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Cell-to-cell communication in vascular morphogenesis
Satu J Lehesranta, Raffael Lichtenberger and Ykä Helariutta
The plant vascular system consists of two conductive cell

types, xylem and phloem, which are both produced by

procambial cells. Recently, several novel regulatory

mechanisms that control the specification of vascular

patterning and differentiation have been uncovered.

The non-cell-autonomous TDIF/CLE signalling mediates

phloem–xylem cross-talk and cambial maintenance; a

flowering-related long-distance signal governs secondary

development; and novel genetic players such as LHW

regulate vascular morphogenesis. A future challenge is to

conflate data on the various genetic, hormonal and other

factors to understand the networks underlying vascular

tissue formation.
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Introduction
The plant vascular tissues form bundles that connect all

parts of the plant and serve two important functions: they

give mechanical support, and distribute water and nutri-

ents as well as other substances needed for growth and

defence. Individual vascular bundles consist of two dif-

ferentiated, highly specialised conductive tissue types,

xylem and phloem, and intervening procambial cells of

pluripotent nature that can differentiate into both con-

ductive cell types (Figure 1). Developmental decisions

require precise spatial and temporal organisation to pro-

duce continuous vascular strands.

Novel genomic and molecular techniques using several

model plant systems (such as Arabidopsis, Populus and

Zinnia) have recently provided insights into the regula-

tion of vascular development. Signals controlling aspects

of vascular morphogenesis include hormones (auxin, cyto-

kinins and brassinosteroids), other small regulatory mol-
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ecules, their transporters, receptors, and various temporal

and spatial regulators of gene expression. Several recent

studies suggest that the control of xylem and phloem

development is highly integrated. Many of the regulatory

factors have been shown to act on cell autonomously;

however, an emerging theme in these processes is the

movement of signals controlling vascular development

and cross-talk between cell types and tissues.

This review will focus on the emerging concepts of how

these components and long-range and short-range signals

might function to set up a regulatory network governing

vascular development.

Formation of vascular strands
Continuous procambial strands need to be established

before vasculature differentiates. This has long been

thought to be caused by the accumulation of the phyto-

hormone auxin through polar transport mechanisms [1,2].

Indeed, expression of the synthetic auxin reporter DR5

and the auxin-induced pre-procambial marker AtHB8
precedes formation of vascular strands in leaves [3]. To

achieve this, auxin is channelled to the provascular

regions by the auxin transporter PIN1, which is already

expressed before procambium formation (Figure 2a).

Radial patterning and maintenance of
proliferation
Besides the formation of vascular strands, auxin may also

play a role in radial patterning of vascular bundles, such as

the differentiation of adaxial and abaxial sides of the

bundle. The radial pattern is initially set up during

embryogenesis by the main agents of radial patterning,

KANADI (KAN) and class III HD-ZIP (PHABULOSA
[PHB], PHAVOLUTA [PHV], REVOLUTA [REV] and

CORONA [CNA]) transcription factors [4–6]. The KAN
signalling and auxin transport pathways appear to inte-

grate, as PIN1 localisation is affected in kan mutants [7].

Conversely, auxin is likely to influence the spatial and

temporal expression patterns of these transcription fac-

tors. The triple mutant phb phv rev has radialised, abax-

ialised leaves and vascular bundles [8] (Figure 2b). In

contrast, gain-of-function HD-ZIP III mutants with faulty

microRNA (miRNA) regulation and kan1 kan2 kan3 have

radialised, adaxialised leaves and bundles. In addition,

the HD-ZIP III genes also appear to regulate vascular

tissue proliferation [9].

Another important hormone, cytokinin (CK), is required

for vascular patterning and the differentiation of all cell

except protoxylem. Mutants with impaired CK signalling,

such as wooden leg (wol) and the triple CK receptor mutant
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Figure 1

A schematic outline showing the basic vascular patterning. (a) Cross-

section of a developing leaf. Vascular bundles develop as pre-

procambial strands. (b) Procambial cells give rise to phloem (abaxial

side of the leaf) and xylem (adaxial side) that differentiate asymmetrically

within the vascular strands. (c) Arrangement of vascular strands within

the stem. (d) During the secondary phase of vascular development in the

stem and root, cambial cells form a cylindrical meristem that produces

secondary xylem and phloem. (e) Cross-section of a root tip shows the

structure of primary vascular tissue within the stele.
ahk2 ahk3 ahk4 (for ARABIDOPSIS HISTIDINE
KINASE), or with depleted levels of CK, such as trans-

genic lines overexpressing CYTOKININ OXIDASE
(CKX), all lead to an increased number of protoxylem

cell files and loss of other cell types in the root vasculature

[10,11]. The CK signalling inhibitor ARABIDOPSIS HIS-
TIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6)

restricts the domain of CK activity and thereby allows

for protoxylem differentiation in a spatially specific man-

ner. CK also appears to be important for the maintenance

and proliferation of cambial cells [12,13] (Figure 2c).
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Having fewer cells sometimes leads to altered cell type

ratios, sometimes not; this relationship is not currently

understood. Recently, the bHLH-domain-containing

protein LONESOME HIGHWAY (LHW) has been ident-

ified as a key factor in establishing bilateral symmetry

[14]. LHW is required to promote proliferation of cell files

in the stele and to maintain longitudinal growth. Whilst

lhw mutants still show distinct cell types, they have fewer

cells in the centre of the root. This leads to roots with only

single xylem and phloem poles. It remains to be seen

whether it relates to CK signalling or other known mech-

anisms.

Also, the brassinosteroid (BR) class of plant hormones are

involved in long-distance signalling to establish the vas-

culature [15]. Mutations in the BR receptor BR-INSEN-
SITIVE 1 (BRI1) cause an abnormal ratio in the

differentiation of phloem to xylem cells, with a dispro-

portionately high number of phloem cells.

Differentiation of vascular cells
Besides AHP6 which promotes protoxylem identity [11],

several genes have been described to be specifically

involved in specifying xylem or phloem identity. These

genes primarily encode transcription factors, but putative

signalling proteins and cell death regulators also play a

role. It is currently not known what regulates the specific

expression of these genes.

Fukuda [16] has previously proposed a temporal model

where the balance of auxin and cytokinin is important to

specify procambial cells that will adopt xylem fate. Cyto-

kinin signalling must be counteracted early by AHP6 to

allow for protoxylem differentiation [11]. Downstream of

these factors, the differentiation of xylem cells is conferred

by the action of a transcriptional network, the first members

of which were described as the VASCULAR-RELATED
NAC-DOMAIN (VND) transcription factors VND6 and

VND7 [17]. VND6 promotes metaxylem identity, whereas

VND7 promotes protoxylem identity. Our understanding

of the xylem transcriptional network has been expanded to

include a cascade involving several MYB and NAC tran-

scription factors [18�,19�]. Furthermore, the spermine bio-

synthesis gene ACAULIS5 (ACL5) controls xylem

specification. In acl5 mutant, fibre elements and metax-

ylem vessel elements fail to differentiate [20�]. This is due

to premature cell death, which is normally inhibited by

ACL5. Vascular continuity is mediated by xylogen, a small

proteoglycan-like protein that is secreted by immature

tracheary elements [21]. Mutants lacking xylogen fail to

form continuous xylem strands.

The only currently known factor for phloem specification

is ALTERED PHLOEM DEVELOPMENT (APL) [22].

This MYB-coiled-coil transcription factor is essential

for the proper differentiation of companion cells and
www.sciencedirect.com
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Figure 2

Signalling and genetic components during different stages of vascular tissue development. (a) Model for polar auxin transport visualises

vascular bundle formation in the leaf midvein (adapted from [28�]). First, polar localisation of PIN1 (red) directs auxin flow (arrows; auxin

concentration shown in blue) in the surface layer of the meristem (green cells) to form an auxin maximum. Subsequently, auxin flux is

directed from this maximum towards inner tissue. A procambial strand forms at the site of the auxin flux. (b) The HD-ZIP III and KANADI genes

are important regulators of vascular patterning and have an antagonistic relationship. In shoot vascular bundles, they determine the adaxial and

abaxial localisation of xylem and phloem, respectively. In phb phv rev triple mutants, phloem surrounds xylem, and in gain-of-function HD-ZIP III

mutants or kan1 kan2 kan3 triple mutants, xylem surrounds phloem. HD-ZIP III genes are regulated by miR165/166 and apparently interact

with polar auxin transport and brassinosteroids. (c) Cambium, the vascular meristem, produces both xylem and phloem cells. Polar auxin

transport and cytokinins have been suggested to regulate cambial activity. A currently unknown flowering-related signal from the shoot is

required for secondary cambial activity. (d) A model according to Hirakawa et al. [37��] suggests that a CLE receptor/ligand system maintains

cambial cell activity in a non-cell-autonomous manner. The TDIF/CLE41/44 peptide is secreted from the phloem and perceived by the receptor

PXY/TDR in procambial cells. This signal promotes proliferation of cambium and inhibits its differentiation into xylem.

www.sciencedirect.com Current Opinion in Plant Biology 2010, 13:59–65
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sieve elements, and contributes to spatially limiting the

differentiation of xylem.

Long-range and short-range signalling
molecules are involved in vascular
development
Results from several recent studies suggest that the

control of differentiation of xylem and phloem requires

short-range and long-range intercellular transport of sig-

nalling molecules.

Auxin has been shown to regulate a number of key

developmental events such as organisation of meris-

tems. This is possible because short-range morphogenic

auxin gradients are regulated by intricate mechanisms

to provide positional information; for an in-depth

update on polar auxin transport, we refer to recent

reviews [23,24]. The asymmetric localisation of PIN

proteins directs auxin within tissues [2,25,26]. This

polarity and the fact that auxin can redirect PIN1

transporter in pre-procambial cells explain how auxin

flow can channel and amplify itself in a self-organising

process to establish a new auxin maximum [3,27]

(Figure 2a). Computer simulations give further support

to this canalisation hypothesis during leaf midvein

formation [28�]. There is also evidence for the long-

range transport of auxin in the phloem from source to

sink tissues [29–31]. Mechanisms for short-range or

long-range transport of other hormones have not yet

been described. Cytokinin probably acts both as a local

and a long-distance signal and may be transported in

the vasculature — by both phloem and xylem — but

the mechanisms involved are so far poorly characterised

[32].

Short-range signalling by TDIF/CLE41/44 and
PXY mediates phloem–xylem cross-talk
The control of stem cell maintenance in the shoot apical

meristem of Arabidopsis involves an interaction between

the CLV3 peptide and receptor components CLV1 and

CLV2. The CLV pathway induces downstream com-

ponents that limit the expression domain of the WOX

family homeodomain transcription factor WUSCHEL;

WUS acts non-cell-autonomously to maintain stem cell

identity and promote CLV3 expression [33]. Another

feedback regulon maintains the root apical meristem

and involves the peptide CLE40 and the WUS-related

WOX5 [34�,35].

A similar cross-talk model between phloem and xylem

has been suggested as the regulator for vascular pat-

terning. The CLE peptide TDIF was originally ident-

ified in the Zinnia cell culture system and shown to be a

dodecapeptide that could suppress the differentiation

of cultured cells to tracheary elements at very low

levels but did not inhibit meristem function in plants

[36]. TDIF inhibits xylem differentiation and increases
Current Opinion in Plant Biology 2010, 13:59–65
proliferation of procambial cells in leaves in planta
[37��]. These results suggested that a CLV-like signal-

ling mechanism operates in the vasculature. More evi-

dence for this kind of regulon came from the

identification of PXY, a CLV-like receptor kinase which

is required for normal cambial cell divisions and spatial

organisation of xylem and phloem in Arabidopsis [38��].
In pxy mutants (for phloem intercalated with xylem), the

organisation of vascular bundles in stems is severely

disrupted in both transverse and longitudinal direc-

tions: cell divisions occur irregularly, and xylem and

phloem are no longer neatly separated. The model for

the functions of these two genes came together when

TDIF/CLE41/44/42 was shown to act as ligand for

PXY, also named TDR for putative TDIF receptor

[37��]. The direct binding of TDIF was demonstrated

by a biochemical approach, where photoaffinity label-

ling was used on recombinant TDR produced in

tobacco cells. CLE41/44 encoded peptides are secreted

from the phloem and bind their receptor in the cam-

bium (Figure 2d). Combined, these data strongly

suggest that the CLE receptor/ligand system maintains

cambial stem cell activity and regulates its differen-

tiation into xylem. Whether there is a downstream

factor similar to WUS that would constitute a complete

regulatory loop remains to be seen.

miRNAs on the move?
Small RNAs can influence many aspects of gene regu-

lation. Whilst the well-characterised classes of small

interfering RNAs (siRNAs) act mainly in defence, miR-

NAs and trans-acting RNAs have important functions in

growth and development by regulating endogenous tar-

get genes. For instance, miR165/166 has been shown to

regulate HD-ZIP III patterning [39,40] (Figure 2b). Is it

possible that these miRNAs would provide positional

information by moving short distances? There is plenty

of evidence of short-range and systemic movement of

siRNAs [41] but miRNAs have been considered to func-

tion cell autonomously [42]. Various miRNAs, including

miR165/166, are present in phloem [43�], although it is

debatable whether they could act as long-range devel-

opmental signals [44]. It has been suggested that short-

range miRNA movement could have important devel-

opmental consequences [45�] but direct functional

evidence for miRNA movement remains to be demon-

strated.

Flowering triggers secondary development
An interesting concept for the long-range control of

vascular patterning comes from work on natural variation.

There is a transition of secondary growth in Arabidopsis

hypocotyl and roots that leads to expansion of xylem and

fibre differentiation, reminiscent of trunk formation in

trees [46��]. Analyses of quantitative trait loci analyses

revealed FLOWERING LOCUS C as the major locus

controlling this transition, suggesting that flowering
www.sciencedirect.com



Cell-to-cell communication in vascular morphogenesis Lehesranta, Lichtenberger and Helariutta 63
induction is required for the onset of xylem expansion

(Figure 2c). This implicates a flowering-related signal

from the shoot but it is not currently known what this

signal might be.

How do molecules move between cells?
Xylem and phloem are the primary conduits of long-dis-

tance transport within the plant. Furthermore, short-range

non-cell-autonomous developmental signals such as tran-

scription factor movement are well established in plants.

Plasmodesmata are probably the main mediators for sym-

plastic transport of non-cell-autonomous transcription fac-

tors and small RNAs [47] and especially important for

phloem as they regulate the loading of molecules into

the phloem stream (reviewed in [48]). Phloem sieve

elements are connected to each other by sieve plate pores,

plasmodesmatal complexes, the functions of which are

currently poorly known. Furthermore, plasmodesmata

can fine-tune cell-to-cell trafficking by setting size exclu-

sion limits [49]. Because of this complexity and subtle

regulation, novel mutants with defects in plasmodesmata

may shed light on their specific roles in phloem continuity,

differentiation and/or transport function. Few have so far

been described, but recently, a family of novel plasmo-

desmata-located proteins that affect cell-to-cell communi-

cation has been identified [50�]. Another mutant with

increased callose deposition and decreased plasmodesmal

transport has severe defects in development and phloem

unloading [51�].

Protein movement may in some cases also involve targeted

regulated transport. SHORT-ROOT (SHR), an important

transcription factor for ground tissue patterning, is also

implicated in vascular development [52]. SHR is expressed

in vascular tissues in the root but moves into the endo-

dermis, where it promotes endodermal cell identity. SHR

requires both cytoplasmic and nuclear localisation in order

to be transported in cell-specific manner, and therefore this

is unlikely to occur simply through diffusion [53�]. The

TDIF/CLE41/42/44 peptide is likely to be secreted and

distributed in the apoplast [37��].

Conclusions
Many different factors involved in vascular development

have been described, but so far there has been relatively

little knowledge on how they interact and regulate each

other and how positional information is provided.

Morphogenesis requires the integration of a multitude

of signals and gene functions coming from outside and

within the vascular system. Recently, novel concepts of

signalling between cells and tissues such as the TDIF/

CLE regulon mediating phloem–xylem cross-talk and

miRNA movement have been proposed. In the future,

it will be of great interest to see how these signalling

networks fit in with other known players and how cell-to-

cell communication occurs to produce this complex

system.
www.sciencedirect.com
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