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TOPLESS Mediates Auxin-Dependent
Transcriptional Repression During
Arabidopsis Embryogenesis
Heidi Szemenyei,1,2 Mike Hannon,1,2 Jeff A. Long1*

The transcriptional response to auxin is critical for root and vascular development during
Arabidopsis embryogenesis. Auxin induces the degradation of AUXIN/INDOLE-3-ACETIC ACID
(AUX/IAA) transcriptional repressors, freeing their binding partners, the AUXIN RESPONSE FACTOR
(ARF) proteins, which can activate transcription of auxin response genes. We show that TOPLESS
(TPL) can physically interact with IAA12/BODENLOS (IAA12/BDL) through an ETHYLENE RESPONSE
FACTOR (ERF)–associated amphiphilic repression (EAR) motif. TPL can repress transcription in vivo
and is required for IAA12/BDL repressive activity. In addition, tpl-1 can suppress the patterning
defects of the bdl-1 mutant. Direct interaction between TPL and ARF5/MONOPTEROS, which is
regulated by IAA12/BDL, results in a loss-of-function arf5/mp phenotype. These observations show
that TPL is a transcriptional co-repressor and further our understanding of how auxin regulates
transcription during plant development.

The phytohormone auxin has been impli-
cated in many aspects of plant biology,
including pattern formation during em-

bryogenesis, lateral organ development, and cell
expansion (1). Auxin mediates these activities
through a signaling cascade involving AUXIN
RESPONSE FACTORS (ARFs), which consti-
tute a family of transcription factors that activate
or repress expression of auxin response genes (2),
and the AUX/IAA family of transcriptional re-
pressors (3). AUX/IAAs negatively regulate auxin-
mediated transcription by binding ARFs through
conserved domains III and IV found in both types
of proteins (4, 5).

Domain II of AUX/IAAs interacts with
the auxin receptor TRANSPORT INHIBITOR
RESISTANT (TIR1), part of a Skp1/cullin/F-box
protein (SCF) complex (6–8). Auxin stabilizes
this interaction, leading to the degradation of
AUX/IAAs and allowing ARFs to activate tran-
scription. Mutations in AUX/IAAs that disrupt
the interaction with the TIR1 protein family
abolish their auxin-induced degradation (8). For
example, bodenlos-1 (bdl-1) contains a stabilizing
mutation (P74S, substitution of proline 74 with
serine) in IAA12 (9). IAA12/BDL physically in-

teracts with AUXIN RESPONSE FACTOR5/
MONOPTEROS (ARF5/MP) and represses its
activity (9). Consistent with this, both bdl-1 mu-
tants and loss-of-function ARF5/MP alleles dis-
play reduced vasculature and form a “basal peg”
instead of a root and hypocotyl (the seedling
stem) (10–12).

Although no prior connection has been made
to auxin signaling, the most severe topless-1 (tpl-1)
phenotype, a homeotic transformation of the
apical pole (the shoot) into a second basal pole
(the root), suggests that it plays a role in this
pathway (13). tpl-1 is temperature sensitive and
displays a range of phenotypes, all disrupting the
patterning of the apical half of the embryo. The
tpl-1 mutation is a histidine substitution at aspar-
agine 176 (N176H), and this allele acts as a domi-
nant negative for the TOPLESS RELATED (TPR)
family (14). On the basis of its domain structure
and genetic interactions with a histone deacetylase
and a histone acetyl transferase, TPL has been
proposed to be a transcriptional co-repressor (14).

Transcriptional co-repressors do not bind
DNA directly, but are recruited to DNA through
interactions with DNA-binding transcription fac-
tors (15). Determining a co-repressor’s binding
partners can provide insight into its biological
relevance. Therefore, we performed yeast two-
hybrid screens to find protein interactors using
full-length TPL or the N terminus of TPL (Fig.
1A). Multiple AUX/IAAs, including IAA12/
BDL, were among the positive clones in both
screens (table S2). IAA12/BDL contains the four

conserved domains found in most AUX/IAAs
(domains I to IV) (Fig. 1A). Through trunca-
tion analyses, we determined that domain I of
IAA12/BDL is necessary and sufficient to inter-
act with the C-terminal to lissencephaly homolo-
gy (CTLH) domain of TPL (16) (Fig. 1, B and C).

Domain I of theAUX/IAAs contains an ERF-
associated amphiphilic repression (EAR) motif
(17), which is known to be involved in tran-
scriptional repression (18). To determine if this
motif is essential for the interaction with TPL, we
tested an IAA12/BDL construct in which three
leucines at the core of the EAR domain were
changed to alanines (IAA12/BDL mEAR) (Fig.
1A). These changes to the EAR domain severe-
ly weakened the interaction between TPL and
IAA12/BDL both in yeast two-hybrid assays (Fig.
1C) and assays inwhich glutathione S-transferase
(GST)–tagged in vitro–translated products were
used (Fig. 1D).

We also tested the interaction between
IAA12/BDL and TPL using plant lysates. We
found that column-bound GST-IAA12/BDL and
GST-N-TPL could affinity purify TPL fused to a
6× hemagglutinin tag (TPL-HA) from plant
extracts (Fig. 1E), whereas purified GSTor beads
alone could not, further indicating that TPL
interacts with IAA12/BDL. These results also
demonstrate that TPL can homodimerize, a
characteristic shared with other transcriptional co-
repressors (19). GST-N-TPL N176H could also
pull down BDL P74S–green fluorescent protein
(GFP) from plant lysates (Fig. 1F). Mutations in
the EAR domain of GST-IAA12/BDL disrupted
the interaction with TPL (Fig. 1E). These inter-
actions were also observed in a tobacco transient
expression system (20) by means of bimolecu-
lar fluorescence complementation (BiFC) (21)
(fig. S2).

To investigate the biological significance of
these physical interactions, we analyzed tpl-1bdl-1
double mutants. bdl-1 seedlings form a basal
peg (Fig. 2C), lacking hypocotyl and root struc-
tures of wild-type seedlings (Fig. 2A), whereas
tpl-1 roots appear normal (Fig. 2B). tpl-1bdl-1
seedlings formed hypocotyls and roots (Fig. 2D
and table S3), indicating that tpl-1 can suppress
the basal patterning defects seen in bdl-1. bdl-1
mutants also display a reduction in cotyledon
(seed leaf) vasculature development (Fig. 2G).
Wild-type and tpl-1 cotyledons develop a pri-
mary midvein with loops of lateral veins along
the margins (Fig. 2, E and F). In bdl-1, these
veins are either absent or severely reduced (n =
70) (Fig. 2G) (10). Vasculature formation was
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restored in the cotyledons of tpl-1bdl-1seedlings,
although lateral veins often did not form loops
(n = 50) (Fig. 2H). Therefore, tpl-1 can suppress
defects in both the apical and basal halves of
bdl-1 seedlings.

We then examined these genetic interactions
during embryogenesis. In wild-type embryos, the
hypophysis (the uppermost cell of the extra-
embryonic suspensor) divides asymmetrically,
resulting in a lens-shaped cell (Fig. 2I) that

will form the quiescent center of the root meri-
stem. These cells express the synthetic auxin
response reporterDR5rev::GFP (Fig. 2M) (4, 22),
which is correlated with the accumulation of
high auxin concentrations and is dependent on
MP activity (22, 23). tpl-1 embryos (Fig. 2J) also
generate a lens-shaped cell and display a wild-
type DR5rev::GFP expression pattern (Fig. 2N).
bdl-1 embryos, in which the hypophysis divides
abnormally, lack the lens-shaped cell (Fig. 2K),
and DR5rev::GFP expression is not detectable in
hypophyseal cell derivatives (n = 50) (Fig. 2O)
(10, 23). In tpl-1bdl-1 embryos, the lens-shaped
cell is restored (Fig. 2L), and DR5rev::GFP
expression is again detected in the developing
embryonic root (n = 55) (Fig. 2P). This rescue,
combined with the interaction of TPL and the
EAR domain of IAA12/BDL, suggests that TPL
is involved in IAA12/BDL-mediated transcrip-
tional repression. Therefore, we hypothesized
that in the tpl-1 background, IAA12/BDL cannot
fully repress transcription of its target genes.

To test this hypothesis, we used a UAS/
GAL4-based transcriptional repression assay in
planta (Fig. 3A) (24). Plants expressing TPL-
GAL4 and IAA12/BDL P74S-GAL4 fusions
displayed a decrease in b-glucoronidase (GUS)
activity in a wild-type background compared to
the control line (Fig. 3B) (74.6 ± 1.2% and 76.7 ±
6.9% of the control, respectively). Their repre-
sentative staining patterns are shown in Fig. 3, C
to F. The ability of IAA12/BDL P74S-GAL4 to
repress transcription was diminished in the tpl-1
background (Fig. 3, B and E). These data show
that TPL can repress transcription and suggest the
role of TPL as a transcriptional co-repressor in
AUX/IAA-regulated transcriptional repression.

Single and multiple loss-of-function aux/iaa
mutants are reported to have subtle or no
discernible phenotypes (25). However, we hy-
pothesized that further loss of AUX/IAA function
might enhance the tpl-1 phenotype. Therefore,
we examined the effect of a transferred DNA
(T-DNA) insertion allele (Salk_138684) (26) of
IAA12/BDL on tpl-1. This allele of IAA12/BDL
has no obvious phenotype, whereas tpl-1 exhibits
a range of phenotypes when grown at 21°C (13).
A higher frequency of severe seedling phenotypes
was seen in the double-mutant background versus
tpl-1 alone when grown at 21°C (table S1),
suggesting that decreased AUX/IAA function
contributes to the tpl-1 phenotype.

AUX/IAAs are proposed to bind ARFs and
inhibit transcription of ARF target genes. Because
IAA12/BDL binds ARF5/MP and also interacts
with TPL, we reasoned that these three proteins
act in a complex. We examined this possibility
using BiFC (21) in a tobacco transient expression
system (20). Although we observed no direct
interaction between either TPL or TPL N176H
and ARF5/MP (Fig. 4A and fig. S2I), interaction
was observed upon coexpression of stabilized
IAA12/BDL (Fig. 4, B and C). This suggests that
these proteins can exist in a complex and that
IAA12/BDL represses ARF5/MP by recruiting

Fig. 2. tpl-1 suppresses
bdl-1. (A to D) Seed-
lings, 4 days postgermi-
nation (dpg). Wild type
(A), tpl-1 (B), bdl-1 (C),
and bdl-1tpl-1 (D). (E to
H) Cleared cotyledons
(4 dpg). Wild type (E),
tpl-1 (F), bdl-1 (G), and
bdl-1tpl-1 (H). (I to L)
Transition-stageembryos.
Wild type (I), tpl-1 (J),
bdl-1 (K), and bdl-1tpl-1
(M). Lens-shaped cell and
derivatives are outlined.
(M to P) DR5rev::GFP-
expressing embryos. Wild
type (M), tpl-1 (N), bdl-1
(O), and bdl-1tpl-1 (P).
Scale bars: (A to D) 0.5
mm; (E to H) 1 mm.

Fig. 1. Interactions be-
tween TPL and IAA12/BDL.
(A) Diagrams of TPL and
IAA12/BDL constructs for
interaction studies. Core
residues of the EAR do-
main of IAA12/BDL are
indicated in red. Pink el-
lipses represent LisH do-
mains, yellow hexagons
represent CTLH domains,
blue boxes represent
proline-rich regions, and
green boxes represent
WD40 repeats of TPL.
(B) TPL interacts with do-
main I of IAA12/BDL in
yeast. Interaction does
not occur when domain I
is truncated. (C) TPL and
IAA12/BDL interact much
less strongly when the
EAR domain is mutated
(IAA12/BDL mEAR) com-
pared to the wild type.
IAA12/BDL does not in-
teract with TPL without the CTLH domain. AD, activation domain; DB, DNA binding domain. (D) The GST-
N-TPL fusion protein can interact with in vitro–translated IAA12-HA, but does not interact strongly with
IAA12/BDL mEAR. (E) Interaction results of extracts from nontransgenic or transgenic plants expressing
TPL-HA with either beads alone or bound GST fusion proteins. LER indicates wild-type Landsberg erecta
extracts. (F) GST-N-TPL N176H pulldown assay from nontransgenic or transgenic plants expressing BDL
P74S-GFP. (See supplementary fig. 1, A and B, for loading controls.)
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TPL. It also shows that TPL N176H does not
disrupt this complex.

To determine if the EAR domain of IAA12/
BDL allows IAA12/BDL to bridge TPL and
ARF5/MP, we generated a chimeric protein
containing domains III and IV of IAA12/BDL
fused to the C terminus of TPL. This fusion
protein should enable TPL to directly interact
with ARF5/MP without requiring the EARmotif
and should be unaffected by auxin due to the
absence of domain II. First, we confirmed this
interaction in a yeast two-hybrid assay (fig. S3),
and then expressed this construct in plants under
the control of the IAA12/BDL promoter. In 15

independent transgenic lines, we observed phe-
notypes similar to those of bdl-1 and arf5/mp
loss-of-function mutants (Fig. 4, D to F).

In light of these results, we propose a model
in which TPL is a transcriptional co-repressor
involved in the repression of auxin response
genes through its physical interaction with the
EAR domain of IAA12/BDL (Fig. 4G), and that
this process is defective in tpl-1, resulting in the
derepression of auxin response genes (Fig. 4H).
Our results are also consistent with a report that
application of a histone deacetylase inhibitor can
suppress the lateral root defects seen in the
stabilized iaa14/solitary-root mutant (27).

The coupling of TPL to ARFs through AUX/
IAAs provides the plant an elegant mechanism to
control ARF transcriptional activity in an auxin-
dependent manner. It will be key to determine
if all AUX/IAA proteins use TPL in this manner.
It will also be of interest to determine if other
EAR domain–containing transcription factors
use TPL to facilitate their transcriptional repres-
sion activity in Arabidopsis as well as in other
plant species.
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Fig. 4. TPL functions to repress auxin
response through its physical interaction
with IAA12/BDL. (A to C) Bimolecular flu-
orescence complementation studies in to-
bacco. Tobacco transformed with TPL-SPYCE
and ARF5/MP-SPYNE (A); BDL P74S, TPL-
SPYCE, and ARF5/MP-SPYNE (B); or BDL
P74S, TPL N176H-SPYCE, and ARF5/MP-
SPYNE (C). (D to F) Phenotypes of trans-
genic plants expressing the TPL-IAA12/BDL
III/IV fusion construct. Seedling lacking
root (D); seedling lacking root and hypo-
cotyl (E); seedling consisting of single
cotyledon with no hypocotyl or root (F).
(G) Model of TPL-mediated transcriptional
repression of auxin response genes. (H)
Schematic of derepression of auxin re-
sponse genes in the tpl-1 context.

Fig. 3. TPL can repress transcription and affects the ability of IAA12/BDL to repress. (A) Diagram of
constructs analyzed in repressor assay. (B) b-Glucuronidase (GUS) activity measured by MUG assay
(4-methylumbilleferyl glucuronide breakdown into 4-methylumbilliferone) of two independent transgenic
repressor lines (dark blue/light blue). Experiment was done in duplicate. Repressor activity is relative to
MUG activity of the reporter in wild-type Ler, where error bars show standard error of the mean. (C to F)
GUS staining patterns in plants expressing reporter only (C), tCUPp::BDL P74S-GAL4DB and reporter in a
wild-type background (D), tCUPp::BDL P74S-GAL4DB and reporter in the tpl-1 background (E), and TPLp::TPL-
GAL4DB and reporter in a wild-type Ler background (F).
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