

21.04.2011

M9302 Mathematical Models in Economics

5.1.Static Games of Incomplete Information

Instructor: Georgi Burlakov

INVESTMENTS IN EDUCATION DEVELOPMENT

Revision

 \Box ■ When a combination of strategies $(s_1^*,...,s_n^*)$ is a Nash equilibrium?

- If for any player *i*, is player *i's* best response to the strategies of the n-1 other players
- \square Following this definition we could easily
Find aame that have no Nach find game that have no Nash equilibrium:

■ Example: Penny Game

No pair of strategies can satisfy N.E.:If match (H,H), (T,T) – P1 prefers to swit \cdot If no match (H,T) , (T,H) –- P1 prefers to switch –- P2 prefers to switch

Extended definition of Nash Equilibrium

 \Box In the 2-player normal-form game $G = \{S_1, S_2; u_1, u_2\}$ the MIXED strategies (p_1^*, p_2^*) are a Nash
caujikhiym if aach player's mixed strategy $\big\{$)
) ∗ (p_1^*,p_2^*) are a Nas equilibrium if each player's mixed strategy 1, P_2 is a best response to the other player's MIXED strategy

 \Box Hereafter, let's refer to the strategies in S_i as \Box player *i'*s **pure strategies**

 \Box Then, a **mixed strategy** for player *i* is a nonprobability distribution over the strategies in \mathcal{S}_i

- \square In Penny Game, S_i consists of the two **pure**

strategies H and T strategies H and T
- \square A **mixed strategy** for player *i* is the necker probability distribution $(q,1-q)$, where q is the probability of playing H, and 1 -q is the probability of playing T, $0\leq q\leq 1$ -q is the $q \$ ≤1
- \Box Note that the mixed strategy $(0,1)$ is simply \vert
the nure strategy \Box likewise, the mixed the pure strategy T, likewise, the mixed strategy (1,0) is the pure strategy H

- \square Computing P1's best response to a mixed \square strategy by P2 represents P1's uncertainty about what P2 will do.
- \Box Let (q, 1-q) denote the mixed strategy in
which P2 plays H with probability q which P2 plays H with probability q.
- \Box Let (r, 1-r) denote the mixed strategy in \Box which \Box plays H with probability r which P1 plays H with probability r.

 \Box P1's expected payoff from playing $(r, 1-r)$
when P2 plays (g 1-g) is: when P2 plays $(q, 1-q)$ is: $rq \cdot (-1) + r(1-q) \cdot 1 + (1-r)(1-r)$ $-1)+r(1-q) \cdot 1+(1$ $r(1-q)$ · ($-1)+(1-r)\cdot q$ = $=(2q-1)+r(2-4q)$ \Box which is increasing in r for $q<1/2$ (i.e. P1's hest response is $r=1$) and decreasing in r best response is $r=1$) and decreasing in r for q >1/2 (i.e. P1's best response is r=0). \Box P1 is indifferent among all mixed strategies
(r 1-r) when $a=1/2$ (r,1-r) when q=1/2.

General Definition of Mixed Strategy \square Suppose that player i has K pure strategies, $S_i = \{S_{i1}, \ldots, S_{iK}\}$ \square Then, a **mixed strategy** for player *i* is a probability distribution $(\rho_{_{11},...},\,\rho_{_{i\mathsf{K}}})$, where $\rho_{_{i\mathsf{K}}}$ is the probability that player i will play strategy $s_{\scriptscriptstyle i\!\hspace{0.3pt}k\!\hspace{0.3pt}r}$ $k=1,...,K$ 0 ectivelv. $0\leq$ and $p_{_{i1}}+...+p_{_{iK}}=1$ $\, p \,$ \square Respectively, $0 \leq p_{ik} \leq 1$ for k=1,...,K ik \equiv \square Denote an arbitrary mixed strategy by p_i $i1$ \cdots iK the contract of the contract of the contract of the contract of the contract of

General Definition of Nash Equilibrium

 \Box Consider 2-player case where strategy sets of \Box the two players are $S_1 = \{s_{11},...,s_{1J}\}$ and $S_j = \{S_{11},...,S_{1K}\}$, respectively $1 - 1$ 111..., 11 \Box P1's expected payoff from playing the mixed
etrategies $p = (p - p)$ is: strategies $\bm{\rho}_\textit{1}$ $(p_1^*, p_2^*) = \sum_{j=1}^s \sum_{k=1}^n p_{1j} \cdot p_{2k} u_1(s_{1j}, s_{2k})$ $\boldsymbol{v}_1 = \left(\boldsymbol{p}_{1,1},...,\boldsymbol{p}_{1J} \right)$ is: ==∗∗ = $v_1(p_1^*, p_2^*) = \sum_{j}^{J} \sum_{j}^{K} p_{1j} \cdot p_{2k} u_1(s_{1j}, s_{2k})$ \Box P2's expected payoff from playing the mixed \Box strategies $p_{2}=(p_{2\,},n_{\chi'}p_{2\kappa})$ is: $j = 1$ $k = 1$
Loff f $[p_1^*, p_2^*] = \sum \sum p_1$ ()()∗ = $v_2(p_1^*, p_2^*) = \sum_{j}^{T} \sum_{j}^{K} p_{1j} \cdot p_{2k} u_2(s_{1j}, s_{2k})$ $j=1$ $k=1$

General Definition of Nash Equilibrium

 \Box For the pair of mixed strategies $\left\{P_1, P_2\right\}$ to he a Nach equilibrium n^* must satisfy: be a Nash equilibrium, $|p_+|$ must satisfy: $\Big($)∗∗1 , P (2 $\, p \,$, p∗ p_{\perp} $(p^{*}_{1}, p^{*}_{2}) \geq$)
) $\Big($)∗∗∗ $1 \vee P_1$, P_2 \vdash \vee $1 \vee P_1$, P_2 ≥ $1 \vee P 1$, $P 2$ $v_1(p_1, p_2) \ge v_1(p_1, p_2)$ ∗ 1 $1 \vee P_1$, P_2 $I - '1 \vee P_1$, P_2

 \Box for every probability distribution p 1 $_1$ over S 1 , $\overline{}$ ∗and $p\,{}_{2}^{\ast}$ must satisfy:

$$
\nu_2\left(p_1^*, p_2^*\right) \ge \nu_2\left(p_1^*, p_2\right)
$$

 \Box for every probability distribution p 2 $_{\rm 2}$ over S 2.

Existence of Nash Equilibrium

 \Box Theorem (Nash 1950): In the n-player normal-form game $G = \{S_1, ..., S_n; u_1, ..., u_n\}$, if 11...1 ν _n1 ν ₁,...1 ν _n n is finite and S_i is finite for every *i* th there exists at least one Nash equilibrium, S_i is finite for every *i* then possibly involving mixed strategies.

□ Proof consists of 2 steps:
■ Chand: Chaw that any fi

- Step1: Show that any fixed point of a certain correspondence is a N.E.
- Step 2: Use an appropriate fixed-point theorem to show that the correspondence must have a fixed point.

Revision

\square What is a strictly dominated strategy?

- **If a strategy** s_i **is strictly dominated then there is no**
holief that player i sauld hold quab that it would he belief that player i could hold such that it would be optimal to play S_i .
- \Box The converse is also true when mixed \Box strategies are introduced
	- If there is no belief that player i could hold such
that it would be entimal to plays a than there a that it would be optimal to play s_i , then there exists another strategy that strictly dominates s.
i

Example /mixed strategy dominance/:

For any belief of P1, A3 is not a best response even though it is not strictly dominated by any pure strategy. A3 is strictly dominated by a mixed strategy $(1/2, 1/2, 0)$

Example /mixed strategy best response/:

For any belief of P1, A3 is not a best response to any pure strategy but it is the best response to mixed strategy (q,1-q) for 1/3<q<2/3.

Introduction to Incomplete Information

What is complete information?

What must be incomplete information then?

Introduction to Incomplete Information

A game in which one of the players does not know for sure the payoff function of the other player is a game of INCOMPLETE INFORMATION

Example:

Cournot Duopoly with Asymmetric Information about Production

Static Games of Incomplete Information

\square The aim of this lecture is to show:

- \Box How to represent a static game of \Box incomplete information in normal form?
- \Box What solution concept is used to solve a \Box static game of incomplete information?

Normal-form Representation

\Box ADD a TYPE parameter t_i to the payoff function -> $u_i(a_1,...,a_n;$ $t_i)$

A player is uncertain about

{other player's payoff function} = {other player's type t_{-i} }

where
$$
t_{-i} = (t_1, ..., t_{i-1}, t_{i+1}, ..., t_n)
$$

Normal-form Representation

□ ADD probability measure of types to
account for uncertainty:

 $p_i(t_{-i}|t_i)$ and the state of the state of the state of $p_i(t_{-i}|t_i)$ - player i`s belief about the other players' types (t_{-i}) given player i's knowledge of
her own type, t_i.

□ Bayesian Theorem

$$
p_i(t_{-i}|t_i) = \frac{p(t_{-i}, t_i)}{p(t_i)}
$$

Normal-form Representation

O PLAYERS
D ACTIONS **O** ACTIONS
References – \square TYPES – T_i = {t_{i1},..., t_{in} $A_{1},\ ... \ ,A_{n};\ A_{i}=\{a_{i1},...,a_{in}\}$ – \Box System of BELIEFS - $p_i(t_{-i}/t_i)$ $\mathsf{T}_{\mathsf{i}}\,=\,\{\mathsf{t}_{\mathsf{i}1},...,\,\mathsf{t}_{\mathsf{i}\mathsf{n}}\}$ PAYOFFS - \blacksquare PAYOFFS - $u_i(a_1,...,a_n;t_i)$ which is briefly denoted as $u_{i}(a_{1},...,a_{n})$ {
{ $\frac{1}{1}$,..., $\{1,...,A_n; T_1,...,T_n; p_1,...,p_n; u_1,...,u_n\}$ $G = \{A_1, ..., A_n : T_1, ..., T_n\}$ $p_1,...,p_n;$ $u_1,...,u_n$

received.

Strategy in a Bayesian Game

- \Box In a static Bayesian game, a strategy for \Box player *i* is a function, where for each type t_i in Ti , $s_i(t_i)$ specifies the action from the feasible set A_i that type t_i would choose if drawn by nature.
- \Box In a separating strategy, each type t_i in \overline{I} chooses a different action a from A T_i chooses a different action a_i from A i chooses a unicitie action a_i nonr π_i .
- \square In a **pooling strategy**, in contrast, all \square types choose the same action.

How to solve a Bayesian game?

\Box Bayesian Nash Equilibrium:

In the static Bayesian game

{
{ $\left(\begin{smallmatrix} 1 & 1 \\ 1 & 1 \end{smallmatrix} \right)$ $G = \{A_1, \ldots, A_n; T_1, \ldots, T_n; p_1, \ldots, p_n; u_1, \ldots, u_n\}$ the strategies $s^* = (s^*_1, ..., s^*_n)$ are a (pure-strategy) Bayesian 1A $_n$; $T_1,...,T_n$; $p_1,...,p_n$ $\mathcal U$ 1 $\mathcal U$ nNash equilibrium if for each player i and for each of i's *∗∗ $= 13.7$ $S = (S_1, ..., S_n)$ types ti in Ti, $s^{\ast}_{i}(t_{i})$ solves: $s^*_{i}(t$

 $\sum u_i$ ($(t_1),...,s_{i-1}^*(t_{i-1}),a_i,s_{i+1}^*(t_{i+1}),...,s_n^*(t_n);t)p_i(t_{-i}|t_i)$)()∗∗∗∗ \max) u_i , S_i , (t_1) , ..., S_{i-1} , (t_{i-1}) , a_i , S_{i+1} , t_{i+1} , ..., S_i $\mathcal U$ \boldsymbol{S} t $\mathbf{1}$) $\mathbf{3} \cdots$ $\mathbf{5}$ \boldsymbol{S} t \mathbf{v}_{i-1} /9 $\mathcal {A}% _{M_{1},M_{2}}^{\alpha,\beta}(\varepsilon)$ $\overline{}$ \boldsymbol{S} t \mathbf{v}_{i+1} /9..., \boldsymbol{S} t t_{n}); t t) p tt−∈−++ $\in A$. $\qquad \qquad \blacksquare$ $i - i = 1 - i$ i^{c} ^{i} t _{i} \in T $i \vee 1 \vee \dots \vee i-1 \vee i-1$ is $\vee i \vee i+1 \vee i+1$ is $i \vee n$ $\sum_{a_i \in A_i} \sum_{i} a_i \sum_{j} a_i \sum_{j} a_j \sum_{i} a_i \sum_{j} a_{i-1} \sum_{j} a_{i-1} \sum_{j} a_{i-1} \sum_{j} a_{i+1} \sum_{j} a$ A111111

That is, no player wants to change his or her strategy, even if the change involves only one action by one type.

Existence ofa Bayesian Nash Equilibrium

 \square In a finite static Bayesian game (i.e., where n is finite and $(A_1,...,A_n)$ and $(T_1,...,T_n)$ are all finite sets), there exists a Bayesian Nash equilibrium, perhaps in mixed strategies.

Mixed-strategy in a Bayesian game:

Player *i* is uncertain about player *j's* choice not
because it is random but rather because of incomplete information about j's payoffs.

Examples: Battle of Sexes; Cournot Competition with Asymmetric Information

Summary

- \Box Game Theory distinguishes between pure and mixed strategy
- \Box Mixed strategy is a probability distribution over the strategy set
- \Box To be efficient in solving games including
uncertainty. $N \vdash$ concent needs to be uncertainty, N.E. concept needs to be extended and defined for mixed strategies
- \square Games with uncertainty are called Bayesian \square games and their solution concept –Bayesian N.E.