques to be used
=z Explain the SDM outputs to Domain Expert
Joint effort
= Feature selection
= Selection of patterns for further exploration

&
w

&
w
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The Data Mining Process
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Choice of Methods

2 Approaches to mining Spatial Data

1. Pick spatial features; use classical DM methods
2. Use novel spatial data mining techniques

P055|ble Approach:

Define the problem: capture special needs
Explore data using maps, other visualization
Try reusing classical DM methods

If classical DM perform poorly, try new methods
Evaluate chosen methods rigorously
Performance tuning as needed
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Learning Objectives

# Learning Objectives (LO)
= LO1: Understand the concept of spatial data mining (SDM)

z LO2 : Learn about patterns explored by SDM
e Recognize common spatial pattern families
e Understand unique properties of spatial data and patterns

=z LO3: Learn about techniques to find spatial patterns
¥ Focus on concepts not procedures!
¥ Mapping Sections to learning objectives

z LO1 - /.1

m LO2 - 7.2.4

z LO3 - /.3-7.6
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7.2.4 Families of SDM Patterns

* Common families of spatial patterns
 Location Prediction: Where will a phenomenon occur ?
» Spatial Interaction: Which subsets of spatial phenomena interact?

* Hot spots: Which locations are unusual ?
*Note:
e Other families of spatial patterns may be defined

* SDM is a growing field, which should accommodate new pattern families
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7.2.4 Location Prediction

*Question addressed
*Where will a phenomenon occur?
*Which spatial events are predictable?
*How can a spatial events be predicted from other spatial events?

*Equations, rules, other methods,

*Examples:
*Where will an endangered bird nest ?
*Which areas are prone to fire given maps of vegetation, draught, etc.?

*What should be recommended to a traveler in a given location?

Exercise:

List two prediction patterns.
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7.2.4 Spatial Interactions

*Question addressed

*Which spatial events are related to each other?

*Which spatial phenomena depend on other phenomenon?

*Examnles:
‘Table 1: Examples of {lc-locaticn Patterns
Domains Example Features Example Co-location Patterns
Ecology Species [¥ile crocodile,Egyptian plover)
Earth science | climate and disturbance events | (wild fire, hot, dry, lightning)
Economics mdustry types (suppliers, prodicers, consnlants)
Epidemickgy | disease types and environmen- | (West Nile diEease, stagnant water sources,
tal events dead birds, mosquitces)
Location- service type requests (tow, police, ambulance)
based service
Weather fronts, precipitation {cold front, warm front, snow fall)
Transpeortation delivery service tracks (IS Pcstal Service, [TPS, newspaper delivery)

*Exercise: List two interaction patterns.
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7.2.4 Hot spots

*Question addressed

*[s a phenomenon spatially clustered?
*Which spatial entities or clusters are unusual?

*Which spatial entities share common characteristics?

-Examples: /

*Cancer clusters [CDC] to launch investigations

*Crime hot spots to plan police patrols

*Defining unusual

*Comparison group:

neighborhood /

sentire population

Significance: probability of being unusual is high
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7.2.4 Categorizing Families of SDM Patterns

* Recall spatial data model concepts from Chapter 2

* Entities - Categories of distinct, identifiable, relevant things

« Attribute: Properties, features, or characteristics of entities

* Instance of an entity - individual occurrence of entities

*Relationship: interactions or connection among entities, €.g. neighbor
» Degree - number of participating entities
* Cardinality - number of instance of an entity in an instance of relationship
* Self-referencing - interaction among instance of a single entity

*Instance of a relationship - individual occurrence of relationships

« Pattern families (PF) in entity relationship models
* Relationships among entities, e.g. neighbor
* Value-based interactions among attributes,

«c.g. Value of Student.age is determined by Student.date-of-birth
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7.2.4 Families of SDM Patterns

* Common families of spatial patterns

» [Location Prediction:

*Determination of value of a special attribute of an entity is by values of other
attributes of the same entity

* Spatial Interaction:
* N-ry interaction among subsets of entities
 N-ry interactions among categorical attributes of an entity

* Hot spots: self-referencing interaction among instances of an entity

*Note:

e Other families of spatial patterns may be defined

* SDM is a growing field, which should accommodate new pattern families
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Unique Properties of Spatial Patterns

¢ Items in a traditional data are independent of each other,
=z Whereas properties of locations in a map are often “auto-correlated”.

Traditional data deals with simple domains, e.g. numbers and
symbols,

=z whereas spatial data types are complex

Items in traditional data describe discrete objects
=z whereas spatial data is continuous

First law of geography [Tobler]:

Everything is related to everything, but nearby things are more related
than distant things.

=z People with similar backgrounds tend to live in the same area
=z Economies of nearby regions tend to be similar
=z Changes in temperature occur gradually over space(and time)

F
b

LT

&
w

&
w
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Example: Clusterng and Auto-correlation

% Note clustering of nest sites and smooth variation of spatial attributes
L4 (Figure 7.3, pp. 188 includes maps of two other attributes)
& Also see Fig. 7.4 (pp. 189) for distributions with no autocorrelation

Wipe tatiom distribufion across the wetland Mest sites for 1995 Darr localion
I I I I
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Moran’s I: A measure of spatial autocorrelation

& Given x = ﬁl,...xn - sampled over n locations. Moran I is defined as

1/
B t
zz
[ - ]
Where z = iLxl T Xy X, T xJF

and W is a normalized contiguity matrix.
Fig. 7.5, pp. 190
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Moran I - example

Figure 7.5, pp. 190

3 g h 1 3 3 ) L1 3 3 7 13
2 d = f 2 & 10 L3 2 & L 14
1 a b C L = 14 L& Ll 10 11 &

1 2 3 1 2 3 1 2 3

(a) (b (c)

*Pixel value set in (b) and (¢ ) are same Moran I is different.
*QQ? Which dataset between (b) and (¢ ) has higher spatial autocorrelation?
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Basic of Probability Calculus

&  Given a set of events €2, the probability P is a function from into
[0,1] which satisfies the following two axioms

and P2 =1
If A and B are mutually exclusive events then P(AB) = P(A)P(B)

& Conditional Probability:

Given that an event B has occurred the conditional probability that
event A will occur is P(A|B). A basic rule is

P(AB) = P(A|B)P(B) = P(B|A)P(A)

p(d| 5)= PEIAOPW
&  Baye’s rule: allows inversions of probabilities P(B)

%  Well known regression equation y — vz + =
allows derivation of linear models
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Learning Objectives

¢ Learning Objectives (LO)
= LO1: Understand the concept of spatial data mining (SDM)
= LO2 : Learn about patterns explored by SDM

@ LO3: Learn about techniques to find spatial patterns
e Mapping SDM pattern families to techniques
¢ classification techniques
e Association Rule techniques
e (Clustering techniques
o Qutlier Detection techniques

& Focus on concepts not procedures!

¥ Mapping Sections to learning objectives
z LO1 - /7.1
m LO2 - /7.2.4
z LO3 - /.3-7.6
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Mapping Techniques to Spatial Pattern Families

* Overview

* There are many techniques to find a spatial pattern familiy

* Choice of technique depends on feature selection, spatial data, etc.

*Spatial pattern families vs. Techniques
» Location Prediction: Classification, function determination
* Interaction : Correlation, Association, Colocations
* Hot spots: Clustering, Outlier Detection
» We discuss these techniques now
*With emphasis on spatial problems

*Even though these techniques apply to non-spatial datasets too
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~~Location Prediction as a classification problem

Given:

1. Spatial Framework s=(s,...s } -
2. Explanatory functions: s, :s—>: .| W’ o AR
3. A dependent class: /.:5~ “=ic..c, i o A
4. A family 5 of function =

mappings: px xp > -

Nest locations " Distance to dupen“watwer
Find: Classification model: 7 € 3

Objective:maximize
classification_accuracy (1, 1)

o 20 40 B0 B0 100 120 140 160
-
Constraints:
. . .
B0 a0

Spatial Autocorrelation exists  Vegetation durability

‘Water depth-

Color version of Fig. 7.3, pp. 188
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Techniques for Location Prediction

% Classical method:
= |ogistic regression, decision trees, bayesian classifier
= assumes learning samples are independent of each other
= Spatial auto-correlation violates this assumption!
== Q? What will a map look like where the properties of a pixel was independent
of the properties of other pixels? (see below - Fig. 7.4, pp. 189)
¥ New spatial methods
2 Spatial auto-regression (SAR), While Noise-No spatial autocorre lalion

= Markov random field |H

e bayesian classifier 7]

0 X3 40 &0 &1 100 120 140 140
nF = 572

Ta% k0

i ol P D m
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patial AutoRegression (SAR)

e Spatial Autoregression Model (SAR)
e y=pWy+ XB+c¢

W models neighborhood relationships
p models strength of spatial dependencies
€ error vector

e Solutions

p and B - can be estimated using ML or Bayesian stat.

e.g., spatial econometrics package uses Bayesian approach
using sampling-based Markov Chain Monte Carlo (MCMC)
method.

Likelihood-based estimation requires O(n3) ops.

Other alternatives — divide and conquer, sparse matrix, LU
decomposition, etc.
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Model Evaluation

& Confusion matrix M for 2 class problems
2 2 Rows: actual nest (True), actual non-nest (False)
z 2 Columns: predicted nests (Positive), predicted non-nest (Negative)
a4 cells listing number of pixels in following groups

Figure 7.7 (pp. 196)

Nest is correctly predicted—True Positive(TP)

Model can predict nest where there was none—False Positive(FP)
No-nest is correctly classified--(True Negative)(TN)

No-nest is predicted at a nest--(False Negative)(FN)
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Model evaluation...cont

&
w

Outcomes of classification algorithms are typically probabilities

Probabilities are converted to class-labels by choosing a threshold
level b.

For example probability > b is “nest” and probability < b is “no-nest”
TPR is the True Positive Rate, FPR is the False Positive Rate

&
w

&
w

N
W

TP (b)
TP (b) + FN (b)

TPR (b) =

FP (b)
FP (b)+ IN (b)

FPR (b) =
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Comparing Linear and Spatial Regression

RO Ctirve for testing data ( Stubble marshlbnd 199 5)
1

R OC Curve for learning data (Dan mashland 1935)

0.9
0.3
- X Q7
& % 06
u
:E % 0.3
w 0.4
= E
H F o3
0z JI."" == (Clmsical Regresion Q.2 i"f == Chssical Regression |
a1 ,,FJII = ESpatial Regession ] 0.1 _.i'f —— ESpatil Regremion —]
a | | | | | | | I:Il"' | | | | | | |
i gl 02 03 04 05 O 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1
Fake Positive Rate False Positive Rate
(2} Training Data (b) Test Data

*The further the curve away from the the line TPR=FPR the better
*SAR provides better predictions than regression model. (Fig. 7.8, pp. 197)



Spatial Databases
A TOUR

Shashi

MRF Bayesian Classifier

e Markov Random Field based Bayesian Classifiers
o Pr(li [ X, L)) = Pr(X[l;, L) Pr(l; | L) / Pr (X)
e Pr(li| L) can be estimated from training data
e L. denotes set of labels in the neighborhood of si excluding

labels at si
e Pr(X|l, L) can be estimated using kernel functions
e Solutions

e stochastic relaxation [Geman]
e [terated conditional modes [Besaqg]
e Graph cut [Boykov]
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 Comparison (MRF-BC vs. SAR)

 SAR can be rewritten as y = (QX) B + Qe
«  where Q = (I- pW)"!, a spatial transform.
SAR assumes linear separability of classes in transformed feature space

«  MRF model may yields better classification accuracies than SAR,

. if classes are not linearly separable in transformed space.

e  The relationship between SAR and MRF are analogous to the relationship
between logistic regression and Bayesian classifiers.
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MRF vs. SAR (Summary)

Criteria Spatial Autoregression | Markov Random Field
model Bayesian Clagssifier

Input Lo -t h ters oo K

Intermediate Resulis B p Pr{L|L.), Pr{X|L, L.)

- Autocorrelation

Y es

Qutput Pr{l, | X .,L;)based on |Pr{l| X .L;) based on
E. p
Decision Select most likely Select most likely
class class
For a given feature For a given feature
value value
Asgsumptions
- Pr{X]|1) Exponential family -
- Clasz bndry Linearly separable -

Yes
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Learning Objectives

¢ Learning Objectives (LO)
= LO1: Understand the concept of spatial data mining (SDM)
= LO2 : Learn about patterns explored by SDM

@ LO3: Learn about techniques to find spatial patterns
e Mapping SDM pattern families to techniques
¢ classification techniques
e Association Rule techniques
e (Clustering techniques
o Qutlier Detection techniques

& Focus on concepts not procedures!

¥ Mapping Sections to learning objectives
z LO1 - /7.1
m LO2 - /7.2.4
z LO3 - /.3-7.6
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Techniques for Association Mining

Classical method:
z2  Association rule given item-types and transactions
r2 - assumes spatial data can be decomposed into transactions
= However, such decomposition may alter spatial patterns
& New spatial methods
=z Spatial association rules
=z Spatial co-locations

!
N

& Note: Association rule or co-location rules are fast filters to reduce the number of
pairs for rigorous statistical analysis, e.g correlation analysis, cross-K-function for
spatial interaction etc.

# Motivating example - next slide
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_Associations, Spatml associations, Co-location

Co-location Patterns — Sample Data

10 20 4™

. X

Answers: 4? and :
il i)

find patterns from the following sample dataset?
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Colocation Rules — Spatial Interest Measures

Co—localion Palierns — Sample Dala K functionof pairs of spatial features
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Association Rules Discovery

# Association rules has three parts
= rule: X=2Y or antecedent (X) implies consequent (Y)
= Support = the number of time a rule shows up in a database
=z Confidence = Conditional probability of Y given X
¢ Examples
=z Generic - Diaper-beer sell together weekday evenings [Walmart]
= Spatial:
o (bedrock type = limestone), (soil depth < 50 feet) => (sink hole risk = high)

e support = 20 percent, confidence = 0.8

o Interpretation: Locations with limestone bedrock and low soil depth have high
risk of sink hole formation.
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Association Rules: Formal Definitions

¢ Consider a set of items, I=1{i,.,i}

& Consider a set of transactions r= ?ﬁ Z, -
= where each 7, is a subset of I.

# Supportof C o c)= Are ",c

¢ Then ; — , iff
= Support: occurs in at least s percent of the transactions:
= Confidence: Atleast c% o A1)

o)

O-Ill A fz)

|7 |

&
w

Example: Table 7.4 (pp. 202) using data in Section 7.4
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Apriori Algorithm to mine association rules

% Key challenge
= Very large search space
= N item-types => power(2, N) possible associations
Key assumption
=z Few associations are support above given threshold
= Associations with low support are not intresting
Key Insight - Monotonicity
= If an association item set has high support, ten so do all its subsets
Details
=z Psuedo code on pp. 203
= Execution trace example - Fig. 7.11 (pp. 203) on next slide

N
W

N
W

&
w
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Association Rules: Example

TREQUENT ITEMSETS

ITEMS
SUPPORT ITEMSETS
Car CI» Player i
L OO0 [ 6) A
839(35) C.AC
Car Alarm A
&T%(4) C.T. V. DA, DC.
AT. AV, DAC
™ T
S0%a(3) DV, TC, VC. DAV,
VR W
DWVC, ATC. AV,
DAVC
Cc:-mpm_cl: _
DATABASE ASSOCTATION RULES WITH CONFIDENCE = 100 %
L DAYVC D = A (4/4) D = A (4/4) VO e A (33
D = C (4/4) D = A (3/3) DV —= A (3/3)
2 ATC
T = AC (44| T —=— A (3/3) VO e A (33
3 DAYVC T = C (4/4) D —=— A (4/1) |DAV—=— A (3/3)
N A (444 D —=— A (3/3) | DVOC—=— A (3/3)
4 DATC
O e A (5/5) D = A (33 | AVE e A 303
5 DATVC
& ATV ASSOCTATION RULES WTITH CONFIDEN CE >=80%
C e A5 A C(5/6) C = DA (4S5
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Spatial Association Rules

*Spatial Association Rules
* A special reference spatial feature
 Transactions are defined around instance of special spatial feature
* [tem-types = spatial predicates
*Example: Table 7.5 (pp. 204)

spatial Association Rule sup. Conl.

Stem i philx, high) & Distance fogdeeix, far)
— Vepetamtion_Darakilit vix, moderaie) (0, ] (.54

VegetationgDerabrlit vix, moderate) A Distancedogwaterix, close|
— Slem_fleiphtix, highi 005 (Y3

Distancedowaterix, far] A Water_Depthiz, shallow) — Stem_Heipht (x, high 005 044
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Colocation Rules

% Motivation
z  Association rules need transactions (subsets of instance of item-types)
. Spatial data is continuous
. Decomposing spatial data into transactions may alter patterns

& Co-location Rules
. For point data in space
2 Does not need transaction, works directly with continuous space
= Use neighborhood definition and spatial joins
. “Natural approach”
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Colocation Rules

Zo—lkocalion Pallarns —Sampla Dala
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Co-location rules vs. association rules

Association rules

Co-location rules

Underlying space

discrete sets

continuous space

item-types

item-types

events /Boolean spatial features

collection

Transaction (T)

Neighborhood (N)

prevalence measure

support

participation index

conditional probability metric P.fAInT|BinT]

Pr.[ Ain N(L) | B at location L ]

Participation index

= min{pr(f, c)}

Where pr(f, c) of feature f,in co-location ¢ = {f;, f;, ..., fi}:
= fraction of instances of f, with feature {f,, ..., f.;, ., ..., f.} nearby

N(L) = neighborhood of location L
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Learning Objectives

¢ Learning Objectives (LO)
= LO1: Understand the concept of spatial data mining (SDM)
= LO2 : Learn about patterns explored by SDM

@ LO3: Learn about techniques to find spatial patterns
e Mapping SDM pattern families to techniques
¢ classification techniques
e Association Rule techniques
e (Clustering techniques
o Qutlier Detection techniques

& Focus on concepts not procedures!

¥ Mapping Sections to learning objectives
z LO1 - /7.1
m LO2 - /7.2.4
z LO3 - /.3-7.6
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Idea of Clustering

¢ Clustering
m process of discovering groups in large databases.
. Spatial view: rows in a database = points in a multi-dimensional space
. Visualization may reveal interesting groups

¢ A diverse family of techniques based on available group descriptions

¢ Example: census 2001
m Attribute based groups
e Homogeneous groups, e.g. urban core, suburbs, rural
e Central places or major population centers

e Hierarchical groups: NE corridor, Metropolitan area, major cities,
neighborhoods

e Areas with unusually high population growth/decline
2 Purpose based groups, e.g. segment population by consumer behaviour
o Data driven grouping with little a priori description of groups

e Many different ways of grouping using age, income, spending, ethnicity, ...
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Spatial Clustering Example

¢ Example data: population density
Fig. 7.13 (pp. 207) on next slide

¢ Grouping Goal - central places
identify locations that dominate surroundings,
= groups are S1 and S2

¢ Grouping goal - homogeneous areas
= groups are Al and A2

¢ Note: Clustering literature may not identify the grouping goals explicitly.
= Such clustering methods may be used for purpose based group finding
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Spatial Clustering Example

¢ Example data: population density
Fig. 7.13 (pp. 207)

¢ Grouping Goal - central places
identify locations that dominate surroundings,
= groups are S1 and S2

¢ Grouping goal - homogeneous areas
= groups are Al and A2
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Techniques for Clustering

@ Categorizing classical methods:
=z Hierarchical methods
Partitioning methods, e.g. K-mean, K-medoid
=z Density based methods
=z Grid based methods

% New spatial methods

== Comparison with complete spatial random processes
=z Neighborhood EM

@ Our focus:
= Section 7.5: Partitioning methods and new spatial methods
= Section 7.6 on outlier detection has methods similar to density based methods
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Algorithmic Ideas in Clustering

% Hierarchical—
= All points in one clusters
z then splits and merges till a stopping criterion is reached

% Partitional—
. Start with random central points
2 assign points to nearest central point
= update the central points
= Approach with statistical rigor
% Density
s Find clusters based on density of regions
% Grid-based—
= Quantize the clustering space into finite number of cells
= use thresholding to pick high density cells
z merge neighboring cells to form clusters
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Learning Objectives

¢ Learning Objectives (LO)
= LO1: Understand the concept of spatial data mining (SDM)
= LO2 : Learn about patterns explored by SDM

@ LO3: Learn about techniques to find spatial patterns
e Mapping SDM pattern families to techniques
¢ classification techniques
e Association Rule techniques
e (Clustering techniques
o Qutlier Detection techniques

& Focus on concepts not procedures!

¥ Mapping Sections to learning objectives
z LO1 - /7.1
m LO2 - /7.2.4
z LO3 - /.3-7.6
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Idea of Outliers

¢ What is an outlier?
. Observations inconsistent with rest of the dataset
z Ex. Point D, L or G in Fig. 7.16(a), pp. 216
= Techniques for global outliers
o Statistical tests based on membership in a distribution
— Pr.[item in population] is low
e Non-statistical tests based on distance, nearest neighbors, convex hull, etc.

¢ What is a special outliers?
. Observations inconsistent with their neighborhoods
2 A local instability or discontinuity
z Ex. Point S in Fig. 7.16(a), pp. 216

¢ New techniques for spatial outliers
s Graphical - Variogram cloud, Moran scatterplot
z  Algebraic - Scatterplot, Z(5(x))
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Graphical Test 1- Variogram Cloud

-t

* Create a variogram by plotting (attribute difference, distance) for each pair of points
» Select points (e.g. S) common to many outlying pairs, e.g. (P,S), (Q,S)
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Graphical Test 2- Moran Scatter Plot

* Plot (normalized attribute value, weighted average in the neighborhood) for each location
*Select points (e.g. P, Q, S) in upper left and lower right quadrant
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Quantitative Test 1 : Scatterplot

* Plot (normalized attribute value, weighted average in the neighborhood) for each location
* Fit a linear regression line
Select points (e.g. P, Q, S) which are unusually far from the regression line
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Ouantitative Test 2 : Z(S(x)) Method

. Compute 7. = )74 where S()= L) E,c..., (S

S(x) o5
AN

*Select points (e.g. S with Z(S(x)) above 3

Spatial Statistic Zsixy Test
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Spatial Outlier Detection: Example Color version of Fig. 7.19 pp. 219

Given
A spatial graph G={V,E}
A neighbor relationship (K neighbors)
An attribute function r:V->R
Find
O ={v,| v; €V, v,is a spatial outlier}

Spatial Outlier Detection Test
1. Choice of Spatial Statistic

S(x) = [f()~E ye neo(f(Y))]
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2. Test for Qutlier Detection
| (S(X) - pg) /o5 | > 6

[35W Station ID{North Bound)
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40
Rationale: -
Theorem: S(x) is normally distributed 55 -_ R
if f(x) is normally distributed 2 468 19121476 18202224

Color version of Fig. 7.21(a) pp. 220
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Spatial Outlier Detection- Case Study

Yolurne Distribution at 10:00am on 1/15/1997 Normalized Volume Diflerence over Spatial Neighborhood at 10:00am on 1/15/19
70 ; T T ; 150 T T ; T T T T
601 f
Verifying normal distribution of f(x) and S(x) o (X)
g £ 100r
H ¥
§40 x
9 ©
é\'iﬂ ‘E
5 J 50_
20 Z
5“ L S 3 v 4 @ i B ® @&
Volume Value

Normalized Yolume Differerce over Spafiel Neighborhood

Comparing behaviour of spatial outlier (e.g. bad sensor) detexted by a test with two neighbors
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Conclusions

& Patterns are opposite of random
¢ Common spatial patterns: location prediction, feature interaction, hot spots,
& SDM = search for unexpected interesting patterns in large spatial databases
¢ Spatial patterns may be discovered using
. Techniques like classification, associations, clustering and outlier detection
z  New techniques are needed for SDM due to
e Spatial Auto-correlation
e Continuity of space



