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HUO;H.HGH. >:m~v~m~m Os : { Our work begins with the development of a topological framework for the key
. elements of our subject. The first section introduces the category of topological
Number Fields

groups and their fundamental properties. We treat, in particular, uniform con-
tinuity, separation properties, and quotient spaces. In the second section we
narrow our focus to locally compact groups, which serve as the locale for the
most important mathematical phenomena treated subsequently. We establish
. the essential deep feature of such groups: the existence and uniqueness of Haar
measure; this is fundamental to the development of abstract harmonic analysis.
The last two sections further specialize to profinite groups, giving a topological
characterization, a structure theorem, and a set of results roughly analogous to
the Sylow Theorems for finite groups. The prerequisites for this discussion will
be found in almost any first-year graduate courses in algebra and analysis.

1.1 Basic Notions

DEFINITION. A fopological group is a group G (identity denoted e¢) together
with a topology such that the following conditions hold:
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By convention, whenever we speak of a finite topological group, we intend
2 the discrete topology.
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2 1. Topological Groups

Clearly the class of topological groups together with continuous homomor-
phisms constitutes a category.

It follows at once that translation (on either side) by any given group ele-
ment is a homeomorphism G— G. Thus the topology is translation invariant in
the sense that for all geG and Uc G the following three assertions are equiva-
lent:

(i) Uisopen.

(i) gUis open.

(iii) Ug is open.

Moreover, since inversion is likewise a homeomorphism, U is open if and only
if U'={x : x'eU} is open.

A fundamental aspect of a topological group is its homogeneity. In general,
if X is any topological space, Homeo(X) denotes the set of all homeomorphisms
X—>X. If S is a subset of Homeo(X), then one says that X is a homogeneous
space under S if for all x,yeX, there exists feS such that f(x)=y. (When S is
unspecified or perhaps all of Homeo(X), one says simply that X is a homogene-
ous space.) Clearly any topological group G is homogeneous under itself in the
sense that given any points g,/#€G, the homeomorphism defined as left transla-
tion by hg! (i.e., x> hg™'x) sends g to h. From this it follows at once that a
local base at the identity eeG determines a local base at any point in G, and in
consequence the entire topology.

EXAMPLES

(1) Any group G is a topological group with respect to the discrete topology.

(2) R* R¥*, and C* are topological groups with respect to ordinary multipli-
cation and the Euclidean topology.

(3) R” and C” are topological groups with respect to vector addition and the
Euclidean topology.

(4) Let k=R or C. Then the general linear group
GL, (k) = {geM (k) : det(g)#0} (n=1)

is a topological group with respect to matrix multiplication and the Euclid-
ean topology. The special linear group

SL,(K) = {geGL (k) : det(g)=1} (n21)

is a closed subgroup of GL, (k).
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In subsequent discussion, if X is a topological ‘space and xeX, we shall say
that Uc X is a neighborhood of x if x lies in the interior of U (i.e., the largest
open subset contained in U). Thus a neighborhood need not be open, and it
makes sense to speak of a closed or compact neighborhood, as the case may be.

A subset S of G is called symmetric if S=S . This is a purely group-
theoretic concept that occurs in the following technical proposition.

1-1 PROPOSITION. Let G be a topological group. Then the following assertions
hold:

(i) Every neighborhood U of the identity contains a neighborhood V of
the identity such that VVc U.

(ii) Every neighborhood U of the identity contains a symmetric neighbor-
hood V of the identity.

(iii) If H is a subgroup of G, so is its closure.
(iv) Every open subgroup of G is also closed.
(V) IfK, and K, are compact subsets of G, so is KK, .

PROOF. (i) Certainly we may assume that U is open. Consider the continuous
map ¢: Ux U— G defined by the group operation. Certainly ¢~'(U) is open and
contains the point (e, ). By definition of the topology on Ux U, there exist open

subsets V,,V, of U such that (e,e)eV,x ﬂ\n%lm\om\‘u V,AV,. Then V is a neigh-
borhood of e contained in U such that by construction V'V'c U.

(i) Clearly g eUnU" < g,g7' e U, so V= UAU" is the required symmet-
ric neighborhood of e.

(iii) Any two points g and 4 in the closure of H may be exhibited as the limits
of convergent nets in /7 itself. Hence by continuity their product is likewise the
limit of a convergent net in A and similarly for inverses.

(iv) If H is any subgroup of G, then G is the disjoint union of the cosets of H,
and hence H itself is the complement of the union of its nontrivial translates. If
H is open, so are these translates, whence H is the complement of an open set
and therefore closed.

(v) K|K, is the image of the compact set K xK, under the continuous map
(k,,k,) = kk, . It is therefore compact by general topology a

Note that (i) and (ii) together imply that every neighborhood U of the iden-
tity contains a symmetric neighborhood ¥V such that V'Vc U.
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Translation of Functions and Uniform Continuity

Given an arbitrary function f'on a group, we define its left and right translates
by the formulas

L,f@)=f(h"'g) and R,[(g)=f(gh) .

If fis a (real- or complex-valued) continuous function on a topological group,
we say that f'is left uniformly continuous if for every £>0 there is a neighbor-
hood V of e such that

heV=|Lf-f|, <€

where || ||, denotes the uniform, or sup, norm. Right uniform continuity is de-
fined similarly. Recall that # (G) denotes the set of continuous functions on G
with compact support.

1-2 PROPOSITION. Let G be a topological group. Then every function f in
& (G) is both left and right uniformly continuous.

PRrROOF. We prove right uniform continuity. Let K= supp(f) and fix £>0. Then
for every geK there exists an open neighborhood U, of the identity such that

heU, =|f(gh-1(g)l<e

Equivalently, /(g") is &close to f(g) whenever g-'g’ lies in U,. Moreover, by the
comment following the previous proposition, each U, contains an open sym-
metric neighborhood V, of the identity such that V V. cU,. Clearly the collec-
tion of subsets Q\w covers K, and a finite subcollection Aw\ V:} i1, Suffices.
Henceforth we write v, for V, and U; for Q Define V, a &::Boﬁo open

neighborhood of the EQEQ e, ww the mo::Em
= D 1%
j=1
If geK, then geg V. for some j. For hel/ we consider the difference f(gh)-/(2):

I/ &h) -f@|<|/Eh -S| +1/@g) -/@I

The point is that both g;"'g and g;"'gh lie in U}, so that both terms on the right
are bounded by & (Here is where we use that property V.V, U, for all j.) This
establishes right uniform continuity for X.
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When g does not lie in K, then we must bound |f(gh)|. If f(gh)+0, then ghe
gV for some j, and therefore f(gh) is &-close to f(g). Moreover, g~'g=g"'ghh™!
lies in U; (here is where we use the symmetry of V), and it follows that | /1 @_ <g
since g; is close to g and f(g)=0 by assumption. Consequently | f(gh)|<2¢, and
the argument is complete. a

Separation Properties and Quotient Spaces

Some authors assume as part of the definition of a topological group that the
underlying topology is 7). In this case it is also customary to reserve the term
subgroup for a closed subset that constitutes a subgroup in the ordinary alge-
braic sense. Note that in general we accept neither of these assumptions.

The following proposition shows, among other things, that for a topological
group the separation axioms 7, and 7, (Hausdorff) have equal strength.

1-3 PROPOSITION. Let G be a topological group. Then the following assertions
are equivalent:

@ Gas Ty

(ii) G is Hausdorff.

(iii) The identity e is closed in G.
(iv) Every point of G is closed.

PROOF. (i)=(ii) If G is T, then for any distinct g,h€G there is an open neigh-
borhood U of the identity lacking gh~!. According to Proposition 1-1, U admits
a symmetric open subset V, also containing the identity, such that VVc U. Then
Vg and Vh are disjoint open neighborhoods of g and A, since otherwise gh™! lies
inV'V=rvcu.

(if)= (iii) Every point in a Hausdorff (or merely 7)) space is closed.

(iii)=(iv) This is a consequence of homogeneity: For every point xeG there is
a homeomorphism that carries e onto x. Hence if e is closed, so is every point.

(iv)= (i) Obvious by general topology. a

If H is a subgroup of the topological group G, then the set G/H of left cosets
of G acquires the quotient topology, defined as the strongest topology such that
the canonical projection p: g+>gH is continuous. Thus U is open in G/H if and
only if p~'(U) is open in G. Recall from algebra that G/H constitutes a group
under coset multiplication if and only if A is moreover normal in G. We shall
see shortly that in this case G/H also constitutes a topological group with re-
spect to the quotient topology.
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The following two propositions summarize some of the most important
properties of the quotient construction. :

1-4 PROPOSITION. Let G be a topological group and let H be a subgroup of G.
Then the following assertions hold:

(1) The quotient space G/H is homogeneous under G.
(ii) The canonical projection p:G—G/H is an open map.
(iii) The quotient space G/H is T, if and only if H is closed.

(iv) The quotient space G/H is discrete if and only if H is open. Moreover,
if G is compact, then H is open if and only if G/H is finite.(0«d odxcnike)

(v) If H is normal in G, then G/H is a topological group with respect to
the quotient operation and the quotient topology.

(vi) Let H be the closure of {e} in G. Then H is normal in G, and the quo-
tient group G/H is Hausdor{f with respect to the quotient fopology.

PROOF. (i) An element xeG acts on G/H by left translation: gH +> xgH. The
inverse map takes the same form, so to show that left translation is a homeo-
morphism of G/H, it suffices to show that left translation is an open mapping
on the quotient space. Let U be an open subset of G/H. By definition of the
quotient topology, the inverse image of U under p is an open subset U of G,
and it follows that the inverse image of g under p is gU, also an open subset
of G. Therefore gU is open, and left translation is indeed an open map, as re-
quired.

(ii) Let ¥ be an open subset of G. We must show that p(V) is open in the quo-
tient. But p(V) is open in G/H if and only if p~'(o(V)) is open in G. By elemen-
tary group theory, p~'(o(V))=V-H. Let x lie in V-H, so that x=vh for some veV
and heH. Since V is open, given any veV, there is an open neighborhood U,c
V containing v. Thus U,/ is an open neighborhood of x contained in V-H,
which is accordingly open.

(iii) By general topology, G/H is T, if and only if every point is closed. Since a
coset of H is its own inverse image under projection, each coset is a closed
point in G/H if and only if each is likewise a closed subset of G. But by homo-
geneity this is the case if and only if H itself is closed in G. (Note that we can-
not appeal to the previous proposition, since the topological space G/H is not
necessarily a topological group with respect to multiplication of cosets.)

(iv) Let / be a subgroup of G. Then by part (ii), /7 is an open subset of G if and
only if H is an open point of G/H. Since G/H is homogeneous under G, this
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holds if and only if G/H is discrete. Assume now that G is compact. Then so is
G/H, since p is continuous. But then H is open if and only if G/H is both com-
pact and discrete, which is to say, if and only if G/H is finite. (Recall our con-
vention that a finite topological group carries the discrete topology.)

(v) Assume that / is a normal subgroup of G. Then from part (ii) and the com-
mutative diagram

g - ol s g
h& &b
GIH —%®, G/H

(where T, denotes left translation by g), we see at once that translation by any
group element is continuous on the quotient. A similar diagram establishes the
continuity of the inversion map.

(vi) Since {e} is a subgroup of G, so is its closure H. Moreover, it is the small-
est closed subgroup of G containing e and therefore normal, since each conju-
gate of H is likewise a closed subgroup containing e. In light of the previous
proposition, the full assertion now follows from parts (iii) and (v) above. a

Part (vi) shows that every topological group projects by a continuous homo-
morphism onto a topological group with Hausdorff topology. In this sense the
assumption that a given group is Hausdorff is not too serious.

1-5 PROPOSITION. Let G be a Hausdorff topological group. Then the following
assertions hold:

(i) The product of a closed subset F and a compact subset K is closed.

(ii) If H is a compact subgroup of G, then p.G—>G/H is a closed map.

PROOF. (i) Let z lie in the closure of the product FK. Then there exists a net
converging to z of the form {x_,y_} with x,€F and y_eK. Since X is compact,
we may replace our given net by a subnet such that {y_} converges to some
point y in K. We claim that this forces the convergence of {x,} in F to zy!,
showing that z=zyly lies in FK, which is therefore closed. To establish the
claim, consider an arbitrary open neighborhood U of the identity e. We may
choose yet another neighborhood of e contained in U such that VVc U. Then
the nets {z'x,y,} and {v.'y} are both eventually in ¥, whence the product
z7'%, v, y.'y=2""x,y is eventually in U. Thus lim x,=zy~, as required.
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(ii) If X is a closed subset of G, then arguing as the second part of the previous
proposition, we are reduced to showing that X-H is likewise a closed subset of
G. But if H is compact, this is just a special case of assertion (i). a

REMARK. The requirement that / be compact is essential. For example, in the
case G=R?, with subgroup H={(0,):yeR}, we have clearly G/H=R, and un-
der this identification, p(x,y)=x. Now let X = {(x,»)eR?: xy=1}. Then X is
closed, but p(X)=R* is not.

Locally Compact Groups

Recall that a topological space is called locally compact if every point ad-
mits a compact neighborhood.

DEFINITION. A topological group G that is both locally compact and Hausdorff
is called a locally compact group.

Note well the assumption that a locally compact group is Hausdorff. Accor-
dingly, all points are closed.

1-6 PROPOSITION. Let G be a Hausdorff topological group. Then a subgroup H
of G that is locally compact (in the subspace topology) is moreover closed.
In particular, every discrete subgroup of G is closed.

PRrROOF. Let K be a compact neighborhood of e in H. Then KX is closed in H,
since H is likewise Hausdorff, and therefore there exists a closed neighborhood
U of e in G such that K=UnH. Since UnH is compact in H, it is also compact
in G, and therefore also closed. By Proposition 1-1, part (i), there exists a
neighborhood V of e in G such that VVcU. We shall now show that
vell sxell.

First note that H is a subgroup of G by Proposition 1-1, part (iii). Thus if
x € H, then every neighborhood of x~! meets H. In particular, there exists some
yeVx'n H. We claim that the product yx lies in UnH. Granting this, both y
and yx lie in the subgroup H, whence so does x, as required.

ProorF oF CLAIM. Since UnH is closed, it suffices to show that every neighbor-
hood W of yx meets UnH. Since y~'W is a neighborhood of x, so is y-'WxV.
Moreover, by assumption x lies in the closure of H, so there exists some ele-
ment zey~' WnxV~H. Now consider:

(i) the product yz lies both in /¥ and in the subgroup H,
(ii) by construction, yeVx1;

(iii) by construction, zexV’.
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The upshot is that yz lies in Vx~!-xV'=V'V, a subset of U, and therefore the in-
tersection Wn(UnH) is nonempty. This establishes the claim and thus com-
pletes the proof. a

1.2 Haar Measure

We first recall a sequence of fundamental definitions from analysis that cul-
minate in the definition of a Haar measure. We shall then establish both its
existence and uniqueness for locally compact groups.

A collection M of subsets of a set X is called a o-algebra if it satisfies the
following conditions:

(i) XedM.
(ii) If4eM, then A°e M, where 4° denotes the complement of 4 in X,
(iii) Suppose that 4,€I (n=1), and let

el
n=1

Then also 4 €I; that is, M is closed under countable unions.

It follows from these axioms that the empty set is in I and that I is closed
under finite and countably infinite intersections.

A set X together with a o-algebra of subsets M is called a measurable space.
If X is moreover a topological space, we may consider the smallest o-algebra &
containing all of the open sets of X. The elements of £ are called the Borel
subsets of X.

A positive measure pon an arbitrary measurable space (X, M) is a function
H:M—>R,U{oo} that is countably additive; that is,

uJ4)=3" w4,)
n=1 n=1

for any family {4,} of disjoint sets in . In particular, a positive measure de-
fined on the Borel sets of a locally compact Hausdorff space X is called a Borel
measure.

Let x be a Borel measure on a locally compact Hausdorff space X, and let E
be a Borel subset of X. We say that y is outer regular on E if

HM(E) =inf{u(U): UDE, U open} .
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We say that u is inner regular on E if

H(E) = sup{u(K) : KcE, K compact} .

A Radon measure on X is a Borel measure that is finite on compact sets, outer
regular on all Borel sets, and inner regular on all open sets. One can show that
a Radon measure is, moreover, inner regular on ofinite sets (that is, countable
unions of z~measurable sets of finite measure).

Let G be a group and let x be a Borel measure on G. We say that y is left
translation invariant if for all Borel subsets E of G,

HGE) = p(E)
for all seG. Right translation invariance is defined similarly.
DEFINITION. Let G be a locally compact topological group. Then a Jeft (respec-
tively, right) Haar measure on G is a nonzero Radon measure x on G that is
left (respectively, right) translation-invariant. A bi-invariant Haar measure is a
nonzero Radon measure that is both left and right invariant.
The following proposition shows that the existence of a left Haar measure is

equivalent to the existence of a right Haar measure and, in a sense, equates the
translation invariance of measure with that of integration. As usual, we let

€'(G)={/f <B(G): f(s)20 Vs eGand || f]|,> 0} .
We often abbreviate this to " when the domain is clear.

1-7 PROPOSITION. Let G be a locally compact group with nonzero Radon
measure p. Then:

(1) The measure p is a left Haar measure on G if and only if the measure
i defined by J(E)= i(E™) is a right Haar measure on G.

(ii) The measure pis a left Haar measure on G if and only if
[ Lrdu=|fdu
G G

forall fe&* and seG.

(iii) If p is a left Haar measure on G, then u is positive on all nonempty
open subsets of G and
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[ rdu>0
G

Jorall feg".

(iv) If pnis a left Haar measure on G, then u(G) is finite if and only if G is
compact.

PROOF. (i) By definition, we have the equivalence
H(E)=i(Es) Vs €G < wE™")=u(s'E™") VseG

for all Borel sets E; the assertion follows at once. (For any topological group G,
clearly E is a Borel subset of G if and only if £ is.)

(ii) If xis a Haar measure on G, then the stated equality of integrals follows by
definition for all simple functions fe#&" (i.e., finite linear combinations of
characteristic functions on G), and hence, by taking limits, for arbitrary fe &".
Conversely, from the positive linear functional ‘o.&t on Z(G) we can, by the
Riesz representation theorem, explicitly recover the Radon measure g of any
open subset Uc G as follows:

(U =sup{[ f du: [ €&(G), ||/, <1, and supp(f)c U} .
G

From this one sees at once that if the integral is left translation invariant, then
u(sU) = p(U) for all open subsets U of G, since supp( f) c U if and only if
supp(L, /) < sU. The result now extends to all Borel subsets of G because a Ra-
don measure is by definition outer regular.

(iii) Since w is not identically 0, by inner regularity there is a compact set K
such that x(K) is positive. Let U be any nonempty open subset of G. Then from
the inclusion

Kie CnQ
seG

we deduce that X is covered by a finite set of translates of U, all of which must
have equal measure. Thus since u(K) is positive, so is u(U). If fe&", then
there exists a nonempty open subset U of G on which f exceeds some positive
constant R. It then follows that

[ 1 du=RuU)>0
G

as claimed.
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(iv) If G is compact, then certainly (G) is finite by definition of a Radon
measure. To establish the converse, assume that G is not compact. Let X be a
compact set whose interior contains e. Then no finite set of translates of K cov-
ers G (which would otherwise be compact), and there must exist an infinite
sequence ?,m in G such that

s,eJsK . (1.1)

j<n

Now X contains a symmetric neighborhood U of e such that UUc K. We claim
that the translates s.U (j 2 1) are disjoint, from which it follows at once from

2
(iii) that £4G) is infinite.

PRrOOF OF CLAIM. Suppose that for i <j we have su=sy where u,veU. Then 5=
suv-'es,K, since U is symmetric and UUcK. But this contradicts Eq. 1.1. QO

With these preliminaries completed, we now come to one of the major theo-
rems in analysis.

1-8 THEOREM. Let G be a locally compact group. Then G admits a left (hence
right) Haar measure. Moreover, this measure is unique up to a scalar mul-
tiple.

Via the Riesz representation theorem and statement (ii) of the previous prop-
osition, the existence part of the proof reduces to the construction of a left-
invariant linear functional on %/(G). The key idea is the introduction of a
translation-invariant device for comparing functions in &".

Preliminaries to the Existence Proof

Let f, pe&". Set U={seG: ¢(s) > ||¢l|,/2}, so that a finite number of translates
of the open set U suffice to cover supp(f). Then there are n elements s,,...,s,€
G such that a linear combination of the translates of ¢ by the s, ; dominates /fin
the following sense:

s
gl

The point is that if sesupp( 1), then ses,U for some j, so that .m.l_.me if pis

sufficiently large. Thus it makes sense to define (f:g), the Haar covering num-
ber of fwith respect to ¢, by the formula

1.2. Haar Measure 13

Lo for some s, ,...,s, €G ¢ .

(f:@)=infd ¢, :0<q,....C, andf <) c;
jA =

Note that since || 1|, is assumed positive, the Haar covering number is never
zero. We shall see shortly that (1 ¢) is almost linear in f for appropriately cho-

sen @.

1-9 LEMMA. The Haar covering number has the following properties:

G) (f:9)=L,[ ) for all seG
(i) (o)< Uh:9) + (L)
(iii) (¢f: @) = c(f: @) for any ¢ >0
(iv) (f;: @) < (fy: @) whenever fi<f,
W o)zl el

i) (f1:0) <1 /) Uo: @)

PROOF. (i) Since left multiplication by any given group element constitutes a
permutation of the ambient group, for all seG we have the equivalence

SO 6L, o(t) Vt eG o Lf(t)S Y ¢;L, ¢t) VI €G
which is to say that
f<yeloe Lf<Y elyp -

Hence precisely the same sets of coefficients ¢;occur in the calculation of (f: )
as for (L, 1" ).
(ii), (iii), (iv) Obvious.

(v) If the coefficients c; appear in the calculation of (f: @), then
J© <Y o) <Qelell, VseG

whence Z¢; 2 71, /ll@ll,, and the assertion follows.

(vi) We have the implication

<YL, foand <Y dilyg = fi<Y.cdlL,,e
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whence
(/@) <inf Y e,y =inf(Y c,)inf(Y  d,) = (fi: /o) So:9)
as claimed. This completes the proof. Qa

The Haar covering number yields an “approximate” functional as follows.
Fix f,€ %" and define

o)

’ N.Y *
o) (f.pe®g)

I ()=
By (vi) above, we have the inequalities

(f:0) (S Sy @) and (f: @) < (SN2 ) .

Dividing the first by (f,:¢) and the second by (/¢), we find that /, is bounded
as follows:

U SV LSS - (1.2)

This bound is crucial to the existence of a Haar measure for G.
One would expect that as the support of ¢ shrinks, / . will become more
nearly linear. This is confirmed by the following lemma.

1-10 LEMMA. Given f, and f, in &", for every £>0 there is a neighborhood V
of the identity e such that

LN+ (H) <1, (fi+f)+é

whenever the support of ¢ lies in V.

ProoF. By Urysohn’s lemma for locally compact Hausdorff spaces, there exists
a function ge " that takes the value 1 on supp(f,+1;) = supp(/f;)wsupp(f)).
Choose 6> 0 and let 2 =f, +f,+ 6g, so that A is continuous. Next let 4 =f;/h,
i=1,2, with the understanding that 4, is 0 off the support of f.. Clearly both 4, lie
in &', and their sum approaches 1 from below as & tends to 0. By uniform
continuity, there exists a neighborhood U of e such that |4 (s)-A(f)| < & when-
ever tlseU.
Assume that supp(¢) lies in U and suppose that

h< M&.N@%
J

Then
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£1(5) = h(s)h(5) < Y c, (s} (s) < D c,0(s]'s)(h(s))+8) (i=12)
J J
and it follows that

QNHSVMM&_FQL+%_ (i=12).
J

Since h,+h,<1, this last inequality implies that
o)+ (:p)<1+28)) ¢, .
J

But M&. may be made arbitrarily close to (#: ¢), and therefore by definition of 7 o
and part (ii) of the previous lemma,

1,(S)+1,(f2) < (1+28)1,(h)
SA+28)[1, (/i + /) +61,(2)]
=T, (/i + ) +28 U, (h+ )+ 1,(8)] -

Finally, Eq. 1.2 asserts that all of the / -terms on the right are bounded inde-
pendently of ¢, and so for any positive £>0 we can choose ¢ sufficiently small

that the stated inequality holds. a

Existence of Haar Measure

We now prove the existence of a Haar measure for a locally compact group G.
The idea is to construct from our approximate left-invariant functionals 7 p an
exact linear functional. We shall obtain this as a limit in a suitable space.

Let X be the compact topological space defined by the bounds of 7,(f) as
follows:

x= [T/

regt

Then every function /,, (in the technical sense of a set of ordered pairs in
#&* x R¥) lies in X. For every compact neighborhood U of e, let K, be the clo-
sure of the set {/,,: supp(¢) < U} in X. The collection {K} satisfies the finite
intersection property, since

o=

Uy

}NS ok
=1

~.
ﬂ_
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and the right side is nonempty by Urysohn’s lemma. Therefore, since X is
compact, (1K, contains an element , which will in fact extend to the required
left-invariant positive linear functional on & (G). Note that /, which lies in a
product of closed intervals excluding zero, cannot be the zero function on
% (G), so that the extended functional will likewise be nontrivial.

Since I is in the intersection of the closure of the sets {/ ¢ supp(p) c U}, it
follows that every open neighborhood of / in the product X intersects each of
the sets {/,,;:supp(¢)< U}. We may unwind this assertion as follows:

For every open neighborhood U of e, and for every trio of functions
Ji» 15 1,68 and every £>0, there exists a function pe %" with supp(¢)
< U such that _NCU INﬁQV_AmL.n 172: 3]

(This statement extends to any finite collection of f, but we shall need only
three.) So givenfe & and ceR, we may simultaneously make /(c/) arbitrarily
close to / s@\ ) and c/(f) arbitrarily close to c/ eS. Appealing to Lemma 1-9
above, this shows that I(c/)=cI(f). Similarly we have that [ is left translation-
invariant and at least subadditive. To see that / is in fact additive, we use Lem-
ma 1-10 to choose a neighborhood U of e such that

LD+, +E+m

whenever supp(¢) < U. Then choose ¢ with supp(¢) U such that I(f)), 1(f),
and I(f+/,) all likewise lie within &/4 of I (f)), I eQ,NV, and / Fi fi+ 1), respec-
tively. Since ¢ is arbitrary, it follows at once from the inequality above and the
general sublinearity of 7, that /(f, +/)=I1(/) +1(f,), as required.

Finally, extend 7 to a positive left translation-invariant linear functional on
Z(G) by setting I()=I1(f")-I(f"). As we remarked above, in view of our gen-
eral discussion of translation-invariant measures and the Riesz representation
theorem, this implies that G admits a left Haar measure x# and completes the
existence proof. a

Uniqueness of Haar Measure

We now prove that the Haar measure on a locally compact group G is unique
up to a positive scalar multiple. Given two Haar measures x# and von G, clearly
it suffices to show that the ratio of integrals

[r@)du

G

[reav
G
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is independent of fe " . To simplify the notation, we shall often write () and
J(f) for the indicated integrals with respect to g and v, respectively. Given two
functions f,ge &, the plan is to produce a function /e &" such that the ratios
I(NHIJ(S) and I(g)/J(g) can both be made arbitrarily close to I(h)/J(h).

Let K be a compact subset of G, the interior of which contains e. Then K
contains an open symmetric neighborhood of the identity whose closure K|, is
compact and symmetric. (The symmetry is clearly preserved by closure.) Define
compact subsets K-and K, of G by

K= supp(f)-K, v Kysupp(f) and K, = supp(g)-K, v K;-supp(g) -

(Recall that the group product of compact sets is compact.) For €K, define y, f
by

1J6) =f(st) - f(ts) .

Equivalently, we have
V\?\,Hkr\.lh.-_.\. .

Define g similarly. Clearly y,f and y,g are supported in K, and K, respec-
tively, and both vanish on the center of G and in particular at e. Let £>0 be
given. Then by left and right uniform continuity, K, contains an open neigh-
borhood U, of e such that for all seG and feU,, both |,f(s)| and |y,g(s)| are
bounded by £/2. Now U in turn contains a symmetric open neighborhood U, of
e whose closure K is symmetric, compact, and contained in K. Moreover, by
continuity we have that |y, /(s)| <& and |y,g(s)| < & for all seG and all tekX,. The
point is that as long as ¢ remains in K, translation of fand g by ¢ on either side
has approximately the same effect.

We now construct . We claim first that since e lies in the interior of K|,
there exists a second compact neighborhood K, of e such that K, is contained in
the interior of K. Granting this, it follows immediately from Urysohn’s lemma
for locally compact topological spaces that there exists a continuous function
h:G — R, that is 1 on K, and 0 outside of K. Define #:G—>R, by

h(s)=h(s)+h(s™) .

Then certainly 2 &, supp(h) lies in K|, and 4 is an even function in the sense
that A(s)=h(s™).

Proor or CLAIM. Since G is Hausdorff and the boundary B of K| is likewise
compact, B admits a finite cover by open sets each of which is disjoint from a
corresponding open neighborhood of e in K. The intersection of these neigh-
borhoods thus constitutes an open neighborhood U, of e in K|, and we now set
K, equal to the closure of U,. Then by construction K, is contained in the inte-
rior of K|, as required. a
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We come to the main calculations. All integrals are implicitly over G and
are translation-invariant, since x and v are by assumption Haar measures. First,

NI = [[ f©tydudy,
= [ resyaudv, .

The second calculation uses the property that 4 is even.

1(JI(f)= [[ () f @) dp,dv,
" _ % h(t™'s) f(t)du,dv,
= [[ns ' f(dpav,
e _ _ h(t)f(st)du.dv, .

From these we can easily estimate the difference:

LI = ICNT =\ [ S (s - 1)} dpd, |

=|[[ a(tyr. () dpdv, |
S guKp)J(h) .

The point in the last line of the calculation is that supp(k) lies in a K, where 3,/
is small. Similarly,

[1(h)J(2) - 1(2)T(W)\=|[[ h(){g(st) - g(ts)} dp,dv,|

=|[[ (tyy.g(s) dp,dv|
< UK )J(h) .

Dividing the first inequality by .\QP\S yields

l1w) _ 10| #K)
OG0

Dividing the second by J(h)J(g) yields

Ith) _I(g)| _ aKy)
Jihy J@)| Jg)
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Since ¢ is arbitrary, this shows that the ratio /(f)/J(f) is independent of f as
claimed. a

1.3 Profinite Groups

This section introduces a special class of topological groups of utmost impor-
tance to our subsequent work. We begin by establishing a categorical frame-
work for the key definition that follows.

Projective Systems and Projective Limits

Let 7 be a nonempty set, which shall later serve as a set of indices. We say that /
is preordered with respect to the relation < if the given relation is reflexive
(i.e., i<i for all iel) and transitive (i.e., i<j and j<k = i<k for all i, j, kel).
Note that we do not assume antisymmetry (i.e., i<j and j<i need not imply that
i=j); hence a preordering is weaker than a partial ordering. Clearly the ele-
ments of a preordered set / constitute the objects of a category for which there is
a unique morphism connecting two elements i and j if and only if i<j.

We say that a preordered set / is moreover a directed set if every finite sub-
set of 7 has an upper bound in 7; equivalently, for all i, jel there exists kel such
that i<k and j<k. (Recall that directed sets are precisely what is needed to de-
fine the notion of a net in an abstract topological space.) While most of the spe-
cific instances of preordered sets that we meet below will moreover be directed,
we shall need only the preordering for the general categorical constructions to
follow. Beware, however, that directed sets will play a crucial but subtle role in
establishing that the projective limit of nonempty sets is itself nonempty. (See
Proposition 1-11.)

ExAMPLE. The integers Z are preordered (but not partially ordered) with respect
to divisibility and in fact constitute a directed set: a finite collection of integers
is bounded with respect to divisibility by its least common multiple.

Assume that / is a preordered set of indices and let {G,},_, be a family of
sets. Assume further that for every pair of indices i,je/ with i<j we have an
associated mapping ¢;;: Q&,Iv G,, subject to the following conditions:

() @i=1 Viel
(i) @opu =0, Vijkel i<j<k
Then the system (G,, ?;) is called a projective (or inverse) system. Note that if

we regard / as a category, then the association i = G, defines a contravariant
functor.
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DEFINITION. Let (G, ﬁv be a projective system of sets. Then we define the pro-
Jjective limit (or inverse limif) of the system, denoted limG,, by
«

limG, ={(g) e[ [ G;:i<j=p;(g)=28} -
iel

Note that as a subset of the direct product, limG, comes naturally equipped
“«
with a family of projection maps p,:1limG, - G,, and with regard to these
«

projections, the projective limit manifests the following universal property:

UNIVERSAL PROPERTY. Let H be a nonempty set and let there be given a system
of maps (y;:H — G,),, that is compatible with the projective system (G,, ¢,) in
the sense that for each pair of indices i,jel with i<j, the following diagram

commutes:
v \ /N\

Gy e i

Pij

Then there exists a unique map y:H — 1im G, such that for each i€l the dia-
gram

v

also commutes.

The mapping y is of course none other than 4 - (v, (h)),,, just as for the
direct product of sets, but in this case the compatibility of the y; guarantees that
the image falls into the projective limit.

Note carefully that neither the definition of a projective limit nor the associ-
ated universal property asserts that a given projective limit of sets is nonempty.
In particular, the projection maps may have empty domain. Of course, if a com-
patible system (y;:H - G,),, exists with nonempty domain #, then one infers
from the existence of elements of the form (y, (%)), that the projective limit is
likewise nonempty.

The construction of the projective limit works equally well in the category of
groups (in which case the set maps are replaced by group homomorphisms, and
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the group operation is defined componentwise) or the category of topological
spaces (in which case the set maps must be replaced by continuous functions,
and the topology on the projective limit is the subspace product topology in-
duced from the direct product). In the case of groups, note that the projective
limit is never empty, since the identity element of the direct product clearly lies
in the projective limit. It follows from these remarks that the projective limit of
a projective system of topological groups is itself a topological group with re-
spect to the componentwise multiplication and the subspace topology.

REMARK. A more obvious topology on a product space I1.; is the box topology,
generated by sets of the form [TU; with U, open in X; for all i. But this is a
much finer topology than the standard product topology. Moreover, with re-
spect to the box topology the product of compact spaces need not be compact.

In the following subsection we shall be concerned with projective limits of
finite groups. In passing we shall require conditions under which the projective
limit of finite sets is nonempty. It is here that the notion of a directed set re-
appears critically.

1-11 PROPOSITION. Assume that I is a directed set, and let (G, ;) be a projec-
tive system of finite sets. Set G =1im G,. Then:

(i) Ifeach G, is nonempty, G is nonempty.
(ii) For each index i€l,

pi(G)= DS..\.AQ\V

i<y

PRrOOF. Our proof is adapted from a more general result in Bourbaki’s Theory
of Sets, Chapter III, § 7.4. Let us call (S,),., a compatible family (with respect to
our given projective system) if the following conditions are satisfied:

(a) Foralliel, S,cG,.
(b) Forall i,jel with i<j, s.avﬂ.w
(c) Foralliel, S;#Q.

Note well that if (S)) is a compatible family of the form S;={x,} for all i/, then
in fact (x,)e G, which in this case is ipso facto nonempty.

Henceforth let X denote the set of all compatible families. We impose an
ordering on X as follows: given compatible families (S;) and (7}), we shall write
(SP<(T;) if $;o7T, for all i. If ' is a totally ordered subset of Z, then clearly Z'
admits the upper co::a (T) defined by
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I,= DM..

(8;)ex’

Conditions (a)—(c) are trivially satisfied, and only the last of these requires fi-
niteness. Hence the given ordering is inductive.

Suppose that there exists a maximal compatible system (S)eX. We claim
that S;= %e@.v for all i<j. To prove this, let (7;) be defined by

T,=[ei(S)H<S; -

i<y

Since (S,) is assumed maximal, our claim is established, provided that we can
show that also (7))eZ. Again (a) and (b) are routine; (c) is interesting. First
observe that if i <j <k, then ¢,(S,)c S.g@.v. Now consider the intersection that
defines 7. Each of the factors appearing is a subset of the finite set S;. There are
only finitely many such subsets, and consequently we may assume that the in-
tersection is over a finite set of indices jy,...,j,. But 1 is directed, so there exists
an element k in I such that k2j,,...,j,. Thus by our previous observation,

Pu(Si) Dﬂqaa\sv =T

and therefore 7, is manifestly nonempty.

We continue to assume that (S) is maximal in ¥ and shall demonstrate next
that each S contains exactly one element. Fix i and let x;€S;. Define (7)) as fol-
lows:

g S,np;(x) ifis)

LS ; otherwise.

Note in particular that 7;= {x,}, since g, is the identity on.S;. Then (7)) lies in X:
(a) is obvious, (b) is an easy exercise, and (c) follows from the claim of the pre-
vious paragraph, namely that .w_.use@.v for all j>i. Moreover, by construction
S)< (7)), whence, since (S) is maximal, we must in fact have equality. This
mroim &z: .m...ucﬁ.manmémmm&:a»?mmmmzm._oow.

We now address both statements of the proposition. Again fix iel. By defini-
tion of a projective system,

PG c(ey(G)) .

i<y
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One may argue as above that since all but finitely many factors on the right are
redundant, the given intersection is nonempty; thus it contains an element x,.
Define (7)) as follows:

ro o) ifis)

G \. otherwise.

Note in particular that 7;={x,}. One sees without difficulty that meM (at last
establishing that ¥ is nonempty!), and so by Zorn’s lemma there is a maximal
element @v of > with the additional property that @vw (7). But then @vn A
and G is nonempty, as required by (i). Moreover, x;=y,€p,(G), which in light
of the preceding inclusion establishes (ii). a

Profinite Groups

We now come to the principal definition of this section. It may seem at first to
be essentially group-theoretic, with the topology as an afterthought, but we
shall see shortly that this is not the case.

Consider a projective system of finite groups, each of which we take as hav-
ing the discrete topology. Their projective limit acquires the relative topology
induced by the product topology on the full direct product. This is called the
profinite topology, and accordingly the projective limit acquires the structure of
a topological group.

DEFINITION. A topological group isomorphic to the projective limit of a projec-
tive system of finite groups (endowed with the profinite topology) is called a

profinite group.

The following proposition summarizes the most fundamental global proper-
ties of a profinite group.

1-12 PROPOSITION. Let G be a profinite group, given as the projective limit of
the projective system (G,, ?;) Then the following assertions hold:
(i) G is Hausdorff with respect to the profinite topology.
(ii) G is a closed subset of the direct product [1G,.
(iii) G is compact.

PrOOF. (i) The direct product of Hausdorff spaces is also Hausdorff, and any
subset of a Hausdorff space is clearly also Hausdorff in the induced topology.
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(ii) We may realize the complement of G in [1G; as an open set as follows:

&= CC?@L mEQT v;(g;) # 8}

ig2i
Therefore G is closed, as claimed.

(iii) Since the direct product TG, is compact by Tychonoff’s theorem, this as-
sertion follows from (ii) on general principles: a closed subset of a compact
space is itself compact. a

EXAMPLES

(1) Let G,=Z/nZ, n>1, the additive group of integers modulo n. Then {G,} is
a projective system, since there is a canonical projection

O LINL - Z/mZ
(%], = [X],,

whenever m|n, and these projections are clearly compatible in the required
sense. We may thus form their projective limit

~

Z=1limZ/nZ .

Note that Z also admits the structure of a topological ring.

(2) Let H,=(Z/nZ)*, n>1, the group of units in Z/nZ. Then {H} is a projec-
tive system, since a (unital) ring homomorphism maps units to units. Set

Z* =lim (Z/nZ)* .

Then Z*is a topological group under multiplication and in fact is the
group of units of Z.

(3) Fix a rational prime p and set G,, = Z/p™Z, m>1. Again {G,,} is a projec-
tive system, and we form its projective limit to obtain a ring

Z,=limZ/p"Z .
This is called the Z.:W of p-adic integers.

4) Let H,, = (Z/p™Z)*, m21, so that {H_} is a projective system as in Ex-
ample 2. Then set
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Nw u:.ms (Z/p"Z)" .

One checks easily that Z, is the group of units in Nsw this is called the
group of p-adic units.

(5) The set of all finite Galois extensions K/Q within a fixed algebraic closure
Q of Q forms a directed set with respect to inclusion. We have a corre-
sponding directed system of finite groups Gal(K/Q), where if K c L, the
associated homomorphism Gal(Z/Q) — Gal(K/Q) is just restriction. More-

over, we have an isomorphism

Gal(Q/Q) —=—lim Gal(K/Q)

o B (o) .

Topological Characterization of Profinite Groups

Recall that a topological space X is called connected if whenever X=UuUV for
nonempty open subsets U and V, then UnV#D. (Evidently an equivalent
statement results if we substitute nonempty closed subsets for open ones.) Every
point xeX is contained in a maximal connected subset of X, which is called the
connected component of x. In the special case of a topological group G, the
connected component of the identity e is denoted G°.

A topological space X is called totally disconnected if every point in X is its
own connected component. Clearly a homogeneous space is totally discon-
nected if and only if some point is its own connected component. In particular,
a topological group G is totally disconnected if and only if G°={e}.

1-13 LEMMA. G° is a normal subgroup of G. Moreover, the quotient space
G/G?" is totally disconnected, whence (G/G°)° is the trivial subgroup of
the quotient. A4

PROOF. Let xeG°. Then x~'G° is connected (by homogeneity) and contains e,
whence x'G°cG°. Thus G° is closed under inverses. The same argument now
shows that xG°c G°, and that for all-yeG, we have further that yG°y-'c G°.
Consequently G° is indeed a normal subgroup of G°, as claimed. The second
statement is immediate: by homogeneity, the connected components of G are
precisely the elements of G/G°, and so by general topology (see Exercise 5 be-
low), G/G° is totally disconnected. a

1-14 THEOREM. Let G be a topological group. Then G is profinite if and only
if G is compact and totally disconnected.
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ProOF. =) We have already seen that G is compact. Thus it remains to show
that G°={e}. Let U be any open subgroup of G. Then UnG°® is open in G° and
nonempty. Now consider the subset V of G defined by

V=) xWUnG%.

xeG°-U

Then since each x-(UnG°®) is open in G°, so is V. Moreover, by elementary
group theory, UnV=0, and G° is the disjoint union of two open sets, namely
UNG® and V. But by definition G° is connected, so either UnG® or ¥ must be
empty. Since the former is not, the latter is, and in fact G°=UnG°, which is to
say that G°c U. Since U is an arbitrary open subgroup of G, we have accord-

ingly,

Gc v
Uan open
subgroup of G

We must now make use of the profinite nature of G. Indeed, let
G =1imG,

where each G; is a finite group with the discrete topology. Recall that for each
index i we have a projection map p,: G — G; that is just the restriction of the
corresponding map on the full direct product. Let y=(y,) lie in G and assume
that y is not the identity element. Then for some index i, it must be the case
that Yi, # €, But now consider the set U, = p;, ! (e). Since the topology on G;
is discrete and the projections are continuous, U, is open in G. Since the pro-
jections are moreover group homomorphisms, U, is in fact a subgroup of G.
But by construction, U, excludes y. This shows that the only element in the
intersection of all open subgroups of G is the identity. Thus G° is trivial, as

required.

The proof of the converse is more delicate and requires three lemmas. We
begin with some preliminary analysis.

Let.# be the family of open, normal subgroups of G. This is clearly a di-
rected set with respect to the relation M<N if Nc M. (In fact, two subgroups M
and N in # have a least upper bound AM/nN in .#.) Moreover, the following
observations are elementary:

(i) For each Ne.#, the quotient group G/N is both compact and discrete,
hence finite.
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(ii) For each pair of subgroups M,Ne.#, with M<N, the kernel of the canon-
ical projection G — G/M contains N, and hence this map factors through
G/N to yield the induced map

oun:GIN - GIM
XN - xM .

From this description it is clear that if L<KM<N in .#; then

Prm® Pun= PN

and {G/N},,_ , constitutes a projective system of finite groups.

The point, of course, is to show that G is isomorphic to the projective limit of
this system.

1-15 LEMMA. Let the profinite group G' be given by

G'=1lim G/IN
¥

where N varies over /¥, as defined above. Then there exists a surjective,
continuous homomorphism a:G—>G'.

PROOF. For Ne.#"let a,, denote the canonical projection from G to G/N, which
is surjective. Since G/N is homogeneous, we establish that ay, is also continuous
by noting that @y (egy ) = N, which by hypothesis is open in G. Arguing as in
(ii) above, it is clear that whenever M <N in .7, the following triangle is com-
mutative:

GIN

Pl
G Py N
B

GIM

Thus by the universal property of projective limits, we have a continuous homo-
morphism a: G — G' such that ay = pyoa for all Ne.#, where p,, denotes
projection from G’ onto G/N, the component of the projective limit corre-
sponding to N.

It remains to show that « is surjective. We claim that « has dense image in
G'. Granting this, we conclude the argument as follows: Since G is compact
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and G' is Hausdorff, the image of « is, moreover, closed in G'. Thus Im(a),
being dense, must be all of G, as required.

To establish the claim we shall show that no open subset of G’ is disjoint
from Im(a). Consider the topology of G': this is generated by sets of the form
Py (Sy) , where Sy is an arbitrary subset of G/N. Every open set in G' is thus
expressible as a union of finite intersections of these py (S,). Such an inter-
section U consists of elements of the form

AWJZva\\

where at most only finitely many of the coordinates are constrained to lie in
some given proper subset of the corresponding quotient; the rest are unre-
stricted. Now suppose that the constrained coordinates correspond to the sub-
groups N,,...,N, and that

?\MJZ\.

J=1

Then given (x,)eG’, the coordinates Xy, are all determined as images of the co-
ordinate x,, under the associated Eeoocoz maps. Since ¢,,:G—>G/M is sur-
Jective, there is at least one element in f€G such that a(f),,=x,,, and conse-
quently ¢ also satisfies QQVK =Xy, for j=1,...,r. In particular, if (x,)€U, then
certainly a(t)eU, since a(t) agrees with szv in all of the constrained coordi-
nates. Thus U manifestly intersects Im(a), and by our previous remarks, so, too,

does every open set in G'. This completes the proof. a

1-16 LEMMA. Let X be a compact Hausdor[f space. For a fixed point PeX, set
% = {K:K is a compact, open neighborhood of P}. Define Y X by

r=flx .

Ke#%

Then Y is connected.

PrOOF. Note that the collection % is nonempty because X itself is compact and
open.

Suppose that Y is the disjoint union of closed subsets ¥, and Y,. We must
show that either ¥, or Y, is empty. Recall from general topology that a compact
Hausdorff space is normal. Accordingly, there exist disjoint open subsets U,
and U, containing, respectively, ¥, and Y,. Now set Z=X—(U,u U,), which is
closed and therefore compact. Since YcU,u U,, Z and Y are disjoint, which is
to say that Z lies in the complement of Y. Thus we have an open cover for Z
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zZc| e
Ke#

that admits a finite subcover. Hence there exist X 1»+--» K, €% such that

Zn(NK;)=90 .
J

Let W denote the intersection of the K. Then W is a compact, open neighbor-

hood of P, and so W is itself in %. But also
W=WnU) U WnU,)

since W is disjoint from Z, the complement of U,uU,. We now make note of
the following assertions:

(i) Both WU, and WU, are compact, open subsets of X.
(ii) P lies exclusively in one of WU, or WA U,. Say Pe W U,.

From (i) and (ii) it follows that WnU,e% and so Yc Wn U,. Since Y,cY and
Y, is disjoint from U, it follows that Y, is empty, as required. a

1-17 LEMMA. Let G be a compact, totally disconnected topological group.
Then every neighborhood of the identity contains an open normal sub-

group.

PROOF. As a preliminary, note that G is HausdorfT: If x and y are distinct points
in G, then {x,y} is disconnected with respect to the subspace topology. There-
fore there exist respective open neighborhoods of x and y that are disjoint. The
proof now proceeds in three steps: First, we show that every open neighborhood
U of the identity contains a compact, open neighborhood I of the identity. Sec-
ond, we show that / in turn contains an open, symmetric neighborhood ¥ of
the identity such that WV’ W. Third, from ¥ we construct an open subgroup,
then an open, normal subgroup of G contained in U, as required.

Let % denote the set of all compact, open neighborhoods of the group iden-
tity e. Applying the previous lemma with P=e, we find that

Y=k

KeZ

is a connected set containing e. But G is totally disconnected, so in fact Y={e}.
Now let U denote any open neighborhood of e. Then G-U is closed and
therefore compact. Since e is the only element of G common to all of the X in
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%, there exist subsets X, ...,K,e% whose complements cover G-U, and there-
fore

is a subset of U and a compact, open neighborhood of e. In particular, WeZ.
This completes the first step.

To begin the second step, consider the continuous map u: WxW— G defined
by restriction of the group operation. We make the following observations:

(i) For every wel, the point (w,e)eu'(W).
(ii) Since W is open, the inverse image of W itself under 4 is open in WxW.
(iii) It follows from (i) and (ii) that for every we ¥, there exists open neighbor-

hoods U,, of w and V,, of e such that U xV, c M \(W). Moreover, by Prop-
osition 1-1, we may assume that each ¥, is symmetric.

(iv) The collection of subsets U,, (we ) constitutes an open cover for W. Since
W is compact, a finite subcollection U,,..., U, suffices.

Let V,,...,V, correspond to U,...,U, in (iii) above. Define an open neigh-
borhood V' W of the identity as follows:

By construction WV’ W, and by induction W¥"c W for all n20. In particular,
V" W for all n>0. This completes the second step.

For the final step, we expand ¥ to an open subgroup O of G contained in W
by the formula

ey
n=1

(Note that O is closed under inversion because ¥ is symmetric.) The quotient
space G/O is compact and discrete, hence finite, so we can find a finite col-
lection of coset representatives x,,...,x, for O in G. It follows that O likewise
has only finitely many conjugates in G: all take the form

0x; (J=L...,8).

Thus

4
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N = Dx\Ox.w

=1

is an open, normal subgroup of G. Moreover, since one of the conjugates of O is
O itself, Nc Oc Wc U. This completes the proof. a

This brings us at last to the conclusion of the topological characterization of
profinite groups.

PROOF OF THEOREM 1-14, CONVERSE. By Lemma 1-15, we have a surjective
homomorphism a:G—G', where G’ is the projective limit of the finite quo-
tients G/N for N an open, normal subgroup of G (i.e., Ne .#"). Appealing to
Exercise 9 below, we see that it suffices to show that « has trivial kernel and
hence is injective.

Since « simultaneously projects on all of the quotients, it is clear that

Ker(a)= [N .
Net"

By the previous lemma, every open neighborhood of eeG contains an open,
normal subgroup, which is therefore represented in the intersection above. It
follows that Ker(q) is contained in every neighborhood of e and hence in the
intersection of all such neighborhoods. But G is Hausdorff: the intersection of
all neighborhoods of e consists merely of e itself. Hence Ker(q) is indeed triv-
ial, and the theorem is proved. a

The Structure of Profinite Groups

The following theorem shows in particular that closed subgroups of profinite
groups and profinite quotients by closed normal subgroups are likewise pro-
finite.

1-18 THEOREM. Let G be a profinite group and let H be a subgroup of G. Then
H is open if and only if G/H is finite. Moreover, the following three state-
ments are equivalent. —

(i) Hisclosed.
(ii) H is profinite.

(iii) H is the intersection of a family of open subgroups.

Finally, if (1)-(iii) are satisfied, then G/H is compact and totally discon-
nected.

Lo
J L}.z, ,\ .
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PRrROOF. The first statement follows from Proposition 1-4, part (iv), since a
profinite group is necessarily compact. We next establish the given equiva-
lences.

(i)=(ii) H is a closed subset of a compact space and therefore itself compact.
Hence it remains to show that H is totally disconnected. But this is trivial: since
G°={e}, also H°={e}, and this suffices by homogeneity.

(ii))=(i) If H is itself profinite, it is a compact subset of a Hausdorff space and
hence closed.

(iii)= (i) Suppose that H is the intersection of some family of open subgroups
of G. Then since every open subgroup is also closed [Proposition 1-1, part (iv)],
H is also the intersection of a family om closed subgroups of G, and therefore
itself closed.

(i)=(iii) As above, let.#  denote the family of all open, normal subgroups of G.
If Ne#, then since N is normal, NH is a subgroup of G. By part (i), [G: V] is
finite, whence [G:NH] is likewise finite and NH is open. Moreover, clearly

WD e Hc (NH .
Nest”

It remains only to demonstrate the opposite inclusion. So let x lie in the indi-
cated intersection, and let U be any neighborhood of x. Then Ux~! is a neigh-
borhood of e, and so by Lemma 1-16, Ux~! contains some N,e.#. Since x lies
in the given intersection, xe N, H. Now by construction, also xeN,x. Hence N x
is equal to Nh for some heH, and consequently e N,xc U. The upshot is that
every neighborhood of x intersects /, and hence x lies in the closure of H. But
H is closed by hypothesis, and therefore xeH, as required.

For the final statement, the compactness of the quotient follows at once from
the compactness of G. Let p: G— G/H denote the canonical map. To sec that

_G/H is totally disconnected, assume that p(X) is a connected subset of G/H that

" properly contains p(H). Then Y=X-H is nonempty, and since we may assume
that A is nontrivial, ¥ contains more than one point. Hence Y is the disjoint
union of nonempty open (hence closed) sets F; and F,. One checks easily that
since H is closed, F; and F, are both open Q.o:oo n_Omn& in X. Thus X is the
disjoint union of Eo two :o:oBvQ closed sets Nu UH aid F,. But then the im-
age of F, under pis (a) nonempty, (b) not the ?: image of X, and (c) both open
and closed in p(X). Since p(X) is connected, this is a contradiction. Hence the
connected component of p(H) is p(H) itself, m:a the quotient is totally discon-
nected, as claimed. a
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A Little Galois Theory

We close this section by showing how profinite groups make a momentous ap-
pearance in connection with the Galois theory of infinite extensions. To begin,
we recall the following elements of field theory:

(i) Let Fbe afield. An element a that is algebraic over F is called separable
if the irreducible polynomial of a over F has no repeated roots. An alge-
braic field extension K/F is called separable if every element of X is sepa-
rable over F.

(i) Assume that X is an algebraic extension of F contained in an algebraic
closure F of F. Then we call K/F a normal extension if every embedding
of K into F that restricts to the identity on F is in fact an automorphism
of K. (We say that such an automorphism is an automorphism of X over
F)

(iii) A field extension K/F is called a Galois extension if it is both separable
and normal. The set of all automorphisms of X over F constitutes a group
under composition; this is called the Galois group of K over F and de-
noted Gal(K/F). If Fc LK is a tower of fields and K/F is Galois, then
K/L is likewise Galois.

Note that these notions do not require that K/F be finite. Our aim now is to
extend the fundamental theorem of Galois theory to infinite extensions. This
will require the introduction of some topology.

If S is any set of automorphisms of a field F, as usual F* denotes the fixed
field of S in F; that is, the subfield of F consisting of all elements of F left fixed
by every automorphism of S.

Suppose that K/F is a Galois extension with Galois group G. Consider the
set.#” of normal subgroups of G of finite index. If N, Me.# and Mc N, we have
a projection map gy ,,: G/M—>G/N, and hence a projective system of quotients
{G/N}ycy- This system is certainly compatible with the family of canonical
projections g, : G — G/N, which corresponds to the restriction map from
Gal(K/F) to Gal(K"/F). Thus we have a canonically induced homomorphism p
from G into the projective limit of the associated quotients.

1-19 PROPOSITION. Let K, F, G, and 4 be as above. Then the canonical map

p:G— lim G/N
Ne#

is in fact an isomorphism of groups. Hence G is a profinite group in the
topology induced by p.
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In this context, we shall simply speak of the Galois group G as having the bitrary subsets of G.) According to the previous proposition, /1 is profinite as

profinite topology. the Galois group of K/L, and Exercise 14 shows that this topology is identical
“ to that induced by G. Thus H is a profinite subgroup of a profinite group and is
PrOOF. We show first that p is injective. Certainly _ therefore closed by Theorem 1-18.

Ker(p) = D N STEP 2. We claim that fo « is the identity map. Let L be an intermediate field.

Ne# By definition a(L) fixes L, and so clearly f(a(L))2L. Conversely, suppose that
z lies in B(a(L)). Then since z lies in KX and is therefore separable over L, z also
belongs to a finite Galois extension A of L contained in K. Let o eGal(M/L).
Then there exists ceGal(K/L) that restricts to o. (The extensibility of auto-
morphisms for infinite extensions follows from the finite case by Zorn’s lem-
ma.) By construction, o(z) =z, and hence &(z) =z for all oeGal(M/L). But by

and so we need only demonstrate that this intersection is trivial. Let oeKer(p)
e R and let xeX. Then by elementary field theory there exists a finite Galois exten-
"~ n.a0o 'sion F/F such that F'cK and xeF'. Now the restriction map from

WLy
% P G=Gal(K/F) to Gal(¥"/F) has kernel Gal(K/F"), which is therefore a normal

subgroup of G of finite index. But then oeGal(K/F"), and so o(x)=x. Since x is
arbitrary, ois the identity on K, and Ker(p) is trivial, as required.

We show next that p is also surjective. Fix (o) in the projective limit. Given
an arbitrary element xeKk, again we know that x lies in some finite Galois ex-
tension F’ of F with N=Gal(K/F') normal and of finite index in G and
Gal(F"/F)=G/N. Now define oeGal(K/F') by o(x)=0,/(x). By construction of
the projective limit, ois independent of the choice of extension F”, and hence is
a well defined automorphism of K. Moreover, it is clear that g, is p, (o) for all
N. a

Note that the isomorphism constructed in the previous proposition is essen-
tially field-theoretic, and not merely group-theoretic. (See Exercise 12 below.)

1-20 THEOREM. (The Fundamental Theorem of Galois Theory) Let K/F be a
=-Galois extension (not necessarily finite) and let G=Gal(K/F) with the
profinite topology. Then the maps

a:L > H=Gal(K/L)
B H-L=K"

constitute a mutually inverse pair of order-reversing bijections between
the set of intermediate fields L lying between K and F, and the set of
closed subgroups of G. Moreover, L is Galois over F if and only if the
corresponding subgroup H is normal in G.

PROOF. Note that in the case of a finite extension K/F, we may ignore the
topological restriction, and the statement amounts to the fundamental theorem
of Galois theory for finite extensions, a result that we assume. We proceed in
four steps.

STEP 1. We must show first that the map « is well-defined; that is, that « in-
deed yields closed subgroups of G. (The map / is of course well-defined on ar-

the fundamental theorem for finite extensions, we know that zeL. Hence we
have also that f(a(L))<L, and the claim is established.

STEP 3. We shall show now that ao S is likewise the identity. By definition, for
any subgroup H of G we have that a(f(H))2H. Now assume that H is closed.
Then again by Theorem 1-18, H is the intersection of a family % of open sub-
groups of G. Since a and £ are clearly order reversing,

AU =82 UBW)
Ue¥% Ue¥%
and

aB)ca | JBUN<c NaB)= (U=H .

Ue¥% Ue¥ Ue¥%

The point is that each of the open subgroups U has finite index, and thus in
each case a(f(U))=U by the finite theory.

STEP 4. Finally, suppose that o(L)=Gal(K/L)=H, where L is some intermediate
field. Let olie in G. Then from the diagram
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we deduce that Gal(K/o(L))=ocHo . Thus according to parts (i)—(iii) above, we
have that o(L)=L for all oeG if and only if cHo '=H for all ¢eG. This is to
say that L is normal (and hence Galois) over F if and only if A is normal in G.O

REMARK. We leave it to the reader to determine the effect of @of on an arbi-
trary subgroup of Gal(K/F). (See Exercise 15 below.)

1.4 Pro-p-Groups

Our aim here is to introduce for profinite groups an analogue of the p-Sylow
subgroups that play such a crucial role in finite group theory. To begin, we
must first generalize the notion of order.

Orders of Profinite Groups

DEFINITION. A supernatural number is a formal product
[1-"
?
where p runs over the set of rational primes and each n,eNuU {0} .

Clearly the set of supernatural numbers is a commutative monoid with re-
spect to the obvious product. If a is a supernatural number, we set v,(a) equal to
the exponent of p occurring in a. We say that a divides b, and as usual write
alb, if v,(a) m,@@v for all primes p. Note that if a|b, there exists a supernatural
number ¢ such that ac=b.

Given supernatural numbers a and b, we may define both their least com-

mon multiple and greatest common divisor by the formulas
lem(a, b) = :.Em_._v?\?vﬁ.@vv and ged(a,b)= : ﬁiw?ﬁ?y—@@& :

One extends these notions to arbitrary (even) infinite families of supernatural
numbers in the obvious way.

Now let G be a profinite group. As previously, let .#" denote the set of all
open, normal subgroups of G. Recall that each quotient group G/N, for Ne.#',
is finite.

DEFINITION. Let H be a closed subgroup of G. Then we define [G: H], the index
of H in G, by the formula
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[G:H]= lem [G/N:HN/N] .
News

In particular, [G:{e}], the index of the trivial subgroup, is called the order of G
and denoted |G|.

Using the standard isomorphism between HN/N and H/HNN, we may recast
the definition above as

[G:H]= lem [G/N:HIHAN].

Nes

See also Exercise 16 below.

1-21 PROPOSITION. Let G be a profinite group with closed subgroups H and K
such that HCK. Then [G:K]=[G:H][H:K].

PrOOF. Note that since H is closed, it is also profinite, and so the assertion is
well defined. Now let N be any open normal subgroup of G. Then

[GIN:KIKAN] = [GIN: HIHAN] [HIHAN:K/KAN] . 1.3)

The lcm (over Ne#) of either side of the equation is, of course, [G:H]. Con-
sider the factors on the right: if we replace N by any smaller subgroup N,€.7;
both indices are inflated (cf. Exercise 17). Hence, taking intersections, any pair
of prime powers occurring in [G/N:H/HAN] and [H/HNN:K/KnN], respec-
tively, may be assumed to occur simultaneously. The upshot is that we can
compute the Icm of the product by separately computing the lcm’s of each fac-
tor. The first yields [G: H]; it remains only to show that the second yields [H:K].

Let M be any open, normal subgroup of H. Then M=Hn U, where U is open
in G. But by Lemma 1-17, U contains an open, normal subgroup N of G, and
one argues as above that

[H/M:KIKAM] | [HIHAN:KIKAN] .

Thus [H:K] may be computed as the lcm over subgroups of H of the form HNN,
where N is open and normal in G. Hence the second factor on the right of
Eq. 1.3 indeed yields [H:K], as required. a

REMARK. The proof shows that we may compute a profinite index as the Icm
over any cofinal family .# c.#" of open normal subgroups of the ambient group;
that is, if for every Ne.#" there exists an Me.# such that Mc N, then

Icm [G/N:HNIN] = lem [G/IM:HMIM] .
Ne s Me #
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EXAMPLES

(1) Consider the p-adic integers

z,= :mAN\ﬁan L

n2l

Let H, denote the kernel of the projection map from Z,to Z/p"Z. Since
this projection is surjective, we have Z,/H,=Z/p"Z, »:a it follows that p®
divides _N |. Conversely, every finite n:o:ﬁ: of Z, has order a power of p,
and 908&03 |Z,|=p.

(2) Next consider

=Him(Z/nZ) .

n2l

Arguing as above, every factor group Z/nZ occurs as a quotient of w:
whence every positive integer is a divisor of its order. Thus

=

p prime

Pro-p-Groups

Let p be a rational prime. Recall that a group is called a p-group if the order
of every element is finite and a power of p. In the case that G is finite, this is
equivalent to the statement that the order of G is a power of p.

DEFINITION. A projective limit of finite p-groups is called a pro-p-group.

Of course, z, is a pro-p-group; so is H »» the projective limit of the Heisen-
berg groups EN%:NV. (See Exercise 18 _uo_oi.v

1-22 PROPOSITION. 4 profinite group G is a pro-p-group if and only if its order
is a power of p (possibly infinite).

PROOF. <) We have already seen in the proof of Theorem 1-14 that G is the
projective limit of its finite quotient groups G/N. If the order of G is a power of
P, then each of these quotients must be a p-group, as required.

=) Suppose that G is the projective limit of the projective system P, of p-
groups. Then by definition of the topology of G, cofinal among the open normal
subgroups of G are subgroups of the form

1.4. Pro-p-Groups 39
M= A: 0)nG

where Q,= P, for all but finitely many indices, and Q,={e;} for the exceptions.
Now given an arbitrary xeG and specifying any finite subset of its coordinates,
there is clearly a finite exponent of the form g=p” such that x4 is trivial at each
of the specified coordinates. Hence G/M is a p-group, and it follows by the re-
mark following Proposition 1-21 that the order of G is a power of p. a

DEFINITION. Let G be a profinite group. A maximal pro-p-subgroup of G is
called a pro-p-Sylow subgroup of G (or more simply, a p-Sylow subgroup of G).

Note that the trivial subgroup may well be a pro-p-subgroup of G for some
primes p. The following theorem shows among other things that this is the case
if and only if p does not divide the order of G.

1-23 THEOREM. Let G be a profinite group and let p be a rational prime. Then
the following assertions hold:

(i) p-Sylow subgroups of G exist.
(i) Any pair of conjugate p-Sylow subgroups of G are conjugate.
(iii) If P is a p-Sylow subgroup of G, then [G:P] is prime to p.

(iv) Each p-Sylow subgroup of G is nontrivial if and only if p divides the
order of G.

PROOF. As usual, let.#” denote the set of open normal subgroups of G and recall
the explicit isomorphism

¢:G > lim G/N

X AR.Zva\

Note in particular that if x,ye G and xN=yN for every open normal subgroup N,
then x=y. A similar statement holds for arbitrary subsets of G.

(i) For each Ne.#, let Z/(N) denote the set of p-Sylow subgroups of the finite
group G/N. Then clearly #(N) is finite and, moreover, nonempty. (If G/N has
order prime to p, then the trivial subgroup is a p-Sylow subgroup.) Assume that
M,Ne#'with NcM. Then there exists a surjective homomorphism of finite
groups ¢, G/N— G/M. Since this map sends a p-Sylow subgroup of G/N to a
p-Sylow subgroup of G/M (refer again to Exercise 17), we obtain an induced
map ¢, :F(N)—>P(M). Thus we obtain a projective system (P(N), g, ) of
finite nonempty sets, and the projective limit of this system is likewise non-
empty by Proposition 1-11. This means that there exists a projective system of
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p-Sylow subgroups (P, y), Where for each Ne.#, we have Py, c G/N. Let P
be the projective limit of the P,,, which we can clearly identify with a subgroup
of the projective limit of the G/N and hence with a subgroup of G via ¢. Then P
is a pro-p-group by construction, and we shall now show that it is maximal. Let
O be any pro-p-subgroup containing P. Then for every open normal subgroup
N, ONINoPNIN=P,,. But Q is a pro-p-group, so by the previous proposition,
ONIN is a p-group and therefore equal to the p-Sylow subgroup P,,. Thus for
every open normal subgroup N, ON/N=PN/N, and therefore Q and P have the
same image under ¢ and accordingly are equal. Hence P is indeed maximal, as
claimed.

(ii) Let P and Q be p-Sylow subgroups of G. For every Ne.#,, we make the
following definitions:

P, = PNIN
Oy = ONIN
Yy = 0N Pt =04} -

Note that each Y, is finite and, by the Sylow theorems for finite groups,
nonempty. Moreover, the subsets Y, clearly constitute a projective system. Let ¥
denote the (nonempty) projective limit of the Y,,, which we again identify with
a subset of G via ¢, and let y lie in Y. Then by construction, yPy~! and Q have
equal projection in G/N for all open, normal N and are therefore equal. Hence P
and @ are indeed conjugate.

(iii) Let P be a p-Sylow subgroup of G. Then by definition

[G:P]= lcm [G/N:PN/N] .
Ne#

But by Exercise 19, for each N, the subquotient PN/N is a p-Sylow subgroup of
G/N, and so by finite group theory each index [G/N:PN/N] is prime to p. Hence
[G: P] is likewise prime to p.

(iv) This follows at once from parts (i) and (iii). a

1-24 COROLLARY. Let G be a commutative profinite group. Then the following
assertions hold:
(i) For every prime p, G admits a unique pro-p-Sylow subgroup.

(ii) Let p and q be distinct primes and let P and Q be the corresponding
Sylow subgroups. Then PN\ Q is trivial.

(iii) G is isomorphic to the direct product of its Sylow subgroups.
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PROOF. (i) In light of the commutativity of G, this follows at once from parts (i)
and (ii) of the theorem above.

(ii) The order of PnQ must divide powers of both p and g, whence this inter-
section must be trivial.

(iii) Let N be an open normal subgroup of G. Then for each pro-p-Sylow sub-
group P we have a canonical projection from P onto PN/N, the unique p-Sylow
subgroup of G/N. Note that this projection is trivial for all but the finitely many
primes p that divide the order of G/N. By the theory of finite commutative
groups, we have

[IPNIN=GIN

where the product is taken over all of the Sylow subgroups of G. We may lift
this isomorphism to G as follows:

G =lim G/N
=lim [ [ PN/N
=[1im PN/N
=[]tim P/PAN

=]1”7 .

All products are over the set of Sylow subgroups of G; all projective limits are
over the family of open, normal subgroups of G. The final line of the calcula-
tion is justified by the cofinality of subgroups of the form PnN among the open
subgroups of P, which may be deduced from Lemma 1-17. a

ExAMPLE. Recall that the abelian profinite group
Z =limZ/nZ

has order [1p*, where the product is taken over all primes. Given a prime p, let
P be the unique corresponding p-Sylow subgroup of Z. Let P, denote the
unique p-Sylow subgroup of Z/nZ. Then

P=limP, =limZ/p"*Z = imZ/p"L = Z, .
“— « -

n n m

Thus according to the corollary, Z=T1Z -
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Exercises

1.

(a)

®)

Let G be a topological group. Show that the topology on G is completely
determined by a system of open neighborhoods of the identity e.

Let G=Z and impose the following topology: Uc G is open if either 0¢ U
or G-U is finite. Show that G is not a topological group with respect to
this topology. [Hint: If so, the mapping a+>a+1 would be a homeo-
morphism; show that it is not.]

This exercise shows that we may impose a nondiscrete topology on Z such
that Z is nonetheless a topological group with respect to addition. Let S!
denote the multiplicative group of complex numbers of absolute value 1.
Recall that an element of Hom(Z,S") is called a character of Z. We denote
such a character y. Let

g=]]s
4

where the product is taken over all characters. Then £ is a compact topo-
logical group. Now consider the homomorphism

JiL> &
n () .

Show that j is injective; that is, show that for any nonzero neZ there exists
a character y such that y(n)#1.

Let G=j(Z). Then G is a group algebraically isomorphic to Z and a topo-
logical group with respect to the subspace topology induced by &. Show
that G is not discrete with respect to this topology and conclude that Z it-
self admits a nondiscrete topological group structure with respect to addi-
tion. [Hint. Suppose that j(1) is open. Then there exists an open subset U of
Z such that UnG =j(1); moreover, we may assume that all but finitely
many projections of U onto its various coordinates yield all of S'. Noting
that j(1) generates the infinite group G, one may now derive a contra-
diction.]

Give an example mm a topological group with a closed subgroup that is not
open.

Let X be a topological space. and let C(X) denote the space of connected
components of X. (This constitutes a partition of X). As usual, we impose

10.

11.

12.
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the quotient topology on C(X)—the strongest topology such that the canon-
ical projection p: X — C(X) is continuous. Show that C(X) is totally discon-
nected with respect to this topology. [Hint: We say that a subset Y of a
topological space is saturated if whenever yeY, the entire connected com-
ponent of y lies in Y. Let F be a connected component of C(X) that contains
more than one point. Show that p~!(F) is a saturated, closed, disconnected
set. Write p~!(F) as the disjoint union of two saturated, closed subsets of X,
and apply p to this decomposition to show that F is in fact disconnected—a
contradiction. ]

Let G=GL,(R). Show that G° is the set of nxn matrices with positive de-
terminant.

Let H be a subgroup of the topological group G. Show that its closure H is
normal (respectively, abelian) if H is.

Let f: G - G' be a surjective continuous homomorphism of topological
groups. Show that f factors uniquely through G/Ker(f); that is, there exists
a unique continuous homomorphism f such that the following diagram
commutes:

i

G —G’

n/\m

G/Ker(f)

Show that f is moreover 5..896. Under what conditions is f a topologi-
cal isomorphism onto its image?

Let f: X — Y be a continuous bijective mapping of topological spaces and
assume that X is compact and Y is Hausdorff. Show that f is moreover a
homeomorphism. [Hint: It suffices to show that fis open. What can one say
about the image of U° under f'where U is any open subset of X?]

Let I be an index set with preordering defined by equality and let (G,, o)
be a projective system of sets defined with respect to /. What is the projec-
tive limit in this case?

Give an example of a projective system of finite nonempty sets over a pre-
ordered, but not directed, set of indices such that the projective limit is
nevertheless itself empty.

Let G be an arbitrary group. Show that in general G is not isomorphic to
the projective limit of the quotient groups G/N, as N varies over all of the
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13.

14.

(@

(b)

15.

16.
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subgroups of G of finite index. Hence not every abstract group acquires a
profinite structure by this device. [Hint. Take G=Z.]

Let (G;, p,) and (i, p,) be two projective systems of sets. (Note that we use
the same map designators ¢, for both systems.) Suppose that we have a
family of maps {¢;:G,—H,} that is compatible with these systems in the
sense that @0 4= o9, for all pairs of indices i<j. Show that there exists a
unique map ¢{:G—>H on their respective projective limits such that
Gop=p;o¢ for all i, where p, denotes the appropriate projection map. Ob-
serve that this construction works equally well in the categories of groups,
topological spaces, and topological groups. [Hint: In light of the universal
property of projective limits, consider the family of composed maps
{Gep,:G—>H}]

Let K/F be a Galois extension with Galois group G.

Let L be an intermediate field that is finite over F. For any given o€G,
define N;(0)<G to be the set of 7eG such that o and 7 agree on L. The
subsets N, (o) constitute a subbase for a topology on G. Show (i) that this
topology remains unchanged if we restrict the subbase to normal interme-
diate fields that are finite over F and (ii) that this topology is identical to
the profinite topology on G.

Now let L be an arbitrary intermediate field, and let H denote the Galois
group of X over L. Use the characterization of the profinite topology given
in part (a) to show that the topology induced on H by G is identical to the
profinite topology defined directly on H as Gal(K/L).

Let K/F be a Galois extension (not necessarily finite) and let / be any sub-
group of G=Gal(K/F) (not necessarily closed). Let & and S be defined as
in Theorem 1-20. Show that a(B(H))= H , the closure of H.

Let G be a profinite group and let / be a closed subgroup. Show that
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where .7 is the set of all open, normal subgroups of G. Show further that if
M is any open subgroup of G containing /, then there exists an open nor-
mal subgroup N of G such that Mo NH. Conclude from this and the previ-
ous equation that moreover,

[G:H]= lem [G:M] .
M open
MDON
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Let ¢: G— G' be a surjective homomorphism of groups with kernel L. Let
H be a subgroup of G of finite index and let A’ be the image of / under ¢.
Show that [G:H]|=[G': H']:[HL:H].

For any commutative ring A with unity, define the Heisenberg group H(A)
over A by

H(A) = :ab,ceAd

S O
S =
_— O 0

Show that H(4) is a group under multiplication in the matrix ring A,(4)
and that this construction is, moreover, functorial in 4.

To continue, for n>1, H(Z/p"Z) is clearly a group of order p3”, and hence
a p-group. If m|n, then by functoriality, we have that the canonical projec-
tion Z/p"Z—>Z/p™Z induces. a homomorphism ¢, from H(Z/p"Z) to
H(ZIp™Z).

Show that (H(Z/p"Z),9,,,) is a projective system of groups.

Let A , denote the projective limit of the H(Z/p"Z); by definition, this is a
pro-p-group. ;

Show that H(Z,) = H »- [Hint: Consider the map
7,.H(Z,)—> H(Z/p"L)

induced by projection from Z, onto Z/p"Z. Show that this is a continuous
surjective homomorphism and that moreover, the family {7} is compatible
with the system of homomorphisms {¢,,}. Finally, show that the map »
obtained from the 7z, by the universal property of the direct limit is the de-
sired isomorphism.]

Let G be a profinite group and p a rational prime. For each open, normal
subgroup N in G, let H,, be a p-subgroup of G/N (not necessarily a p-Sylow
subgroup). Show that there exists a pro-p-Sylow subgroup P of G such that
PN/N2H,, for all N. Conclude (i) that every pro-p-subgroup of G is con-
tained in a pro-p-Sylow subgroup of G; and (ii) that if P is a pro-p-Sylow
subgroup of G, then PN/N is a p-Sylow subgroup of G/N for each open,
normal subgroup N of G. [Hint. Generalize the argument from the proof of
part (i) of Theorem 1-23.]



