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Perceptron Revisited:  Linear Separators 

• Binary classification can be viewed as the task of 

separating classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)
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Linear Separators

• Which of the linear separators is optimal? 
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Classification Margin

• Distance from example xi to the separator is 

• Examples closest to the hyperplane are support vectors. 

• Margin ρ of the separator is the distance between support vectors.
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Maximum Margin Classification

• Maximizing the margin is good according to intuition and 

PAC theory.

• Implies that only support vectors matter; other training 

examples are ignorable. 
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Soft Margin Classification  

• What if the training set is not linearly separable?

• Slack variables ξi can be added to allow misclassification of difficult or 

noisy examples, resulting margin called soft.

ξi

ξi
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Linear SVMs:  Overview

• The classifier is a separating hyperplane.

• Most “important” training points are support vectors; they define the 

hyperplane.

• Quadratic optimization algorithms can identify which training points xi are 

support vectors with non-zero Lagrangian multipliers αi.

• Both in the dual formulation of the problem and in the solution training 

points appear only inside inner products: 

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and 

(1) Σαiyi = 0

(2)  0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b
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Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard? 

• How about… mapping data to a higher-dimensional space:
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Non-linear SVMs:  Feature spaces

• General idea:   the original feature space can always be mapped to some 

higher-dimensional feature space where the training set is separable:

Φ:  x → φ(x)
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The “Kernel Trick”

• The linear classifier relies on inner product between vectors K(xi,xj)=xi
Txj

• If every datapoint is mapped into high-dimensional space via some 

transformation Φ:  x → φ(x), the inner product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

• A kernel function is a function that is eqiuvalent to an inner product in 

some feature space.

• Example: 

2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi
Txj)

2
,

Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

K(xi,xj)=(1 + xi
Txj)

2
,= 1+ xi1

2xj1
2 + 2 xi1xj1 xi2xj2+ xi2

2xj2
2 + 2xi1xj1 + 2xi2xj2=

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]
T [1  xj1

2  √2 xj1xj2  xj2
2  √2xj1  √2xj2] =

= φ(xi)
Tφ(xj),    where φ(x) = [1  x1

2  √2 x1x2  x2
2   √2x1  √2x2]

• Thus, a kernel function implicitly maps data to a high-dimensional space 

(without the need to compute each φ(x) explicitly).
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Examples of Kernel Functions

• Linear: K(xi,xj)= xi
Txj

– Mapping Φ:    x → φ(x), where φ(x) is x itself

• Polynomial of power p: K(xi,xj)= (1+ xi
Txj)

p

– Mapping Φ:    x → φ(x), where φ(x) has           dimensions 

• Gaussian (radial-basis function): K(xi,xj) =

– Mapping Φ:  x →  φ(x), where φ(x) is infinite-dimensional: every point is 
mapped to a function (a Gaussian); combination of functions for support 
vectors is the separator.

• Higher-dimensional space still has intrinsic dimensionality d (the mapping 
is not onto), but linear separators in it correspond to non-linear separators 
in original space.
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SVM applications

• SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and 

gained increasing popularity in late 1990s.

• SVMs are currently among the best performers for a number of classification 

tasks ranging from text to genomic data.

• SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, 

sequences, relational data) by designing kernel functions for such data.

• SVM techniques have been extended to a number of tasks such as regression 

[Vapnik et al. ’97], principal component analysis [Schölkopf et al. ’99], etc. 

• Most popular optimization algorithms for SVMs use decomposition to hill-

climb over a subset of αi’s at a time, e.g. SMO [Platt ’99] and [Joachims ’99]

• Tuning SVMs remains a black art:  selecting a specific kernel and parameters is 

usually done in a try-and-see manner. 


