1 Chemical shift for a given molecule:Chemical shift for a given molecule: •• Number of signals = nonequivalent nucleiNumber of signals = nonequivalent nuclei molecular symmetrymolecular symmetry •• Relative intensity = number of nucleiRelative intensity = number of nuclei •• Position in the spectrum = shielding/chemical shiftPosition in the spectrum = shielding/chemical shift electronic structureelectronic structure •• MultiplicityMultiplicity = connectivity of atoms and groups= connectivity of atoms and groups 2 MagneticMagnetic CouplingCoupling The interaction of nuclear spins is composed of two parts:The interaction of nuclear spins is composed of two parts: 1. Dipolar coupling1. Dipolar coupling direct interaction of magnetic momentsdirect interaction of magnetic moments solidssolids oriented phasesoriented phases NOENOE relaxationrelaxation 2. Scalar coupling2. Scalar coupling indirect interaction mediated by electronsindirect interaction mediated by electrons chemical information about the bondingchemical information about the bonding BBμμzz ~~ μμ rrAXAX −−33 (3cos(3cos22 ΘΘ −− 1)1) 3 DipolarDipolar CCouplingoupling Dipolar coupling constantDipolar coupling constant DDAXAX ~~ hh γγAA γγXX rrAXAX −−33 ΔνΔνheterohetero = D= DAXAX(3cos(3cos22 ΘΘ −− 1)1) ΔνΔνhhomomoo == 1.51.5 DDAXAX(3cos(3cos22 ΘΘ −− 1)1) DAX 2DAX 4 DipolarDipolar CCouplingoupling BBμμzz ~~ μμ rrAXAX −−33 (3cos(3cos22 ΘΘ −− 1)1) 5 ScalarScalar CCouplingoupling Analysis of the coupling patterns consists ofAnalysis of the coupling patterns consists of three parts:three parts: •• number of lines in anumber of lines in a multipletmultiplet •• relative intensities of lines in therelative intensities of lines in the multipletmultiplet •• magnitude (and possibly sign) of themagnitude (and possibly sign) of the coupling constantscoupling constants 6 Scalar (Scalar (SpinSpin--SSpinpin)) CCouplingoupling The simplest case: Two magnetically active nuclei Interacting through bonds (see each other) Both spins I = ½ 0.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0 0.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0 Ha HbJ = 0 J ≠ 0 7 ScalarScalar CCouplingoupling A splitting of a signal = more energy levels involved in the transitions Origin = The magnetic moment of the nucleus Ha produces polarization at Hb (and vice versa) Spectrum of Ha 8 TwoTwo SSpinspins I =I = ½½ 9 TwoTwo SSpinspins I =I = ½½ 10 Homo vs.Homo vs. HHeteroetero CCouplingoupling 11 ScalarScalar CCouplingoupling CH3-CHCl2 3Hb Ha M = 2 n I + 1 12 M = 2 n I + 1 13 14 15 16 ScalarScalar CCouplingoupling M = 2 n I + 1 17 ScalarScalar CCouplingoupling 18 19 First Order NMR Coupling PatternsFirst Order NMR Coupling Patterns Spin, IX Polynomial, n = number of nuclei X Examples 1/2 (x + y)n 1H 1 (x2 + xy + y2)n 2H, 6Li, 14N 3/2 (x3 + x2y + xy2 + y3)n 11B, 7Li 2 (x4 + x3y + x2y2 + xy3 + y4)n - 5/2 (x5 + x4y + x3y2 + x2y3 + xy4 + y5)n 17O, 27Al 3 (x6 + x5y + x4y2 + x3y3 + x2y4 + xy5 + y6)n 10B 7/2 (x7 + x6y + x5y2 + x4y3 + x3y4 + x2y5 + xy6 + y7)n 51V, 59Co Line intensities of the multiplet A are given by the coefficients of polynomial expansion AXn 20 SpinSpin ½½ PascalPascal’’s Triangles Triangle PatternPattern nn Relative Peak HeightRelative Peak Height (x + y)(x + y)nn SingletSinglet 00 11 DoubletDoublet 11 1 : 11 : 1 TripletTriplet 22 1 : 2 : 11 : 2 : 1 QuartetQuartet 33 1 : 3 : 3 : 11 : 3 : 3 : 1 QuintetQuintet 44 1 : 4 : 6 : 4 : 11 : 4 : 6 : 4 : 1 SextetSextet 55 1 : 5 : 10 : 10 : 5 : 11 : 5 : 10 : 10 : 5 : 1 AndAnd soso onon ………… 21 Coupling withCoupling with SSeveraleveral SSpinspins B FF3C F F3C CF3 CF3 1111 B NMRB NMR CFCF33 n = 9n = 9 F(2) n = 1F(2) n = 1 F(3) n = 1F(3) n = 1 CFCF33(too far)(too far) K+ M =M = ΠΠ((22 nnii IIii + 1+ 1)) 22 1111 B NMRB NMR SpectrumSpectrum ofof K[B(CF=CFK[B(CF=CF22))44]] 1111 B NMRB NMR spectrumspectrum ofof K[B(CF=CFK[B(CF=CF22))44] in] in CDCD33CN:CN: anan overlappingoverlapping quintetquintet ofof quintetsquintets ofof quintetsquintets ((22 JJB,FB,F = 21.5,= 21.5, 33 JJB,FB,F = 3.2,= 3.2, 33 JJB,FB,F = 2.2= 2.2 HHz).z). Multiplet overlap 23 K[AgFK[AgF44]] K[AgFK[AgF44] d] d88 square planarsquare planar 109109Ag I =Ag I = ½½ NA = 48.2%NA = 48.2% γγ == -- 1.2448 101.2448 1077 radrad TT--11 ss--11 107107Ag I =Ag I = ½½ NA = 51.8%NA = 51.8% γγ == -- 1.0828 101.0828 1077 radrad TT--11 ss--11 1199 FF NMRNMR 24 K[AgFK[AgF44]] M =M = 2nI + 12nI + 1 11J(J(109109AgAg –– F) = 425.8 HzF) = 425.8 Hz 11J(J(107107AgAg –– F) = 370.4 HzF) = 370.4 Hz 110909 AgAg NMRNMR 11J(J(109109AgAg –– F) must have the same value in bothF) must have the same value in both 109109Ag andAg and 1919F spectraF spectra 25 SignalSignal MultiplicityMultiplicity 17O NMR TcO4 - in 20.1% enriched H2 17O. H2 17O 26 SignalSignal MultiplicityMultiplicity CCN Pt Tl NCB NCC CAN CCN CCN M =M = ΠΠ((22 nnii IIii + 1+ 1))13C enriched CN- 27 22 J (J (TlTl–– CCCC) <) < 11 J (J (TlTl–– CCBB) <) < 22 J (J (TlTl–– CCAA)) ciscis CCCC 0.45 kHz0.45 kHz transtrans CCAA 9.71 kHz9.71 kHz 205205 Tl NMRTl NMR 28 ScalarScalar CCouplingoupling SpinSpin--spinspin couplingscouplings betweenbetween twotwo nucleinuclei willwill bebe dependentdependent uponupon severalseveral factorsfactors:: •• thethe nucleinuclei involvedinvolved –– magnetogyricmagnetogyric ratioratio •• thethe distancedistance betweenbetween thethe twotwo nucleinuclei •• thethe angleangle ofof interactioninteraction betweenbetween thethe twotwo nucleinuclei •• thethe nuclearnuclear spinspin ofof thethe nucleinuclei Indirect nuclear spin–spin coupling constants •through-bond •through-space •through hydrogen bonds 29 ScalarScalar CCouplingoupling The most important contribution to scalar coupling arisesThe most important contribution to scalar coupling arises from the FERMIfrom the FERMI--CONTACT INTERACTIONCONTACT INTERACTION which can be described in the Diracwhich can be described in the Dirac--vector model:vector model: B0 A B The nuclear spin polarization of nucleus A in a magnetic fieldThe nuclear spin polarization of nucleus A in a magnetic field polarizes the spins of a bonding electron pair, which in turnpolarizes the spins of a bonding electron pair, which in turn transfer this polarization to nuclear spin B.transfer this polarization to nuclear spin B. 30 ScalarScalar CCouplingoupling FERMIFERMI--CONTACT INTERACTION is mediated only by sCONTACT INTERACTION is mediated only by s-- electrons (p, d, f electrons have no contact with the nucleus)electrons (p, d, f electrons have no contact with the nucleus) ss--electron has definite probability at nucleuselectron has definite probability at nucleus ee--spin and nuclear spin can interact only when they occupyspin and nuclear spin can interact only when they occupy same spacesame space An approximate expression for the scalar coupling constant JAn approximate expression for the scalar coupling constant J was given by Mc CONNELL:was given by Mc CONNELL: JJABAB ~~ γγAA γγBB ssAA 22 (0) s(0) sBB 22 (0) ((0) (ΔΔE)E)−−11 ααABAB 22 ss22(0) = s(0) = s--electron density at the nucleuselectron density at the nucleus ααABAB 22 = s= s--character in the Acharacter in the A--B bondB bond 31 Conventions on the NotationConventions on the Notation of Scalar Coupling Constantsof Scalar Coupling Constants SpinSpin--spin couplings are generally expressed in terms ofspin couplings are generally expressed in terms of the COUPLING CONSTANTthe COUPLING CONSTANT nn JJ where n denotes the number of bonds between coupled nucleiwhere n denotes the number of bonds between coupled nuclei DimDimensionension [ J ] = s[ J ] = s−−11 [Hz][Hz] The magnitude of J depends on theThe magnitude of J depends on the gyromagneticgyromagnetic ratiosratios γγAA,, γγBB of the coupled nuclei. For comparison of coupling constantsof the coupled nuclei. For comparison of coupling constants involving different isotopes useinvolving different isotopes use the REDUCED COUPLING CONSTANT Kthe REDUCED COUPLING CONSTANT K KKABAB = (4= (4ππ22 /h) (/h) (γγAA γγBB ))−−11 JJABAB DimDimensionension [ K ] = 10[ K ] = 101919 N AN A22 mm––33 32 Scalar Coupling ConstantsScalar Coupling Constants To compare substituent influences on coupling for differentTo compare substituent influences on coupling for different nuclei, usenuclei, use the EFECTIVE REDUCED COUPLING CONSTANT Kthe EFECTIVE REDUCED COUPLING CONSTANT K’’ KK’’ABAB == KKABAB [[ssAA 22 (0) s(0) sBB 22 (0)](0)]−−11 DimDimensionension [K[K’’ ] = 10] = 104242 N AN A––22 mm33 33 SigSignns of Scalar Coupling Constantss of Scalar Coupling Constants SiSiggns of scalar coupling may be both POSITIVE or NEGATIVE.ns of scalar coupling may be both POSITIVE or NEGATIVE. The sign of a coupling constant is defined as follows:The sign of a coupling constant is defined as follows: KKABAB < 0 if PARALLEL alignment of the spins I(A) and I(B) is< 0 if PARALLEL alignment of the spins I(A) and I(B) is energetically favoredenergetically favored KAB < 0 A B KAB > 0 A B KKABAB > 0 if ANTIPARALLEL alignment of the spins I(A) and I(B)> 0 if ANTIPARALLEL alignment of the spins I(A) and I(B) is energetically favoredis energetically favored 34 SiSiggns of Scalar Coupling Constantsns of Scalar Coupling Constants > 0 if> 0 if γγAA,, γγBB have same signhave same sign < 0 if< 0 if γγAA,, γγBB have different signhave different sign KKABAB JJABAB NMR spectroscopic measurements in liquids yield generally onlyNMR spectroscopic measurements in liquids yield generally only information on RELATIVE SIGNS of two couplings,information on RELATIVE SIGNS of two couplings, i.e. Ki.e. KABAB / K/ KACAC > 0 or K> 0 or KABAB /K/KACAC < 0.< 0. Determination of absolute signs for KDetermination of absolute signs for KABAB or Kor KACAC requires otherrequires other experiments (e.g. molecular beam experiments, observation ofexperiments (e.g. molecular beam experiments, observation of dipolar interactions in the solid state)dipolar interactions in the solid state) 35 SiSiggns of Scalar Coupling Constantsns of Scalar Coupling Constants The sign ofThe sign of 11KKEHEH isis generally positive.generally positive. (E = any first to fourth row atom)(E = any first to fourth row atom) IfIf the relative sign of a coupling constantthe relative sign of a coupling constant nnKKXYXY can becan be ddeterminedetermined fromfrom nnKKXYXY // 11KKEHEH , it can be translated into an, it can be translated into an absolute sign.absolute sign. MMethodsethods for signfor sign determinationdetermination:: analysis of higher order spectraanalysis of higher order spectra homohomo-- oror heteronuclearheteronuclear 2D2D--ExperimentsExperiments selective irradiation experimentselective irradiation experiment Coupling signs may provide useful structural information on:Coupling signs may provide useful structural information on: the number of bonds connecting two nucleithe number of bonds connecting two nuclei the oxidation state of elementsthe oxidation state of elements thethe stereochemicalstereochemical details (conformation and configuration analysis)details (conformation and configuration analysis) 36 Visualization of SpinVisualization of Spin––SpinSpin CouplingCoupling ( ) ( )[ ]↑↓−↑↑== EEKJ ABBAAB 2 1 2 γγ π h the energy splitting between states with parallel and antiparallel nuclear spins εAB(r) = the coupling energy density (CED) integral of CED over all space = KAB CED is a realspace function, can be visualized in 3D contains all the information about the propagation of the nuclear spin–spin interaction throughout a molecule ( ) ( )[ ] ( )∫∫ =−== ↑↓↑↑ dVrdVrrKJ ABBAABBAAB εγγ π εεγγ π 22 1 2 hh 37 Visualization of SpinVisualization of Spin––SpinSpin CouplingCoupling ( ) ( )[ ] ( )∫∫ =−== ↑↓↑↑ dVrdVrrKJ ABBAABBAAB εγγ π εεγγ π 22 1 2 hh 3JHH through-bond Benzene through-space H2P-CH2-CH2-PH2 3JPP 38 Visualization of SpinVisualization of Spin––SpinSpin CouplingCoupling ( ) ( ) ( ) 21λλ ρρ ρ rr rAB ↑↓↑↑ − = 3JHH The coupling electron deformation density (CDD), the integration of CDD over space = 0 CDDCED 39 TypesTypes ofof CouplingCoupling CouplingCoupling betweenbetween twotwo nucleinuclei cancan bebe categorizedcategorized asas followsfollows:: HomonuclearHomonuclear CouplingCoupling -- couplingcoupling betweenbetween nucleinuclei ofof thethe samesame typetype 11HH--CC--CC--11HH,, 195195PtPt--195195Pt,Pt, 3131PP--CC--3131P,P, 199199HgHg--CC--CC--199199HgHg HeteronuclearHeteronuclear CouplingCoupling -- couplingcoupling betweenbetween nucleinuclei ofof differentdifferent typestypes 11HH--1313CC,, 11HH--3311P,P, 205205TlTl--195195Pt,Pt, 1414NN--5151VV 40 Distance DependenceDistance Dependence TThehe absoluteabsolute valuevalue ofof thethe couplingcoupling constantconstant decreases as tdecreases as thehe numbernumber ofof intercedinginterceding bondsbonds betweenbetween coupledcoupled nucleinuclei increasesincreases.. TheThe orderorder ofof thethe strengthstrength ofof couplingcoupling isis asas followsfollows:: 11J >J > 22J >J > 33J >J > 44J >J > nnJJ 11 JJ oneone--bondbond oror directdirect 22JJ twotwo--bondbond oror geminalgeminal 33JJ threethree--bondbond oror vicinalvicinal nnJJ longlong--rangerange 41 Distance DependenceDistance Dependence P 33 JJPCCCPCCC = 14 Hz= 14 Hz 22 JJPCCPCC = 12 Hz= 12 Hz 11 JJPCPC = 55 Hz= 55 Hz 11 J >J > 33 JJ >> 22 JJ 42 LargestLargest HHeteronucleareteronuclear JJ CN PtNC CN CN CN Tl NC CN PtNC CN CN CN Tl CN PtNC CN CN CN Tl NC CN 2 CN PtNC CN CN CN Tl NC CN 3 NC 11 J(J(205205 TlTl--195195 Pt), kHz !!!!Pt), kHz !!!! 7171 5757 4747 3838 43 LargestLargest HHomonuclearomonuclear JJ 11J(J(199199HgHg--199199Hg) =Hg) = 220 300 Hz220 300 Hz 11J(J(199199HgHg--199199Hg) =Hg) = 263 200 Hz in CD263 200 Hz in CD22ClCl22 284 100 Hz in MeOH284 100 Hz in MeOH 44 DDependence onependence on MMagnetogyricagnetogyric RRatioatio For the same elements, different nuclidesFor the same elements, different nuclides JJABAB ~~ γγAA γγBB ssAA 22 (0) s(0) sBB 22 (0) ((0) (ΔΔE)E)−−11 ααABAB 22 BHBH44 −− 11J(J(1111BB –– H) = 80 HzH) = 80 Hz γγ((1111B) = 8.57 10B) = 8.57 1077 radrad TT−−11ss−−11 11J(J(1010BB –– H) = 28 HzH) = 28 Hz γγ((1100B) = 2.87 10B) = 2.87 1077 radrad TT−−11ss−−11 45 DDependence onependence on MMagnetogyricagnetogyric RRatioatio * * *)( )( *)( )( B B BA BA BAJ BAJ FBAJ FBAJ γ γ γγ γγ = − − =− =− The nuclide with largerThe nuclide with larger γγ has larger coupling constanthas larger coupling constant JJ((AA--BB))~~ γγAA γγBB ssAA 22 (0) s(0) sBB 22 (0) ((0) (ΔΔE)E)−−11 ααABAB 22 46 DDependence onependence on MMagnetogyricagnetogyric RRatioatio 16101610 231231 15051505 11J(J(117117SnSn –– X)X) HzHz 1685168528.533528.5335nnBuBu33SnSn –– TT 2422424.10644.1064nnBuBu33SnSn –– DD 1575157526.751026.7510nnBuBu33SnSn –– HH 11J(J(119119SnSn –– X)X) HzHz γγ (X)(X) 101077 radrad TT−−11 ss−−11 compoundcompound JJABAB ~~ γγAA γγBB ssAA 22 (0) s(0) sBB 22 (0) ((0) (ΔΔE)E)−−11 ααABAB 22 47 Effects ofEffects of EElectronegativelectronegative SSubstituentsubstituents 1.1. Changes in hybridization: BentChanges in hybridization: Bent’’s rule, more electronegatives rule, more electronegative substituentssubstituents preferprefer orbitalsorbitals with more pwith more p--character. Remainingcharacter. Remaining orbitalsorbitals have more shave more s--charactercharacter -- ααABAB 22, hence the, hence the J increasesJ increases 2.2. Removal of electron density increases effective nuclearRemoval of electron density increases effective nuclear charge, contraction of echarge, contraction of e--cloud, scloud, s--density increasesdensity increases -- ssAA 22(0)(0),, hence thehence the J increasesJ increases JJABAB ~~ γγAA γγBB ssAA 22 (0)(0) ssBB 22 (0) ((0) (ΔΔE)E)−−11 ααABAB 22 48 Effects ofEffects of EElectronegativitylectronegativity PAEt3 Pt Cl PBEt3Me PAEt3 Pt Cl PBEt3 PAEt3 Pt PBEt3Me Me More p-character More s-character Cl 11 J(J(195195 PtPt -- PPAA) = 4179 Hz) = 4179 Hz 11 J(J(195195 PtPt -- PPBB) = 1719 Hz) = 1719 Hz JJABAB ~~ γγAA γγBB ssAA 22 (0)(0) ssBB 22 (0) ((0) (ΔΔE)E)−−11 ααABAB 22 49 Effects ofEffects of EElectronegativitylectronegativity J increases with increasing sum of substituentJ increases with increasing sum of substituent electronegativityelectronegativity CO WOC CO PX3 OC CO 50 Effects ofEffects of CCoordinationoordination NNumberumber Et3P Pt Cl Cl PEt3 Cl Cl Et3P Pt Cl Cl PEt3 11 J(J(195195 PtPt -- P) = 1455 HzP) = 1455 Hz 11 J(J(195195 PtPt -- PPBB) = 2397 Hz) = 2397 Hz Et3P Pt PEt3 PEt3 PEt3 PhMe2P Pt PMe2Ph PMe2Ph PMe2Ph 2+ 11 J(J(195195 PtPt -- P) = 3740 HzP) = 3740 Hz 11 J(J(195195 PtPt -- PPBB) = 2342 Hz) = 2342 Hz Increasing coordination numberIncreasing coordination number results in decreasing Jresults in decreasing J 51 Effects ofEffects of CCoordinationoordination NNumberumber [Cp[Cp22WHWH22]] [Cp[Cp22WHWH33]]++ 11J(J(183183WW -- H) =H) = 73.2 Hz73.2 Hz 47.8 Hz47.8 Hz Increasing coordination numberIncreasing coordination number results in decreasing Jresults in decreasing J 52 Effects ofEffects of ss--CharacterCharacter B XPs XsPs AXPJ + −− =− )(1 )()%(% )( 2 1 ss22 (P(P--X) = overlap integral in the PX) = overlap integral in the P--X bondX bond 11J(PJ(P -- X) decreases with increasing coordinationX) decreases with increasing coordination number and oxidation statenumber and oxidation state 53 Effects of sEffects of s--CCharacterharacter 210210spspalkylidynealkylidyne 120120spsp22 alkylidenealkylidene 8080spsp33 alkylalkyl 11 J(J(183183 WW –– 1313 C), HzC), HzhybridizationhybridizationGroupGroup W PMe3H2 C CH C PMe3 t-Bu t-Bu t-Bu W oxidation state 54 Effects of sEffects of s--CCharacterharacter F P F F F F P F F F F P F F F 11 J(J(3131 PP -- C) = 189.2 HzC) = 189.2 Hz 261.1 Hz261.1 Hz 476.0 Hz476.0 Hz C H C H H C 11 J(J(1313 CC-- H) = 120 HzH) = 120 Hz 160 Hz160 Hz 250 Hz250 Hz 55 Effects of sEffects of s--CCharacterharacter 11 J(PJ(P--FFaxialaxial) =) = 777777 HzHz 11 J(PJ(P--FFequatequat) =) = 966966 HzHz F P F F CF3 F CF3 P CF3 NMe2 Cl F3C 22 J(PJ(P--FFaxialaxial) =) = 5353 HzHz 22 J(PJ(P--FFequatequat) =) = 130130 HzHz 56 Effects of sEffects of s--CCharacterharacter H H H H 123123 130130 134134 161161 11J (CJ (C--H), HzH), Hz Increasing J Intraring angle decreases More p-character in C-C More s-character in C-H 57 Effects of sEffects of s--CCharacterharacter H2 P B B PH2 PH2 PH2 H2P H2P PH2 11 J(PJ(P--1111 BB) =) = 56.956.9 HzHz 11 J(PJ(P--1111 BB) =) = 26.326.3 HzHz Explain the difference 58 Effects of sEffects of s--CCharacterharacter 11 J(PJ(P--1111 BB) =) = 56.956.9 HzHz 11 J(PJ(P--1111 BB) =) = 26.326.3 HzHz LoneLone pairpair = substituent= substituent withwith zerozero electronegativityelectronegativity ResidesResides inin orbitalorbital withwith largelarge ss--charactercharacter P B B P H2P H2P PH2 H HH H 59 Effects ofEffects of CCoordinationoordination NNumberumber F P F F F F F P F F FF F P F F F H P F F F 11 J(J(3131 PP -- F)F) negativenegative −−1400 Hz1400 Hz −−11091109 HzHz −−1080 Hz1080 Hz −−706 Hz706 Hz Increasing coordination numberIncreasing coordination number results in decreasing Jresults in decreasing J DilutionDilution ofof ss--charactercharacter intointo moremore bondsbonds 60 Effects ofEffects of OOxidationxidation SStatetate Cl Pt Cl Cl PBu3 P(OPh)3 Cl Cl Pt Cl P(OPh)3 PBu3Bu3P Pt Cl Cl PBu3 Bu3P Pt PBu3 PBu3 PBu3 11 JJ ((195195 PtPt -- 3131 P)P) 3740 Hz 2411 Hz Bu 31593740 Hz 2411 Hz Bu 3159 19211921 OPhOPh 6304 40606304 4060 IncreasingIncreasing oxidationoxidation statestate results in decreasing Jresults in decreasing J DeDecreasingcreasing electronelectron densitydensity 61 Information from signs of KInformation from signs of KABAB 68685656−−141411J(PJ(P -- C)C) SnSnIVIVSnSnIVIVSnSnIIII PPVVPPVVPPIIIIII −−333939−−38038015515511J(SnJ(Sn -- C)C) lplp changeschanges signsign P Me Me Me P Me Me Me Me P Me Me Me O Sn Me Me Me Me Sn Me Me Sn Me Me Me Me 62 Angle DependenceAngle Dependence TwoTwo typestypes ofof couplingcoupling are mostare most affectedaffected byby bondbond anglesangles:: ••geminalgeminal couplingcoupling ((twotwo--bondbond couplingcoupling oror 22JJ)) ••vicinalvicinal couplingcoupling ((threethree--bondbond couplingcoupling oror 33JJ)) 63 GeminalGeminal CouplingCoupling GeminalGeminal couplingcoupling oror 22JJ couplingcoupling isis dependentdependent uponupon thethe bondbond angleangle betweenbetween thethe nucleinuclei.. TThehe smallersmaller thethe angleangle thethe biggerbigger thethe couplingcoupling constantconstant.. 64 GeminalGeminal CouplingCoupling TThehe smallersmaller thethe angleangle thethe biggerbigger thethe couplingcoupling constantconstant.. 22 JJ ((11 HH –– 11 HH)) 65 Trans/Trans/CCisis CCouplingoupling H H H H H H gemgem 00 –– 33 vicvic ciscis 66 –– 1212 vicvic transtrans 1212 –– 1818 nn JJ ((11 HH –– 11 HH)), Hz, Hz 66 Trans/Trans/CCisis CCouplingoupling Ph2 P Pd PPh2H H PPh2H (OC)4Mn 22 J (J (3131 PPμμ –– PdPd –– 3131 P)P) ciscis 0 Hz0 Hz transtrans 213 Hz213 Hz 67 Trans/Trans/CCisis CCouplingoupling 22 J (J (3131 PP –– MM –– 3131 P)P) ciscis < trans< trans 3123125555OhOhMo(CO)Mo(CO)44(PF(PF33))22 −−2828−−3636OhOhCr(CO)Cr(CO)44(PF(PF33))22 567567−−2929OhOhmermer--RhClRhCl33(PMe(PMe33))33 3153153838OhOhW(CO)W(CO)44(PF(PF33))22 1011011212OhOhMo(CO)Mo(CO)44[P(NMe[P(NMe22))33]]22 514514−−1616SPlSPlPtBrPtBr22(PMe(PMe33))22 610610−−88SPlSPlPdClPdCl22(PMe(PMe33))22 22JJ PPPP trans, Hztrans, Hz22JJ PPPP ciscis, Hz, HzCoordCoord..ComplexComplex 68 VicinalVicinal CouplingCoupling VicinalVicinal couplingcoupling oror 33JJ couplingcoupling isis dependentdependent uponupon thethe dihedraldihedral angleangle betweenbetween thethe nucleinuclei.. TThehe moremore eclipsedeclipsed oror antiperiplanarantiperiplanar thethe nucleinuclei thethe greatergreater thethe couplingcoupling constantconstant.. TheThe relationshiprelationship betweenbetween dihedraldihedral angle andangle and couplingcoupling constantconstant isis knownknown asas thethe KarplusKarplus curvecurve.. C C H H C C H H C C H H αα minimumminimum αα 23 coscos CBAJ ++= 69 VicinalVicinal CouplingCoupling αα 23 coscos CBAJ ++= thethe KarplusKarplus equationequation 70 71 PopulationPopulation AnalAnalyysissis Z Hβ2 Hβ1 X Hα Y Hβ2 Hβ1 Z X Hα Y Hβ1 ZHβ2 X Hα Y p1 p2 p3 )180( )60( 1321 3212 3211 o o t g gtg tgg J J ppp pJpJpJJ pJpJpJJ =++ ++=〉〈 ++=〉〈 αβ αβ from independentfrom independent measurementsmeasurements 33 inequivalentinequivalent protonsprotons 22 timetime--averagedaveraged vicinalvicinal JJ (1(1 geminalgeminal J)J) ppii == populationpopulation ofof rotamersrotamers g =g = gauchegauche, t = trans, t = trans experimentexperiment 72 PopulationPopulation AnalAnalyysissis KOH OH HX HX HA HB HA HB Axial Equatorial p 1 - p )exp( 1 )1( )1( 0 RT G p p K JppJJ JppJJ Equ BX Axial BXBX Equ AX Axial AXAX Δ− = − = −+=〉〈 −+=〉〈 73 DecouplingDecoupling Heteronuclear broadband decoupling Selective homonuclear decoupling 74 1515 NN––1515 NN Coupling Across an NHNCoupling Across an NHN Hydrogen BondHydrogen Bond CD2Cl2/[d6]DMSO (5:1) a) 233 K b) 233 K c) 193 K d) 193 K 22 J(J(1515 NN––1515 N) = 16.5 HzN) = 16.5 Hz 75 66 LiLi––1515 N CouplingN Coupling 6Li I = 1 NA = 7.42 % 15N I = 1/2 NA = 0.37 % 76 66 LiLi––1515 N CouplingN Coupling 6Li NMR: •two triplets 1:1 δ = 2.15 ppm (JLiN= 3.7 Hz) a δ = 2.32 ppm (JLiN= 6.1 Hz) •triplet δ = 1.63 ppm (JLiN= 4.5 Hz) 77 66 LiLi––1515 N CouplingN Coupling6Li NMR: •two triplets 1:1 δ = 2.15 ppm (JLiN= 3.7 Hz) a δ = 2.32 ppm (JLiN= 6.1 Hz) •triplet δ = 1.63 ppm (JLiN= 4.5 Hz)