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Abstract Plants exhibit an amazing developmental flex-

ibility. Plant embryogenesis results in the establishment of

a simple apical–basal axis represented by apical shoot and

basal root meristems. Later, during postembryonic growth,

shaping of the plant body continues by the formation and

activation of numerous adjacent meristems that give rise to

lateral shoot branches, leaves, flowers, or lateral roots. This

developmental plasticity reflects an important feature of the

plant’s life strategy based on the rapid reaction to different

environmental stimuli, such as temperature fluctuations,

availability of nutrients, light or water and response

resulting in modulation of developmental programs. Plant

hormones are important endogenous factors for the inte-

gration of these environmental inputs and regulation of

plant development. After a period of studies focused pri-

marily on single hormonal pathways that enabled us to

understand the hormone perception and signal transduction

mechanisms, it became obvious that the developmental

output mediated by a single hormonal pathway is largely

modified through a whole network of interactions with

other hormonal pathways. In this review, we will summa-

rize recent knowledge on hormonal networks that regulate

the development and growth of root with focus on the

hormonal interactions that shape the root apical meristem.
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Abscisic acid � Auxin � Brassinosteroid � Cytokinin �
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Introduction: when root grows

The root meristem is an organ of well-defined structure

with stereotypical patterns of cell types along radial and

longitudinal axes. The radial pattern is organized in con-

centric rings of lateral root cap, epidermis, ground tissue

(cortex and endodermis) and a pericycle surrounding a

central stele (Dolan et al. 1993; van den Berg et al. 1998).

The radial patterning is laid down during embryogenesis

and maintained by stem cell niche activity consisting of

four sets of initials: the lateral root cap/epidermal, the

cortical/endodermal, the columella and the pericycle/vas-

cular initials surrounding quiescent centre (QC) (Dolan

et al. 1993; van den Berg et al. 1998). Stem cells have the

capacity for prolonged self-renewal (Watt and Hogan

2000). Each stem cell undergoes an asymmetric division to

produce one daughter cell that remains under the influence

of a short-range signal from the QC, preventing differen-

tiation and maintaining the stem cell status and the other

daughter cell becomes part of differentiated tissues (van

den Berg et al. 1998).

Along the longitudinal axis, the root meristem forms a

distal root tip, including stem cell niche, columella and

lateral root cap, proximal meristem with a population of

rapidly dividing cells and elongation zone where cells

leaving the root meristem undergo rapid elongation and

mature (Dolan et al. 1993). The longitudinal root meristem

organization is completed during the postembryonic

development when the balance in the rate of generation

of new cells in the proximal root meristem and the
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differentiation of daughter cells leaving root meristem is

established, resulting in the formation of the root meristem

of stable size (Dello Ioio et al. 2007; Dolan et al. 1993).

The identification of mutants with defects in the root

meristem organization has provided a basis for under-

standing the mechanisms of radial and longitudinal

patterning in the root. Organization of root meristem along

the longitudinal axis is primarily under the control of the

plant hormone auxin and of the downstream auxin-acting

family of PLETHORA (PLT) (AP2-like transcription fac-

tors) genes. The PLT expression follows the auxin gradient

along the root meristem with its maxima in the stem cell

niche region. PLT genes have been shown to act in a

dosage dependent manner, high activity promotes stem cell

identity and maintenance, whereas low levels promote

mitotic activity of stem cell daughters; and even lower

levels are required for cell differentiation (Aida et al. 2004;

Galinha et al. 2007).

In parallel with the auxin and PLT pathway, the

SHORTROOT/SCARECROW (SHR/SCR) pathway regu-

lates the radial patterning, and they converge to specify and

regulate function of the stem cell niche. Plants homozygous

for the scr and shr mutations are defective in the division of

the cortex/endodermis initial daughter cell, resulting in the

formation of a single layer of ground tissue instead of two

(Benfey et al. 1993; Scheres et al. 1995). Functional

studies revealed that SHR, a transcription factor of the

GRAS family, acts upstream of the SCR transcription

factor (Helariutta et al. 2000). SHR moves from the central

vasculature, place of its transcription, into the surrounding

tissue layer, where after heterodimerization with SCR, it

stimulates by a positive feedback loop the expression of

SCR gene (Cui et al. 2007; Di Laurenzio et al. 1996;

Nakajima et al. 2001). Ectopic expression experiments

suggested that the SHR movement is limited to a single cell

layer and that heterodimerization with SCR might be the

mechanism to sequester the SHR protein in the nucleus and

restrain its movement to a single cell layer adjacent to the

stele (Cui et al. 2007). Recently, two zinc-finger proteins,

MAGPIE (MGP) and JACKDAW (JKD), have been

identified as factors required for radial patterning and

contribute to refining the SHR and SCR action range

(Welch et al. 2007).

Both auxin/PLT and SHR/SCR pathways are closely

interconnected with the activities of several hormonal

pathways. The PLT pathway acts downstream of the auxin

signalling (Aida et al. 2004; Galinha et al. 2007), whereas

among the eight direct targets of SHR, as elegantly iden-

tified by a set of microarray analyses (Levesque et al.

2006), one is involved in the brassinosteroid pathway

(cytochrome P450/BRox62 regulating brassinosteroid bio-

synthesis; (Shimada et al. 2003)) and the other in the

gibberellin signalling (SNEEZY/SLEEPY2 (SNE) F-box

protein (Levesque et al. 2006)). Several other indirect tar-

gets are the molecular components of auxin biosynthesis

SUR2(SUPERROOT) (Barlier et al. 2000), signalling

IAA12/BDL(BODENLOS) and ARF5/MP(MONOPTEROS)

(Hamann et al. 2002; Hardtke and Berleth 1998) and

transport PIN3 and PIN7 (Friml et al. 2003a; Friml et al.

2002b); brassinosteroid perception BRL3 (Cano-Delgado

et al. 2004) and biosynthesis Cyp90D1 (Kim et al. 2005)

and gibberellin signalling RGL1 and RGL2 (Lee et al.

2002; Wen and Chang 2002); and GA3 biosynthesis

(Helliwell et al. 1998; Levesque et al. 2006). This clearly

reflects that root development requires not only transcrip-

tional network but also network of hormonal signalling.

Indeed, besides the plant hormone auxin, the key hor-

monal regulator of the root organogenesis, other plant

hormones, e.g. cytokinin (Dello Ioio et al. 2007; Mahonen

et al. 2006; Werner et al. 2003), ethylene (Ortega-Martinez

et al. 2007; Swarup et al. 2007), brassinosteroids (Mouchel

et al. 2006), gibberellin (Fu and Harberd 2003; Ubeda-

Tomas et al. 2008) and abscisic acid (Achard et al. 2003)

also participate in the regulation of different aspects of root

organogenesis and activity. Lately, it became obvious that

single hormone input is strongly modulated by other hor-

monal pathways acting in parallel. Characterization of

these interactions and their impact on the root meristem

development will be discussed in detail in the following

sections.

Auxin: the hormonal regulator of root development

Auxin has been shown to regulate an extremely broad

range of developmental processes, such as embryogenesis,

organogenesis of leaves, flowers, ovules or lateral roots,

gravitropic responses and apical hook formation. The

whole process of root organogenesis, begining with the

establishment of the root pole in embryos (Friml et al.

2003a; Weijers et al. 2006), positioning and formation of

stem cell niche (Blilou et al. 2005; Sabatini et al. 1999),

maintenance of mitotic activity in proximal meristem

(Beemster and Baskin 2000; Dello Ioio et al. 2007; Galinha

et al. 2007; Stepanova et al. 2008) and rapid elongation

and differentiation of cells leaving the root meristem

(Rahman et al. 2007) has been shown to be under the

control of auxin. A real breakthrough in our understanding

of how auxin molecule can lead to such a variety of

developmental responses is the discovery of the instructive

function of the auxin gradient formed along the longitu-

dinal axis of the root meristem (Benkova et al. 2003; Friml

et al. 2002a; Sabatini et al. 1999). The auxin gradient is

generated by the concerted action of AUX/LAX auxin

influx carriers (Bennett et al. 1996; Yang et al., 2006), PIN

auxin efflux carriers (Galweiler et al. 1998; Luschnig et al.

1998; Friml et al. 2002a, b; Friml et al. 2003b; Petrášek
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et al. 2006) and members of the multi-drug-resistant/

P-glycoprotein (MDR/PGP) subfamily of ATP-binding

cassette (ABC) proteins (Blakeslee et al., 2007). Interfer-

ence with its establishment results in dramatic patterning

and developmental defects in the root meristem (Blilou

et al. 2005; Friml et al. 2002a; Sabatini et al. 1999).

It is still not precisely known how the auxin gradient

achieves the specificity of the response required for the

different aspects of the root meristem development by

using the signal transduction pathway consisting of four

TIR/AFB auxin receptors of the F-box protein family

(Dharmasiri et al. 2005), 29 AUX/IAA negative regulators

(Overvoorde et al. 2005) and 23 ARF (AUXIN

RESPONSE FACTORS) transcription factors (Okushima

et al. 2005), activating the expression of downstream auxin

response genes. It has been proposed that certain combi-

nations of AUX/IAAs and ARFs determine the response

specificity (Hamann et al. 2002; Knox et al. 2003; Weijers

et al. 2005). In the case of root development, the specific

pair of IAA12/BDL and ARF5/MP was identified to

determine the establishment of root pole in early embryo-

genesis (Hamann et al. 2002). Beside the BDL-MP pair,

some other genes of the auxin signalling pathway (SHY2/

IAA3, AXR3/IAA17 and AXR2/IAA7) were shown to be

involved in different aspects of root growth (Leyser et al.

1996; Nagpal et al. 2000; Tian and Reed 1999), although

their direct ARF counterparts are still unknown. The PLT

gene family seems to play an important role in the devel-

opmental interpretation of the auxin gradient. PLT genes

respond in an auxin concentration-dependent manner to

regulate stem cell identity and maintenance, mitotic

activity of stem cells’ daughters and cell differentiation

(Galinha et al. 2007).

Auxin: universal partner in hormonal interactions?

Interestingly, many mutants in the auxin pathway exhibit not

only auxin-related root phenotypes but also an altered sen-

sitivity to other hormones. For example, root growth of the

auxin transport mutants aux1 and pin2 is also ethylene

resistant (Roman et al. 1995). Similarly, mutants in the auxin

signalling shy2-2/iaa3, axr2/iaa7 and tir1 do not exclusively

exhibit an auxin-resistant root phenotype, but also exhibit a

changed sensitivity to other hormones such as cytokinins,

abscisic acid or ethylene (Alonso et al. 2003; Tian and Reed

1999; Wilson et al. 1990). This promiscuous behaviour of

mutants points out that auxin regulated events in root growth

are tightly interconnected with other hormonal pathways and

in many interactions auxin seems to act downstream of other

hormonal pathways. From longstanding investigations on

regulatory pathways in root development, auxin has emerged

as one of the key factors involved in many very specific

aspects of root organogenesis. Therefore, from practical

reasons, auxin and its interactions will be discussed in the

context of respective hormonal pathways (see Fig. 1).

Ethylene is all around … and interacts

Typically, seedlings germinated at high ethylene concen-

trations have short hairy roots, a phenotype in some aspects

resembling auxin-treated roots. Detailed developmental

studies revealed that ethylene affects root growth primarily

by inhibiting the rapid expansion of cells leaving the root

meristem (Le et al. 2001; Ruzicka et al. 2007; Swarup

et al. 2007). More recently, ethylene has also been dem-

onstrated to participate in the regulation of the cell division

activity of the QC. Manipulation of the ethylene pathway

by genetic or chemical tools affected the division activity

of the QC suggesting its functions in maintenance of stem

cell niche by regulating the balance between proliferation

and quiescence of stem cells (Ortega-Martinez et al. 2007).

As mentioned above mutations in many auxin transport

or signalling components cause aberrant responses to eth-

ylene, thus pointing to an ethylene–auxin interaction.

Mutations in the auxin influx and efflux carrier genes

AUX1 and EIR1/AGR/PIN2 (Luschnig et al. 1998; Pickett

et al. 1990; Roman et al. 1995), several components of the

auxin signalling cascade, including the auxin receptor TIR1

(Alonso et al. 2003) and the AUX/IAA regulators axr2/

iaa7 (Wilson et al. 1990) and axr3/iaa17 (Leyser et al.

1996; Swarup et al. 2007) confer ethylene insensitive root

growth phenotypes. Stepanova et al. (2005) demonstrated

that mutations in two Arabidopsis genes ASA1 and ASB1

encoding subunits of the anthranilate synthase enzyme that

synthesizes an auxin precursor also confer ethylene

insensitive root growth phenotypes. Gene interaction

studies have positioned these auxin pathway components

downstream of the ethylene signal transduction pathway

(Roman et al. 1995; Stepanova et al. 2005), suggesting that

ethylene inhibition of root growth requires auxin biosyn-

thesis, transport and responses. The hypothesis is further

corroborated by other findings. As indicated by Rahman

et al. (2001), aux1 root growth can be sensitized to ethyl-

ene when cultured in the presence of auxin. Accordingly,

ethylene sensitivity of the ethylene response reporter EBS

in roots depends on auxin (Stepanova et al. 2007). Mea-

surements of the auxin biosynthesis rate upon ethylene

treatment revealed a stimulatory effect of ethylene on the

auxin biosynthetic pathway (Swarup et al. 2007). Indeed,

several genes of the auxin biosynthesis pathways were

isolated and found to be under transcriptional control of

ethylene. Beside ASA1 and ASB1, (Stepanova et al. 2005),

recently, a small family of genes encoding a long-antici-

pated tryptophan aminotransferase, TAA1, regulating the

indole-3-pyruvic acid branch of the auxin biosynthetic

pathway (Stepanova et al. 2008; Tao et al. 2008) has been
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identified. Interestingly, TAA1 and its close homologue

TAR2 are expressed in different organs including root

meristem. Lack of their functions caused a drastic reduc-

tion in the meristem size and collapse of the root meristem,

similar to mutants with reduced auxin levels due to a

defective auxin transport (Benjamins et al. 2001; Blilou

et al. 2005). Thus, analysis of TAA1 and its homologues

represents an important and for a long time missing link

between local auxin production, tissue-specific ethylene

effects and organ development, including root meristem

(Stepanova et al. 2008).

A mechanistic model integrating our recent knowledge

on the auxin - ethylene cross talk in roots has been pro-

posed (Ruzicka et al. 2007; Stepanova et al. 2007; Swarup

et al. 2007). According to this model, ethylene stimulates

auxin biosynthesis in different plant organs via its known

signalling pathway. In addition, ethylene increases the

auxin transport capacity by regulating the transcription of

several auxin transport components, including PIN1, PIN2

and AUX1 (Ruzicka et al. 2007). The additionally pro-

duced auxin is redistributed by polar auxin transport

towards the root tip. The major components of the auxin

transport in these tissues, AUX1 and PIN2, mediate the

auxin delivery into cells of the elongation zone, where

auxin accumulates and induces local auxin responses that

inhibit cell elongation and overall root growth (Ruzicka

et al. 2007; Stepanova et al. 2007; Swarup et al. 2007).

Thus, inhibition of auxin responses in several mutants of

the auxin signalling results in ethylene insensitive root

growth. As revealed by tissue targeted inhibition of auxin

responses, ethylene inhibition of root growth requires auxin

responses in multiple cell layers of the elongation zone

tissues (Swarup et al. 2007). However, this mechanism can

account for most, but not all, ethylene effects on the root

Fig. 1 Scheme of the hormonal cross-talk involved in the regulation

of the root apical meristem growth and development. Selected

regulators of the cross-talk are highlighted. Dashed lines correspond

to not completely clear or mostly indirect regulations. c.d. is transition

zone where differentiation starts
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growth. Some of the auxin insensitive mutants, e.g. slr/

iaa14 (Fukaki et al. 2002), shy2-2/iaa3 (Tian and Reed

1999) or nph4-1/arf7, arf19 (Okushima et al. 2005) are

strongly resistant to auxin, but not or weakly to ethylene

(Li et al. 2006a; Ruzicka et al. 2007). In addition, auxin

transport mutants aux1 and pin2 do not exhibit complete

ethylene resistance. Based on the extensive gene expres-

sion analysis, Stepanova et al. (2007) predicted that

besides an auxin-mediated ethylene response there are at

least three other types of interactions between auxin and

ethylene. Thus, although an important part of the ethylene

effect on root growth is performed through the auxin

pathway, there appears to be a direct ethylene-specific,

auxin response-independent component for this regulation.

Maintenance of a proper ethylene–auxin concentration

balance along the root meristem seems to be one of the

important mechanisms involved in ethylene–auxin regu-

lated root growth. Besides the previously described control

of the auxin biosynthesis by ethylene, auxin control over

ethylene biosynthesis is also well established (Bleecker and

Kende 2000; Liang et al. 1992; Yang and Hoffman 1984).

One of the rate-limiting enzymes in the ethylene synthesis

pathway is 1-aminocyclopropane-1-carboxylate synthases

(ACS). Numerous ACS genes are expressed in the root

meristem in a tissue-specific manner (Tsuchisaka and

Theologis 2004) and their expression is enhanced upon

auxin treatment (Tsuchisaka and Theologis 2004). This

complicated regulatory loop between auxin and ethylene

biosynthetic pathways suggests the presence of a complex

feedback mechanism involving components that tightly

control the actual auxin–ethylene level in root cells. One of

the candidates for such a component might be the

POLARIS (PLS) gene encoding a short 36-amino acid

peptide. Mutation in PLS results in an enhanced ethylene

phenotype, repressed auxin transport and auxin accumu-

lation (Casson et al. 2002; Chilley et al. 2006). PLS

transcription itself is under the negative control of ethylene

and is stimulated by auxin. The pls mutant phenotype can

be restored by genetic and pharmacological inhibition of

the ethylene action, implicating PLS as a negative regulator

of ethylene responses. Chilley et al. (2006) proposed a

model in which the PLS transcription is activated at the

root tip by the relatively high auxin concentration that

accumulates and is required for correct cell division at that

position (Blilou et al. 2005; Friml et al. 2002a; Sabatini

et al. 1999). Here, PLS acts as a negative regulator of

ethylene signalling, which is inhibitory to cell division and

expansion, and therefore root growth. Although some

aspects of pls phenotype are seemingly in contradiction

with previously shown stimulatory effect of ethylene on

auxin biosynthesis, PLS might be an important component

of the ethylene sensing mechanism for the tuning auxin

pathway action during root development.

Cytokinin: antagonist in root

The negative role of cytokinin (CK) on root growth is a

long-known phenomenon that has been proven by both

exogenous CK application and overexpression of the bac-

terial ISOPENTENYLTRANSFERASE (IPT) gene (Hewelt

et al. 1994; Kuderova et al. 2008; Li et al. 2006b; Medford

et al. 1989; Smigocki 1991). Accordingly, decreased

endogenous CK levels via overexpression of the CYTO-

KININ OXIDASE/DEHYDROGENASE (CKX) gene results

in an opposite effect i.e. enhanced root meristem and the

root growth (Werner et al. 2003; Yang et al. 2003).

Interestingly, studies on mutants of CK signalling

revealed a positive role of CK in the root meristem. The

root meristem was reduced in the triple cytokinin receptor

mutant ahk2,ahk3,ahk4 and multiple mutant in ahp mem-

bers of the signal transduction cascade (Higuchi et al.

2004; Hutchison et al. 2006; Nishimura et al. 2004; Riefler

et al. 2006; To et al. 2004). Based on the phenotypes of CK

signalling mutants, the modulation of CK levels led to the

hypothesis of ‘‘supraoptimal’’ CK concentration in the root

meristem (Ferreira and Kieber 2005), according to which,

downregulation of the endogenous CK levels to optimal

levels via CKX overexpression enhances root growth.

However, both complete absence of the CK signal in CK

signalling mutants and its abundance after IPT overex-

pression and/or exogenous application, respectively, exert

optimal levels and lead to inhibitory effects (Ferreira and

Kieber 2005).

A role for CK during embryonal root formation has been

suggested by the wooden leg (wol) mutant identified for its

defect in the radial root patterning (Scheres et al. 1995). In

the wol embryos, the last series of divisions in the stele is

missing, leading to the formation of the pericycle with a

reduced cell number (Scheres et al. 1995). In the postem-

bryonal development, wol mutation affects the asymmetric

division of the procambium, resulting in a defective vas-

culature without phloem and formed exclusively by the

protoxylem (Mahonen et al. 2000; Scheres et al. 1995).

WOL was found to be allelic to the CK receptor AHK4/

CRE1, thus pointing to a role for CK as a negative regu-

lator of the protoxylem differentiation from the

procambium. CK inhibition of the protoxylem differentia-

tion allows procambial cells to undergo another

developmental pathway, leading to phloem formation.

AHP6, the downstream component of the CK transduction

pathway, has been revealed to act in a negative regulatory

feedback loop, antagonizing the CK effects (Mahonen et al.

2006).

Interestingly, the wol defect in the vasculature formation

is rescued by the fass (fs) mutation (Scheres et al. 1995),

allelic to TONNEAU2 that codes for the putative novel

protein phosphatase 2A regulatory subunit (Camilleri et al.
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2002). It seems that additional cell layers in the radial

pattern of the fs mutant (Torres-Ruiz and Jurgens 1994)

allow phloem differentiation while the reduced number of

cells in the stele of wol is ‘‘used up’’ by xylem pole-

directed protoxylem differentiation (Scheres et al. 1995).

However, missexpression of AHP6 in wol embryos

(Mahonen et al. 2006) suggests that positional, CK-medi-

ated information rather than the cell number is critical for

the proper vascular specification. As demonstrated also by

the conditional expression of CKX, phenocopying wol, CK

is a sufficient and necessary signal to provide this infor-

mation during both embryonal and postembryonal root

meristem development (Mahonen et al. 2006). That fs

mutation is accompanied with increased levels of auxin and

ethylene (Fisher et al. 1996) might imply a hormonal origin

of wol complementation and suggest a role for CK/auxin/

ethylene interplay during embryonal radial root pattern

specification.

The role of CK in the embryonal specification of the root

meristem stem cells was recently described (Muller and

Sheen 2008). In the set of elegant experiments using CK-

responsive synthetic reporter, authors have shown that

output of CK signalling is antagonized by auxin. This effect

is mediated by auxin-inducible expressions of ARR7 and

ARR15 type-A response regulators acting as negative reg-

ulators of CK signalling. In the absence of auxin, expression

of ARR7 and ARR15 are balanced with CK signalling levels

(CK induce expression of type-A ARRs, which in turn

inhibit CK signalling phosphorelay). However, auxin-

mediated local expression of ARR7 and ARR15 bypasses the

CK feedback loop and counteracts CK signalling. In con-

ditional arr7 and arr15 double mutants, ectopic CK

phosphorelay output was detected, accompanied with

defects in root stem cell region and misexpression of SCR,

PLT1 and WUSCHEL_RELATED-HOMEOBOX 5 (WOX5)

genes (Muller and Sheen 2008). These results provide

insight into the molecular mechanism of long-known

antagonistic effects of CK and auxin interaction and intro-

duce the role of these interactions in root meristem

establishment during the early embryogenesis.

Biometric analysis on root growth (Beemster and Baskin

2000) demonstrated that CK reduces the relative elongation

rate and blocks the increase of the meristem size. In some

aspects, CK regulated root growth resembles typical eth-

ylene-induced inhibition. CK was found to stimulate

ethylene production and root growth of ethylene insensitive

mutants to be CK resistant (Cary et al. 1995). Moreover,

inhibitors of ethylene signalling and biosynthesis partially

relieve roots from CK inhibition. These results suggest that

part of the CK effects on root growth is mediated through

ethylene. Molecular characterization of the ACS5 and

ACS9 genes in ethylene overproduction (eto2 and eto3)

mutants revealed that dominant eto2 mutation does not

increase the specific activity of the ethylene biosynthesis

ACS5 enzyme, rather it increases the half-life of the pro-

tein. Similarly, CK treatment was shown to enhance the

stability of ACS5 by a mechanism that is at least partially

independent of the eto2 mutation (Chae et al. 2003).

Altogether, rapid expansion of cells in the root transition

zone seems to be under the control of at least three hor-

monal pathways––cytokinin, ethylene and auxin

downstream of this regulatory chain. Importantly, feedback

loop mechanisms comprising control of the CK biosyn-

thesis by auxin (Eklof et al. 1997; Nordstrom et al. 2004),

or the ethylene biosynthesis by auxin (Tsuchisaka and

Theologis 2004; Yang and Hoffman 1984) represent an

important part of the homeostatic mechanism.

Recently, Dello Ioio et al. (2007) have analysed the role

of CK in the root meristem formation and have demon-

strated that CK does not interfere with specification of the

QC and stem cell function, nor with the overall division

rate in the proximal meristem. CK affects primarily the rate

of meristematic cell differentiation, resulting in shortening

of the meristematic zone. Accordingly, depletion of CK by

overexpression of CKX or by mutation of three Arabidopsis

cytokinin biosynthesis genes ipt2,ipt3,ipt7 increases the

root meristem size (Dello Ioio et al. 2007; Werner et al.

2003). The role of CK signalling in longitudinal root pat-

terning has been further confirmed by the expansion of the

root meristem in the ahk3 and response regulator mutants

arr1 and arr12.

Important knowledge on the CK control mechanism on

the root meristem development has arisen from the targeted

depletion of CK in different root meristem tissue layers.

Depletion of CK restricted to the vasculature of the transi-

tion zone was sufficient to reduce the rate of cell

differentiation of all other tissues and, thus, to diminish the

root meristem size. Such a type of non-cell autonomous

effect suggests that CK acts by antagonizing other signals.

As proposed by Dello Ioio et al. (2007), a candidate for

such a signalling molecule would be auxin, which as

described above, is critical for the control of cell division

and root meristem size. Application of auxin at low con-

centrations causes an increase in the meristem size

(Beemster and Baskin 2000; Dello Ioio et al. 2007). On the

other hand, depletion of CK by CKX has no additional

effects on the meristem size in the auxin efflux carrier triple

mutant pin2,pin3,pin7. Thus, the balance between the auxin

and cytokinin pathways regulates important aspects of root

development and establishment and maintenance of the

meristem size. The molecular mechanisms are so far illu-

sive, although several modes of interaction are conceivable.

First, CK and auxin biosynthesis are dependent on each

other and perturbation in the abundance of one affects the

other. An increase in auxin concentration leads to a

decrease in the CK level (Eklof et al. 1997; Nordstrom
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et al. 2004), and slow inhibitory effect of CK on auxin

biosynthesis was described (Nordstrom et al. 2004). Auxin

has also been shown to contribute to the CK degradation

via stimulation of the CKX activity (Palni et al. 1988). In

contrast, expression of two genes for CK biosynthetic

enzymes AtIPT5 and AtIPT7 in Arabidopsis is induced by

exogenous auxin (Miyawaki et al. 2004).

Second, the activity of the polar auxin transport

machinery, the principal director of the auxin distribution

in the root meristem, might be modulated by CK. Recently,

CK has been shown to affect the local auxin gradient for-

mation and expression of PIN auxin efflux carriers during

lateral root development (Kuderova et al. 2008; Laplaze

et al. 2007).

Third, auxin and cytokinin can regulate a common set of

genes. A promising candidate for the downstream molec-

ular component is PROPORZ1 (PRZ1). This putative

transcriptional adaptor protein has been shown to be

essential for the developmental switch from cell prolifer-

ation to differentiation in response to variations in auxin

and CK concentrations (Sieberer et al. 2003). Expression

of several other genes was found to be under control of

auxin and cytokinin. For example, transcription of the root-

specific putative homeobox gene ATHB53 is differentially

regulated by auxin and CK (Son et al. 2005), and inter-

estingly, CK regulates also expression of genes of the auxin

signalling pathway (SHY2-2/IAA3, AXR3/IAA17 or SAUR-

AC1) (Rashotte et al. 2005).

Brassinosteroid: forget-me-not

Typically, effects of brassinosteroids (BRs) on root growth

strongly depend on the BR concentration used. Exogenous

BRs stimulate root growth at low concentrations, but have an

inhibitory effect at higher BR levels (Mussig et al. 2003).

BR-deficient mutants, such as dwarf1-6/(dwf1-6) and cab-

bage3/(cbb3) (allelic to cpd), defective in brassinosteroid

biosynthesis (Kauschmann et al., 1996; Szekeres et al.,

1996), show shorter roots than wild-type plants (Mussig

et al. 2003). Root-specific BR-deficiency in brevis radix/

(brx) mutant causes reduced root growth due to reduction in

the meristem size, and mature cell size as well (Mouchel

et al. 2004). BRX, isolated as quantitative trait locus affect-

ing root growth in the Arabidopsis accession Umkirch-1

(Uk-1), is a member of a small gene family representing most

probably a novel class of transcriptional factors involved in

the regulation of expression of a rate-limiting enzyme in

brassinosteroid biosynthesis (Mouchel et al. 2006).

Transcriptome profile analyses in roots of two BR

mutants, dwf1-6 and (Mussig et al. 2003) and brx (Mouchel

et al. 2006), revealed a link between BR and the auxin

pathway in root development. Test of auxin response in brx

via microarray analysis showed that almost none of tested

auxin response genes responded normally to auxin in the

BR-deficient brx mutant, but this auxin responsiveness was

largely restored by brassinollide treatment. Accordingly,

expression of the auxin reporter DR5 (Sabatini et al. 1999;

Ulmasov et al. 1997) in brx was fully sensitized to auxin by

BR supply (Mouchel et al. 2006). Altogether, these results

suggested that optimal BR levels are rate limiting for

auxin-induced transcriptional responses. BR does not seem

to act through regulation of endogenous auxin content,

because as shown by Nakamura et al. (2003), BR did not

increase the endogenous auxin levels of either the control

plant or the BR-deficient mutant deetiolated2/det2. Fur-

thermore, the levels of AUX/IAA transcripts were lower in

the det2 mutant than in the control, even though endoge-

nous auxin levels were elevated in the det2 background

(Nakamura et al. 2003).

Accordingly, negative regulators of auxin signalling

IAA14 and IAA2 showed weaker expression in roots of

dwf1-6 (Fukaki et al. 2002; Mussig et al. 2003) and the

NIT3 gene, encoding enzyme involved in IAA biosynthesis

(Kutz et al. 2002) exhibited higher transcript level in the

dwf1-6 mutant background (Mussig et al. 2003).

Brassinosteroids are known to stimulate the production

of ethylene in shoots and roots (Arteca and Arteca 2001;

Schlagnhaufer and Arteca 1985; Yi et al. 1999). In line

with these observations, expression data point to a positive

BR effect on genes involved in ethylene biosynthesis and

ethylene response in roots (Mussig et al. 2003). Thus, part

of the BR inhibitory effect on root growth might be med-

iated through ethylene. More detailed studies are needed to

dissect the ethylene effects in the context of BR action.

However, analysis of the auxin and ethylene resistant

mutants axr1 points to the existence of ethylene-indepen-

dent BR-regulated root growth (Clouse et al. 1993). A

direct BR-ethylene feedback loop might exist that specifi-

cally interferes with BR transport, BR biosynthesis, or BR

responses.

Also another mutant in BR biosynthesis, sax1

(hypersensitive to abscisic acid and auxin), with roots

oversensitive to auxin and ABA suggests that BR interacts

with multiple hormonal pathways (Ephritikhine et al.

1999).

Gibberellins: you have to beat me

Although gibberellin (GA) has been recognized for a long

time mainly as a regulator of shoot growth, its important

role in the regulation of root growth has been demonstrated

as well. The GA-deficient mutant ga1-3 exhibits shorter

roots. Loss of DELLA proteins GAI and RGA, negative

inhibitors of GA signalling, suppress the ga1-3 root phe-

notype, showing that GA pathway acts in the regulation of

root growth (Fu and Harberd 2003). An elegant set of
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experiments has recently been performed to map the site of

GA action for regulating root growth (Ubeda-Tomas et al.

2008). When gai, a mutant non-degradable DELLA protein,

was expressed in selected root tissues, the root growth was

retarded specifically when gai was expressed in endodermal

cells. These results demonstrated that the endodermis rep-

resents the primary GA-responsive tissue and that

endodermal cell expansion is rate limiting for elongation of

other tissues and, therefore, of the root as a whole (Ubeda-

Tomas et al. 2008). In work of Paquette and Benfey (2005)

also a role of GA in radial patterning of root meristem has

been revealed and GA shown to act as negative regulator of

the middle cortex formation—the third layer of the root

ground tissue rapidly differentiating to cortex.

GA stimulates growth by promoting the destruction of

DELLA proteins, a subfamily of the GRAS family of

putative transcriptional regulators (Dill et al. 2001; Fu and

Harberd 2003). Thus, DELLA proteins restrain the plant

growth, whereas GA relieves the DELLA-mediated growth

inhibition by targeting the DELLA proteins for destruction.

GA-mediated destabilization of DELLA proteins involves

GA-stimulated phosphorylation, polyubiquitination via a

specific SCF E3 ubiquitin ligase complex and subsequent

destruction in the 26S proteasome (Fu et al. 2002;

McGinnis et al. 2003; Sasaki et al. 2003).

As demonstrated by several laboratories, GA-regulated

root growth involves interaction with other hormonal

pathways, e.g. auxin (Fu and Harberd 2003), cytokinin

(Greenboim-Wainberg et al. 2005), ethylene (Achard et al.

2006) or ABA (Achard et al. 2006) and the regulation of

DELLA proteins stability might represent an important

cross-point.

GA and auxin pathways converge in roots to regulate

cell expansion and tissue differentiation. GA-induced root

elongation was inhibited by the removal of the shoot apex,

which is a major auxin source, and this effect was reversed

by auxin application suggesting that GA stimulation of root

elongation requires auxin. Moreover, application of the

auxin-transport inhibitor 1-N-naphthylphthalamic acid

(NPA), or a mutation in the auxin efflux carrier PIN1

attenuated the effect of GA on root elongation and on RGA

degradation in root cells. GA-induced RGA degradation

was also inhibited in the auxin resistant mutant axr1. These

observations indicate that auxin promotes the growth of

roots by enhancing the GA-induced destabilization of some

of the DELLA proteins (Fu and Harberd 2003). Thus, the

DELLA protein RGA seems to act as integrator of GA and

auxin signals in the root.

Positive regulation of GA biosynthesis by auxin might

be involved in these interactions. A stimulatory effect of

the auxin on GA biosynthesis was demonstrated and sev-

eral components of auxin signalling pathway seem to be

included in this regulation (Frigerio et al. 2006).

GA has been shown to antagonize ethylene inhibitory

effects on root growth (Achard et al. 2003). Ethylene

insensitive root growth of the gai rga GA-insensitive

mutant indicates that ethylene regulates root growth in a

DELLA-dependent manner. In agreement with this obser-

vation, ethylene counteracted GA-induced destabilization

of the RGA protein in root cell nuclei. The effect of

ethylene on RGA stability was mimicked by the loss

of its signalling suppressor CONSTITUTIVE TRIPLE

RESPONSE1 (CTR1) (Guo and Ecker 2004), suggesting

that the ethylene’s RGA stabilizing signal is transduced via

a CTR1-dependent pathway (Achard et al. 2003).

Analysis of SPINDLY (SPY) gene revealed antagonistic

interaction of GA and CK in root growth (Greenboim-

Wainberg et al. 2005). Mutation of SPY results in pheno-

types resembling that of wild-type plants treated with

exogenous GA and overexpression of SPY produced phe-

notypes consistent with a reduced GA action (Izhaki et al.

2001; Swain et al. 2001). This suggests that SPY functions

as a negative regulator of the GA-signal transduction.

Inhibition of root elongation by CK was greatly suppressed

in the spy mutant background, and accordingly, exogenous

application of GA antagonized the inhibitory effect of CK

on root growth. Both GA and spy interfered with the

induction of CK primary response gene ARR5. Thus, SPY

is a potential molecular component that integrates GA and

CK pathways in root growth and acts as a repressor of GA

responses and a positive regulator of CK signalling. Based

on the comparison of GA and CK sensitivities of spy

mutants, it seems that GA suppresses CK responses at least

partially via SPY (Greenboim-Wainberg et al. 2005).

In the shoot apical meristem KNOTTED-like homeobox

genes were shown to play an important role in the estab-

lishment of the hormonal balance between CK and GA.

They activate CK biosynthesis and repress GA 20-oxidase

gene expression and, hence, GA biosynthesis, thus pro-

moting meristem activity (Jasinski et al. 2005; Yanai et al.

2005). Several members of this gene family were shown to

be expressed in distinct domains and cell types of the main

root (Truernit et al. 2006), but their role in the hormonal

interactions and its relevance for root growth regulation

remains to be examined in detail.

Abscisic acid: not only stress

The role of abscisic acid (ABA) in the regulation of root

growth is still not completely clear. However, recent

genetic and molecular studies started to unravel the

importance of ABA regulation in root meristem forma-

tion and root growth. An example of genes involved in

ABA-mediated control of the root meristem is the TET-

RATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 1

(TTL1) gene. Mutation in TTL1 causes reduced root
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elongation and disorganization of the root meristem. TTL1

mediates the sensitivity to ABA and to osmotic stress and

is supposed to participate in ABA signalling in Arabidopsis

(Rosado et al. 2006). ABA has been shown to rescue the

root meristem phenotype of Medicago mutant latd. latd

roots have disorganized root tip that is defective in meri-

stem organization, columella root cap formation and root

growth (Liang et al. 2007). latd mutants exhibit normal

ABA levels, but reduced sensitivity to ABA, suggesting

that LATD functions in the ABA signalling.

Multiple ABA effects are associated with ethylene action.

There are several hints that functional ethylene signalling is

necessary for root responses to ABA. The ABA effect on the

root growth was restrained by inhibitors of the ethylene

perception, but not by reduced ethylene biosynthesis, sug-

gesting that, in contrast to CK, ABA does not operate

through ethylene biosynthesis, as confirmed by the mea-

surements of ethylene production upon ABA treatment. Vice

versa, ethylene seems to inhibit root responsiveness to ABA

(Ghassemian et al. 2000). Close interplay of ABA and eth-

ylene in root development indicates era3 mutant identified in

a screen for ABA hypersensitive germination mutant. The

era3 mutation was found to be allelic to the ethylene

insensitive ein2 mutant (Beaudoin et al. 2000; Ghassemian

et al. 2000). Interestingly, the era3 roots are not only resis-

tant to CK and ethylene as previously shown for the ein2

mutant in ethylene signalling (Cary et al. 1995) but also to

ABA. Moreover, they are sensitive to auxin and accumulate

more ABA (Ghassemian et al. 2000). Thus, era3 represents

an important candidate to investigate ABA and ethylene

signalling interaction in the root development. The abi8/

eld1/kob1 mutant with altered ABA-responsive gene

expression was shown to be necessary for the meristematic

activity in the root (Brocard-Gifford et al. 2004). ABI8/

ELD1/KOB1 encodes a protein of unknown function and, in

contrast to most of the other ABA insensitive mutations, the

abi8 phenotype cannot be suppressed by inhibition of the

ethylene pathway. Thus, ABI8 might function in parallel or

downstream of the EIN2 and EIN3 components of the eth-

ylene signalling pathway (Brocard-Gifford et al. 2004).

The nhr1 mutation uncovers interaction between ABA

and auxin (Eapen et al. 2003). Semi-dominant nhr1

mutation was identified in a screen for lack of hydrotropic

root responses. NHR1 affects root meristem formation via

regulation of the QC, columella initials and root cap

specification and affects cell proliferation in the root

meristem. nhr1 shows reduced sensitivity to ABA, NAA

and to the auxin efflux inhibitor NPA. Authors hypothesize

that NHR1 is involved in the ABA-dependent mechanism

of efflux mediated auxin redistribution, allowing positive

hydrotropic response of the root (Eapen et al. 2003).

Similarly to ethylene, salt stress-induced ABA increases

the stability of DELLA negative regulators of the GA

pathway (Achard et al. 2006; Fu and Harberd 2003;

Vriezen et al. 2004). The quadruple DELLA mutant

gai,rga,rgl1,rgl2 is resistant to the growth-inhibitory

effects of ABA. Furthermore, EIN3, a negative regulator of

the ethylene signalling, was found to promote salt tolerance

via enhancement of the DELLA function (Achard et al.

2006). Thus, DELLA proteins integrate ABA and ethylene

signalling in the regulation of the root growth. As ABA and

ethylene signalling are involved in different abiotic and

biotic responses, this mechanism might mediate environ-

mental regulation of the root growth response (Achard

et al. 2006).

Recently, important connection between CK and ABA

signalling was described in Arabidopsis. Homologue of CK

receptors, sensory histidine kinase AHK1, was found to be

a positive regulator of drought and salt stress responses and

ABA signalling. In contrast, CK receptors AHK2, AHK3

and AHK4 were identified to be negative regulators of the

ABA signalling, acting in case of AHK2 and AHK3 via

negative regulation of many stress- and/or ABA-inducible

genes (Tran et al. 2007).

Conclusion

The current status of knowledge on root development

indisputably points out that a complex hormonal network

participates in the regulation of root formation and growth

from the moment of its initiation in the embryo. Essen-

tially, all hormonal pathways are involved and control

different developmental aspects of the root meristem for-

mation. Auxin seems to be the most universal factor acting

in all root developmental events (Dinneny and Benfey

2008; Galinha et al. 2007). CK has been shown to be a

critical factor in radial root patterning (Mahonen et al.

2006; Scheres et al. 1995), establishment of root stem cells

during early embryogenesis (Muller and Sheen 2008) and

establishment of the root meristem size by controlling the

balance between cell division and differentiation of cells

leaving the root meristem (Dello Ioio et al. 2007). Ethylene

and GA act primarily on the rapid elongation of cells

leaving the root meristem (Fu and Harberd 2003; Ruzicka

et al. 2007; Swarup et al. 2007; Ubeda-Tomas et al. 2008).

BR deficiency affects both the division activity of the root

meristem and rapid cell elongation (Mouchel et al. 2004),

and ABA mediates the environmental regulation of root

growth responses (Achard et al. 2006). Importantly, each

hormonal pathway functions in the context of the whole

hormonal network and they mutually modulate their

actions. Thus, for example, auxin regulated processes

require a minimal level of BR (Mouchel et al. 2006).

Maintenance of the root meristem size is balanced by

antagonistic activities of CK and auxin (Dello Ioio et al.
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2007), and the gibberellin pathway is differently modulated

by auxin and ethylene (Achard et al. 2003; Fu and Harberd

2003). Although our knowledge on the molecular compo-

nents and pathways that mediate developmental responses

to hormones has improved enormously in recent years,

molecular mechanisms standing behind their interactions

are poorly understood. However, from most of the recent

studies, it became obvious that diverse mechanisms of

hormonal interactions have evolved to coordinate activity

of hormonal pathways in certain developmental processes.

There are several examples of mutual regulations on the

level of hormone metabolism and distribution (Laplaze

et al. 2007; Stepanova et al. 2005; Stepanova et al. 2008;

Tsuchisaka and Theologis 2004). Transcriptional or post-

translational control over the key molecular components of

signal transduction pathways by other hormonal signals is

another example of a cross-talk strategy (Fu and Harberd

2003; Chae et al. 2003; Muller and Sheen 2008). There are

rare cases in which activation of one hormonal pathway

might branch and stimulate transduction component of

another pathway (Hass et al. 2004). Hormonal signalling

pathways might also differentially regulate expression or

activity of common target gene (Chilley et al. 2006; Son

et al. 2005). Several other modes of hormonal interactions

could be predicted. Although we have no real evidence for

their existence today, they might be revealed in the future

years. In this context, we would like to note that although

sometimes experimental findings might lead to contradic-

tory conclusions on the mode of hormonal interactions

(Ferreira and Kieber 2005), these ‘‘inconsistencies’’ might

point to a very important feature of the hormone behav-

iour––its action is extremely dependent on concentration

and developmental stage (Kuderova et al. 2008; Mussig

et al. 2003). It has been nicely demonstrated by Kuderova

et al. (2008) that the strength of the effects of temporal

pulses of endogenous CK via regulated expression of the

bacterial IPT depends on the developmental status of the

root. Consequently, the same hormone can, during one

developmental process, set up different interactions in

relation to the actual concentration and developmental

stage.

Recent investigations have created a good outline of

different possible modes of interactions between hormones,

which in combination with the fast progress in under-

standing single hormonal pathways represents a promising

start to reveal concrete cross-talk molecular components,

which is the challenge of future research.
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