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Formation and maintenance
of the shoot apical meristem

John L. Bowman and Yuval Eshed

Development in higher plants is characterized by the reiterative formation of lateral organs
from the flanks of shoot apical meristems. Because organs are produced continuously
throughout the life cycle, the shoot apical meristem must maintain a pluripotent stem cell
population. These two tasks are accomplished within separate functional domains of the
apical meristem. These functional domains develop gradually during embryogenesis.
Subsequently, communication among cells within the shoot apical meristem and between the
shoot apical meristem and the incipient lateral organs is needed to maintain the functional
domains within the shoot apical meristem.

zed by the reiterative formation of lateral organs from theone. The central zone acts as a reservoir of stem cells, which
lanks of apical meristemsA shoot apical meristem (SAM) replenish both the peripheral and rib zones, as well as maintaining
is initially formed during embryogenesis, and derivatives of thtke integrity of the central zone. It should be noted that these cells
meristem give rise to the above-ground portion of the plant. Tte not act as permanent initials, but rather their behavior is gov-
SAM contains a population of pluripotent stem cells, which sereened in a position-dependent manner. Second, the SAM is also

Pst-embryonic development in higher plants is charactewhereas stem tissue is derived from cells recruited from the rib
f

three primary functiorts® composed of clonally distinct layers of c&(Big. 1). The fact that

(1) Lateral organs, such as leaves, are produced from the peripheral and central zones, as well as the lateral organs pro-
peripheral regions of the SAM. duced, contain cells from the three clonally distinct layers indi-

(2) The basal regions of the SAM contribute to the formation o&tes that communication between cell layers is required to
the stem. coordinate developmental processesor example, leaves in

(3) The stem cells of the SAM must replenish those regions most eudicot species are composed of derivatives from the epider-
from which cells have been recruited and maintain the paohl layer (L1), the subepidermal layer (L2) and corpus®(IGe
of stem cells required for further growth. of the earliest markers of leaf initiation from the peripheral zone is
In general, we focus on SAMs in this review, although extraptie periclinal cell divisions in specific regions in the L2. Cells in
lation of concepts to other shoot meristems, such as flowke L1 and L3 adjust their growth accordingly, with the entire
meristems, will be discussed when pertinent. region acting coordinately to produce a leaf primordium.

As a result of histological analyses the SAM has been subdiin this review, we discuss some recent advances in our under-
vided in two different manners. First, three distinct zones of tkeanding of three aspects of meristem functioning: the origin of
SAM are defined by cytoplasmic densities and cell division ratdhke SAM during embryogenesis, the maintenance of the stem
the peripheral zone, the central zone and the rib*Zo(fég. 1). cell population in the central zone, and the relationships between
These three zones might represent a functional subdivision of léeral organ primordia and the meristems from which they are
SAM although direct evidence for this is lacking. Lateral orgapsoduced. Several excellent reviews cover broader views of the
are produced from cells recruited from the peripheral zob@logy of the SAM (Refs 2—-4).
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Embryonic origin of the shoot apical meristem
The origin of the SAM during embryogenesis has been the subj
of controversial debaté The primary point of contention is
whether the cotyledons are formed from the SAM, or if the SA
and cotyledons arise independently. Resolution of this quest
has major implications, influencing ideas on the homology
leaves and cotyledons. We will not attempt to resolve this quest
here, but rather argue that the complex histology of the mat
SAM is built up gradually during embryogenesis.

Although the tunica—corpus structure, which is characteristic|o'

the SAM (Fig. 1), is not evident until the torpedo stage of embrylo-

genesis inArabidopsis (well after the initiation of the coty-

ledonsy§, the apical histological zonation (Fig. 1) is visible befor
cotyledon initiation in some speciedhis has led to competing
hypotheses: either the SAM is formed by the apical portion of t
globular embryo, or alternatively, the SAM is not formed until th
tunica—corpus structure is evident at the late-heart or eal

Fig. 1. Histology of the shoot apical meristem (SAM). (a) Latera

€ organs are produced from cells recruited from the peripheral z

(PZ), whereas the bulk of the stem is derived from cells recrui
he from the rib zone (RZ; the outermost layers of the stem are deri
e from the peripheral zone). The central zone (CZ) acts as reser
|y-of stem cells, which replenishes both the peripheral and rib zo
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as well as maintaining the integrity of the central zone itself.
|0%he SAM is composed of clonally distinct layers of cells. In th
AMSs of eudicot plants, there are typically three layers. Howev|
the SAMs of many monocots, including grasses, are composed of

only two layers. The epidermal layer (L1) forms one clone, its
1€Sntegrity being maintained by the almost exclusively anticlinal of-
entations of cell division within the layer. The subepidermal layer

b)
e
er,

torpedo stage of embryogenesis. Two recent stiididmve
addressed this issue using gene expression patterns as histg
cal markers to analyze the development of the apical portion
of the Arabidopsis embryo from the globular through the
torpedo stages. The primary conclusions from these studi
(Fig. 2) are that:

(1) The complex gene expression patterns (histology) of the|  (L2) also exhibits almost exclusive anticlinal orientations of cgll
SAM develop gradually during embryogenesis. division, which maintain its clonal distinctness. The L1 and L2 are

(2) Both independent and interdependent relationships exis collectively referred to as the tunica. Cells interior to the L2 con-
among genes directing SAM establishment and maintenaricestitute the corpus (L3), in which various planes of cell division are

(3) The apical portion of the globular embryo is divided into | ©observed.FILAMENTOUS FLOWERFIL) expression (brown

; ; +1-color) demarcates lateral organ anlagen in the peripheral zone|and
g%wr?é??j’e\?;?;x:;?; f2¥e§ene expression patterns, v th'[Che a)baxial domains of leaf grimordia%mabidops%sg

One of the earliest genes expressed/is$SCHEL(WUS, whose
mature SAM expression is limited to a small group of cells under-
neath the outer three layers (in the L3), but is first expressed in Bah initial UFO expression and maintenanceGifV1expression
apical subepidermal cells at the 16-cell stage of embryog&nesi®quiresSTMactivity, implying thatSTMacts to initiate a devel-
TheWUSexpression pattern gradually becomes limited to deepmgymental program required to establish or maintain several com-
regions of the SAM as it forms (Fig. 2), suggesting that cell-c@lbnents of the SAM (Ref. 9), consistent with the loss-of-function
interactions probably dictate the boundaries of its expressiphenotype ostmmutant$,
domain. SHOOT MERISTEMLESYSTM, CUP-SHAPED From these studies it is clear that the apical region of the globu-
COTYLEDONZCUC2) andAINTEGUMENTAANT) are all first lar embryo is progressively subdivided during development,
expressed in the late globular emi8foBy the early transition and that the establishment of the functional regions of the SAM is
stage the expression patterns of these genes divide the apicgtadual and dynamic process that occurs during embryonic
portion of the embryo into three regidfyFig. 2): pattern formation. In general, it appears that the earliest acting
« A central region destined to give rise to the SABITI genes are required for establishment or maintenance of stem cell

andCUC2. fate or alternatively, repression of differentiation (e/guUS
A peripheral region, which is further subdivided into (i) regionSTM). Whereas genes whose expression is initiated later might be

that will produce cotyledonsANT) and (ii) regions where involved in regulating the size of the central zone @L9/1).

growth will be suppressed, which form the boundaries between

the cotyledons§TM CUC2andANT). Maintenance of the central zone
Later during the heart stagelJC2expression becomes restrictedOne striking property of SAMs is their ability to remain relatively
to the boundary regions between the cotyledons and the SAbhstant in size. For example, the SAM of a several-hundred-
(Fig. 2) — this restriction is dependent upS8TM activity'®.  year-old mountain asiSrbus aucuparjpdoes not differ signifi-
Although CUC2 and STM have complementary expression pateantly in size from the SAM of its cognate sapling. This is all the
terns in the mature SAM, they are expressed in overlappimgpre remarkable considering the continual production of lateral
domains during embryogenesis. This implies that other factors argans from the peripheral zones and the lack of cell lineage
involved in establishing the complementary expression patterngestriction in determining cell fat&$-¢ These properties suggest
the two genés. CUC2 which acts redundantly witBUCY, is that cells within the SAM must continually assess their positions
proposed to have a role in the separation of organs from the megiative to others, and subsequently decide to divide, differentiate
stem and from each otH&rin a manner analogous to thatN®  or remain as they are. Failure to choose appropriately leads to
APICAL MERISTEMN petunid®, either an accumulation of cells within the SAM, or alternatively,

By early heart stage, after cotyledon primordia have formddss of cells from the SAM, which in turn eventually leads to a
UNUSUAL FLORAL ORGAN@JFO) and CLAVATAL(CLV]) failure of SAM maintenance. Several mutants accumulating too
are activated in the L2 and L3 of the presumptive SAM (Ref. Gpany cells in the SAM have been identifieddirabidopsis and
Although the function dJFO in the SAM is unknownCLV1acts these mutants fall primarily into two classes. Tlavatamutants
with CLV3andWUSto maintain the integrity of the central zoneaccumulate excess cells in the central ZofieéBy contrast, organ
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Fig. 2. Expression patterns of genes directing the establishment and maintenance of the shoot apical meristem (SAM) form gragluglly duri
embryogenesis. (a—f) Expression patterns of six genes: the upper panel depicts the expression in a frorabhdatgigtobular-transition stage|
of embryogenesis and the lower panel shows expression in a vegetative\&/OCHEL(WUSY, SHOOT MERISTEMLESSTM®¥, CUP-
SHAPED COTYLEDON@UC2' andAINTEGUMENTAANT)® are all expressed by the transition stage, whereas expresSbAGATAL
(CLV1)**andUNUSUAL FLORAL ORGANSIFO)**8is not detected until the heart stage. The expression pattern sha®wGdain the veg-
etative SAM is an extrapolation of its reported embryonic expreésind that observed ftdO APICAL MERISTENNAM)*. PHANTASTICA
(PHAN* andFILAMENTOUS FLOWERFIL)* 38 (brown staining in each of the vegetative SAM panels) also mark the lateral organ anlagen in

a manner similar to that &NT1(Refs 2,49). It should be noted that the expression patterns depicted here are extrapolated from different|sections
and that the precise patterns might differ from those shown. In addition, only qualitative patterns are shown here abiveqrardtions might
be present as well. (g—k) Complex and dynamic subdivision of the apical portion of the ediidyxpression is depicted in orangd)C2
depicted in pinkANT depicted in yellowSTM+ ANT depicted in redSTM + UFO depicted in blueSTM+ CLV1depicted in greerSTM +
CLV1+ UFO depicted in purple. (g and h) Depiction of the globular stage embryo in Whi€lis expressed around the periphery &fdis
expressed at the periphery between the cotyledon afl&yete early heart stage (§TMexpression is also expressed in the central region and,
along withUFO, marks the site of the presumptive SAM (Ref. 9). During the heart staGe\jLis expressed in the central region whetég®
is restricted to the margins of the central reyjigtthoughSTMandCUC2have similar expression patterns at the transition Stageiring the
heart stag&TMandCUC2resolve to complementary patterns, wiiMexpressed in the central region (which will give rise to the SAM) and
CUC2expressed at the boundaries between the SAM and the cotyledon pritrfkyd{g—k) Adapted from Refs 9 and 10.

initiation is affected in thengounmutants, and the location of structure of the SAM late in embryogenesis before the production
accumulation of excess cells is not presently Eektutants of of the first set of leaves. In this case, it is apparent that SAMs of
both classes also appear to have enlarged rib Zofles clv3 embryos contain many more cells that those of the wild
Based on morphology, histology and gene expression pattetypge’®. Likewise, slightly later in development, after the initiation
mutations iINCLAVATAL(CLV]) or CLV3 lead to an accumu- of the first pair of leaves, there are considerably more cetlgIn
lation of cells in the central zoté®?*-22 Such a phenotype could andclv3 SAMs than in wild-type SAMs (Ref. 23). Although these
either be because of an increase in cell division rates in the cerr@notypes could be caused by leaf anlagen initiation during
zone, or alternatively, a reduction in the rate of recruitment efmbryogenesis, the observation teht mutants produce more
cells from the central zone to the peripheral zone. A reductionlégaves per d&y suggests that the accumulation of cells in the
the rate of recruitment has been argued based on observatioreeofral zone in these mutants is probably caused by an increased
cell division rates in the central zone of SAMsinl mutant$’.  cell division rate in the central zone itself. Further studies are
In wild-type SAMs, cell division rates are slower in the centraleeded to resolve this issue.
zone than in the adjacent peripheral zone, whereaslvih The converse phenotype, the inability to maintain a population
mutants, cell division rates within the central zone of both if stem cells in the central zone, has been described for plants with
florescence meristems and meristems of seven-day-old seedlimggations in theVUS gené®. SAM's can be initiated byVUS
were measured to be lower than that of the wild-type centraltants, but cells within these SAMSs are recruited to form lateral
zone$’ Although this would suggest that the accumulation @irgans without replenishment of the stem cell population in the
cells in the central zone is caused by a reduction in the rate of cedistral zon&. Thus mutations inWUS and CLVYCLV3 have
being recruited into the peripheral zone, a possible caveat is #sgentially opposite effects on the stem cell population of the cen-
observations on already enlarged meristems could be misleadiadjzone, suggesting that these genes act in pathways to promote
because of developmental epistasis. That is, that the reductod restrict cell division rates, respectively, within the central zone.
in cell division rates in mature inflorescence meristems might beGenetic interactions, the expression patterns and nature of the
a consequence of earlier alterations in the functioning of the memcoded gene products 6£V1, CLV3andWUShas led to the
stem. A more conclusive experiment would be to analyze ttevelopment of a model of their action (Fig. @LV1, whose
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MRNA is present primarily in the L3 of the central zong
(its expression might also extend into the L2), encodes a leucine g
rich repeat (LRR) receptor kin&$&. CLV3 whose mRNA is pri-
marily restricted to the L1 and L2 of the central zone, encodes
small, putatively secreted protéinBecause€CLV1andCLV3are
proposed to act in a common pathWaghey might act as a
receptor-ligand pair in a signal transduction cascade that restric
cell division rates in the central zéheThe limited expression
domains ofCLV1andCLV3imply that these genes act non-cell
autonomously to regulate central zone size, and suggests th
extensive cell-cell signaling, both within and between zones|ir
the meristem, is required for the maintenance of SAM integrity.
WUS encodes a homeodomain transcription factor WidS
mRNA is localized to the L3 of the central z&nét has been pro-
posed thatWUSexpressing cells act as an organizing center, can-
ferring stem-cell identity to overlying neighboring c&li: a
manner similar to that of the quiescent center in the root meri |
stent>? Becausavusmutations are epistatic vl mutations®,
the CLVI/CLV3signaling pathway could potentially act to nega
tively regulate the activity oWUSdirectly. Thus one possible
model is thatWUSpromotes stem cell fate non-cell autonomously Fig. 3. Expression patterns of genes involved in maintaining the

among cells of the central zdheand that th€LV1/CLV3signal- integrity of the central zoneCLAVATA3 (CLV3 mRNA is

ing pathway dampens this promotion by restricting cell divisian restricted to the epidermal layer (L1) and subepidermal layer (12)

within the central zorté'®20-2 of the central zortg whereasCLVImRNA is detected in the cor-
However, several key questions remain. First, althaZigiil/ pus (L3) of the central zoffe During vegetative development

CLV3activity is mitigated by KAPP (Refs 27,28), acts through WUSCHELWUS mRNA is restricted to a few cells within the L3
a complex that includes a Rho GTPase (Ref. 29) and is likely| toP€loW the uppermost layer of the L3 (Ref. 11). It has been pfo-
be modulated by>LV2 [another LRR receptor-like protein that PoSed that CLV3 acts as a secreted ligand for the CLV1 receptor,
; . . ) . and that this signaling is responsible for restricting the size of the
m!ght.hetemd'me“ze WItBLVI(Ref. 30)], the ultimate targets (.)f central zon&%. By contrastWUSis required to maintain an active
this signal transduction cascade are unknown. Could WUS itselfcenira| zone, possibly by non-cell autonomously conferring a st
be a target? Second, how does expressitMdin the L3 of the | cell identity on cells overlying its expression dontaiiThe rela-
central zone non-cell, autonomously influence cell division |n tive overlaps in expression of these three genes in this figure|are
the overlying cells? Third, what is the significance of the dy- estimated based on comparisons of published data, although| the
namicWUSexpression pattern within the meristéiThe pattern | simultaneous detection of these genes might alter this view.
correlates with the nature of primordia initiation by the meristem: FILAMENTOUS FLOWERFIL) expression demarcates latera|
« Expression in the upper layers (L2 or uppermost L3) when ©rgan anlagen in the peripheral zone.
opposite or whorled primordia are formed (e.g. floral organs by
flower meristems).
+ Expression deeper in the L3, when primordia are initiated imaRNA is correlated with the pattern of primordia initiaffoit is
spiral manner (e.g. leaf initiation by mature vegetative meristemgiclear whether the effects of ectopic EXPANSIN activity are
However, it is unclear if the changed/ifUSexpression are involved mediated via biochemical or biophysical efféttsr a combination
in the alteration of phyllotaxy. IntriguinglzLV1expression also of both.
appears to shift upward when organs are initiated in a whorledNon-cell-autonomous relationships between the SAM and lat-
manner by the flower meristefAsFourth, and perhaps more inter€ral organ primordia have also been uncovered in studies of the
estingly, how is the relative activity of tigL1/CLV3system reg- Antirrhinum mutation phantastica (phan)®**%. PHAN, which
ulated? Because the extent of cell division required in the cenacodes a MYB-related protein, is expressed throughout lateral
zone is profoundly influenced by the need to replenish the lossoofjan primordia. However, when mutant plants are grown in non-
cells in the peripheral zone (associated with lateral organ fpermissive conditions they develop radialized leaves and arrested
mation), these processes are likely to be intimately linked. O8AMs (Ref. 35). The radial leavespfanmutants appear to con-
attractive hypothesis is that lateral organ primordia communicaist predominantly of abaxial cell tyg&sThus, althougPHANis
their formation to the SAM, resulting in a replenishment of thexpressed in lateral organ primordia and appears to promote adax-
peripheral zone from cells ultimately derived from the central zorial cell fate, it is required non-cell-autonomously to maintain a
functional apical meristem. By contrast, leaves ofArabidopsis
Regulation of meristem function by its lateral organ primordia semi-dominant mutanphabulosa-1d(phb-19 are radial with
The effects of signals emanating from mature leaves on the fatelbiguitous adaxial cell typ&sin phb-1dmutants, the apical meri-
the apical meristem are already part of botany textbookdem is enlarged and axillary meristems are formed around the
Recently, two different approaches demonstrated that such effegtsre circumference of the leaves. These observations led to the
also occur during primordia initiation. First, the localized exogeproposal that adaxial cell fate promotes meristem fornmtion
ous application of the cell-wall-loosening protein EXPANSIN t&€onversely, abaxial cell fate might be incompatible with meri-
the organ anlage of live tomato apices promoted organ primordiam maintenance. Consistent with this hypothesis is the failure
formation at the site of applicatiinMoreover, altering the nor- to maintain a functional meristem iphan mutant$*®* Re-
mal positions of primordia initiation can influence the phyllotagzently, several members of the YABBY gene family have been
tic pattern of primordia initiation, implying primordium—SAM proposed to promote abaxial cell fate in lateral orfjafisEach
communication. Although the expression patterreXPANSIN family member is expressed in the abaxial domains of one or more
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Fig. 4.Model for interactions between lateral organ primordia a
the apical meristem. Experiments in which incipient leaf primg
dia were separated by incisions from the shoot apical merist
have suggested that the apical meristem might be the source
signal required for the proper abaxial-adaxial development of
leaf because the isolated primordia developed into radially sy
metric, apparently abaxialized, orgéit$(arrow 1). One interpre-
tation is that signals emanating from the apical meristem prom
adaxial cell fate, and in the absence of such signals, abaxial
fate is the default pattern of differentiation. The establishment
the abaxial and adaxial domains occurs during the transition fr
leaf anlagen to leaf primordium because older primordia ¢
develop autonomously into phenotypically normal le2isThe

suggestion that adaxial leaf fate has a positive influence on
maintenance of the meristem (arrow 2) is supported by the phe
type of the adaxializegphb-1d mutant, in which axillary meri-

appear similar to gain-of-function alleles of the SAM-specific
KNOTTEDclass | gené$* Indeed, several genes of that group
were shown to be misregulated in eitbeanor rs2 mutant§™*
leading to the concept thRHAN and RS2might have different
functions inAntirrhinumandZealeaves, respectively’. Specifi-
cally it was suggested thRS2could be involved in establishing
the proximal—distal axis rather than the abaxial-adaxial axis in
developing leavés However, the development of these two axes
might be linked and one consequence of severely abaxialized
lateral organs could be a concomitant loss of proximal—distal
developmerit**37 Analysis of orthologous genes in other species
might be required to clarify this issue.

Conclusions

The primary theme from the three vignettes presented is that cells
d within the SAM are constantly reassessing their positions and
I~ fates with respect to their neighbors to ensure proper formation
eMand maintenance of the SAM. Thus, SAM formation and main-
fenance are active processes, and it is likely that extensive com-
“munication pathways exist within and between the classically
defined regions of the meristem, as well as between the SAM and
bteincipient lateral organ primordia. This view of the SAM is con-
celsistent with position-dependent rather than lineage-dependent de-
of velopment. Extensive communication pathways imply numerous
omreceptors and their corresponding ligands, or perhaps morphogens
an as conduits for cells talking to their neighbors and beyond. Given
the many candidate molecules uncovered by Argbidopsis
thegenome-sequencing project (such as Refs 45,46), a challenge for
MOthe future is to identify specific components that mediate such
HJiafOmmunication pathways, and elucidate their interactions in
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stems are formed around the basal circumference of the radial

leaves and the apical meristem is itself enlatfyethus, meri-
stems produce lateral organs that in turn stimulate meristem
mation or regeneratiéh The failure to maintain a functional
meristem when lateral organs are abaxialized is also consis
with this proposed signalift?>* The nature of the proposed sig
nals, their transduction (e.g. via plasmodesiiataor secreted
ligands) and the precise points of origin and perception (e.g. ¢
tral or peripheral zone) are presently an enigma. Approxim
boundaries of the central, peripheral and rib zones are show
blue. AN, leaf anlagen.

developing plants.
or-
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