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1 Introduction to the bootstrap

The basic ideas about the bootstrap methods are introduced in this section.



1.1 Motivation

Let us consider a simple random sample (SRS), (X1,X2, . . . ,Xn), from a
distribution function F . Consider the problem of constructing a confidence
interval for the mean, μ, of F , with known standard deviation, σ. The classical
statistic used for this aim is the well-known standardized diference of the sample
mean and the population mean

T =
n
1
2

³
1
n

Pn
i=1Xi − μ

´
σ

.

If F is a normal distribution then T
d
= N (0, 1). Since the distribution of T

is known (and it is tabulated) it can be used to construct exact confidence

intervals for μ. Even when the distribution of F is not normal then T
d→

N (0, 1), but for samples of moderate or small size the approximation of the
distribution of T by a standard normal distribution may be poor.

If F is the exponential distribution with parameter λ (F (x) = 1− exp (−λx))
then

S =
nX
i=1

Xi
d
= Γ (λ, n) ,
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Figure 1: Distribution of T with n = 5 for an exponential distribution with

λ = 1.

so

T =
n
1
2

³
1
nS −

1
λ

´
1
λ2

= n
1
2

Ã
λ2

n
S − λ

!
,

which is essentially a recentered and rescaled Gamma distribution with mean

zero and variance one. However the distribution of T it is quite different from

a normal if n is small.



The relevant question is: Can we use a different approximation for the distri-

bution of T?

Key idea: mimic the data generating process that gave rise to T using the

empirical distribution function, Fn, instead of F .

1.2 The bootstrap method

Let us consider a simple random sample X = (X1,X2, . . . ,Xn) from a distri-

bution function F , and a statistic of interest, R = R (X, F ). An example of

such a statistic is that one in the previous section:

R (X, F ) =
n
1
2

³
1
n

Pn
i=1Xi − μ

´
σ

=
n
1
2

³
1
n

Pn
i=1Xi −

R
xdF (x)

´
hR

x2dF (x)− (
R
xdF (x))2

i1/2.
The main idea of the the bootstrap method (see Efron (1979)) is to ap-

proximate the sampling distribution of R by the resampling distribution of



R∗ = R
³
X∗, F̂

´
, where F̂ is some estimator of the underlying cdf, F , and X∗

is a random resample obtained from F̂ , i.e., X∗ =
³
X∗1 ,X

∗
2 , . . . ,X

∗
n

´
where,

conditionally on X, the X∗i are iid observations coming from F̂ .

A general algorithm for the bootstrap method proceeds as follows:

1. Given the sample X = (X1,X2, . . . ,Xn), construct some estimator, F̂ , of

the true cdf, F .

2. Draw bootstrap resamples X∗ =
³
X∗1 ,X

∗
2 , . . . ,X

∗
n

´
from F̂ .

3. Construct R∗ = R
³
X∗, F̂

´
.

4. Approximate the sampling distribution of R = R (X, F ) by the resampling

distribution of R∗.



It is very uncommon that the resampling distribution of R∗ could be computed
in a closed form. Nevertheless, one can approximate this resampling distrib-

ution by Montecarlo just repeating Steps 2-3 above a large number of times

(say B) and considering B replications of the bootstrap version of our statistic:

R∗1,R∗2, . . . ,R∗B. The empirical cdf of these bootstrap values

1

B

BX
j=1

1{R∗j≤x}

is then an approximation of the resampling distribution of R∗, which is an
approximation of the sampling distribution of R.

A classical way to estimate F (in a nonparametric way) is to use Fn, the empiri-

cal cdf. This leads to the wellknown näıve bootstrap given by P ∗ (X∗ = Xi) =
1
n, for i = 1, 2, . . . , n. In parametric setups (i.e. F ∈ {Fθ/θ ∈ Θ}) it is natural
to resample from F

θ̂
, where θ̂ is an estimator of θ̂. This is the wellknown

parametric bootstrap.

Some relevant monographs on the bootstrap are Hall (1992), Efron and Tib-

shirani (1993), Shao and Tu (1995) and Davison and Hinkley (1997).



1.3 Use of the bootstrap

The bootstrap method is often used for

• estimating the sampling distribution of a statistic.

• estimating the bias, variance or MSE of some estimator.

• compute confidence intervals for some parameter θ.

• perform hypothesis tests for some parameter θ.



1.4 An example: the median

Let us consider a sample X = (X1,X2, . . . ,Xn) from a distribution F with

median θ (F ) = F−1
³
1
2

´
. Suppose that the sample size is odd: n = 2m− 1.

By considering the ordered statistics X(1) < X(2) < · · · < X(n), the sample

median is just the central ordered statistic: θ̂ = X(m). In order to construct

confidence intervals for θ we consider the statistic R = R (X, F ) = X(m)− θ.

The bootstrap version of R is R∗ = R (X∗, Fn) = X∗(m) − θ (Fn) = X∗(m) −
X(m), where X

∗ is a random resample coming from Fn.

In this setup it is possible to obtain a closed expression for the bootstrap

distribution (this is very exceptional):

P ∗
³
X∗(m) ≤ x

´
= P ∗ (# {X∗i ≤ x/i = 1, 2, . . . , n} ≥ m)

=
nX

j=m

³n
j

´
Fn (x)

j (1− Fn (x))
n−j .



Consequently,

P ∗
³
X∗(m) = X(i)

´
= P ∗

³
X∗(m) ≤ X(i)

´
− P ∗

³
X∗(m) < X(i)

´
=

nX
j=m

³n
j

´µ i
n

¶j µn− i

n

¶n−j

−
nX

j=m

³n
j

´µi− 1
n

¶j µn− i+ 1

n

¶n−j

=
nX

j=m

³n
j

´
aijn,

where

aijn =
µ
i

n

¶j µn− i

n

¶n−j
−
µ
i− 1
n

¶j µn− i+ 1

n

¶n−j
.

So, the bootstrap distribution of R∗ is

P ∗
³
R∗ = X(i) −X(m)

´
=

nX
j=m

³n
j

´
aijn.



2 Introduction to nonparametric curve estimation

In the following subsections some nonparametric methods for density and re-

gression estimation are introduced.

2.1 Nonparametric density estimation

2.1.1 Background

Let (X1,X2, . . . ,Xn) be a SRS from a population with distribution function

F , absolutelly continuous, density function f . The kernel density estimator

proposed by Parzen (1962) and Rosenblatt (1956) is given by

f̂h (x) =
1

nh

nX
i=1

K
µ
x−Xi

h

¶
=
1

n

nX
i=1

Kh (x−Xi) ,



where Kh (u) =
1
hK

³
u
h

´
, K is a kernel function (typically a symmetric density)

and h > 0 is a smoothing parameter, often called bandwidth, that regulated

the size of the neighbour used for the estimation. This estimator generalizes

the wellknown histogram, more precisely the moving histogram. Choosing K

as the density of a U (−1, 1), the Parzen-Rosenblatt estimator results in:

1

nh

nX
i=1

1

2
1
½
x−Xi

h
∈ (−1, 1)

¾
=

1

2nh

nX
i=1

1 {Xi ∈ (x− h, x+ h)}

=
# {Xi ∈ (x− h, x+ h)}

2nh
,

which is the relative frequency of data Xi in the interval (x− h, x+ h) divided

by the length of this intervalo (2h).

It is typically assumed that the kernel function,K, is nonnegative and integrates

out to one:

K (u) ≥ 0, ∀u,
Z ∞
−∞

K (u) du = 1.

It is also common to assume thatK is a symmetric function: K (−u) = K (u).

The choice of the function K does not have a big impact in the properties of

the estimator (just in its regularity: continuity, differentiability, etc.) but the



choice of the smoothing parameter is crucial for a correct estimation. In other

words, the size of the neighbourhood for the nonparametric estimation should

be adecuate (not to large, not too small).

2.1.2 Bias, variance and mean squared error

Straight forward calculations lead the bias of the Parzen-Rosenblatt estimator:

Bias
³
f̂h (x)

´
= E

³
f̂h (x)

´
− f (x) =

Z
1

h
K
µ
x− y

h

¶
f (y) dy − f (x)

= (Kh ∗ f) (x)− f (x) ,

where ∗ denotes the convolution operator:

(f ∗ g) (x) =
Z
f (x− y) g (y) dy.

Using the bias expression an asymptotic expression for the bias can be obtained:

E
³
f̂h (x)

´
− f (x) =

dK
2
h2f 00 (x) +O

³
h4
´
,

with dK =
R
t2K (t) dt.



The variance can be handled similarly:

V ar
³
f̂h (x)

´
=

1

nh2
V ar

µ
K
µ
x−X1

h

¶¶
=

1

nh2

"Z
K
µ
x− y

h

¶2
f (y) dy −

µZ
K
µ
x− y

h

¶
f (y) dy

¶2#

=
1

n

h³
(Kh)

2 ∗ f
´
(x)− ((Kh ∗ f) (x))2

i
=

1

nh

h³
K2

´
h
∗ f

i
(x)− 1

n
[(Kh ∗ f) (x)]2 .

Its asymptotic expression results in:

V ar
³
f̂h (x)

´
=

cK
nh

f (x)− 1

n
f (x)2 +O

µ
h

n

¶
,

with cK =
R
K (t)2 dt.



Consequently the mean squared error of the estimator is:

MSE
³
f̂h (x)

´
=

Z ³
f̂h (x)− f (x)

´2
dx = Sesgo

³
f̂h (x)

´2
+ V ar

³
f̂h (x)

´
= [(Kh ∗ f) (x)− f (x)]2 +

1

nh

h³
K2

´
h
∗ f

i
(x)

−1
n
[(Kh ∗ f) (x)]2 .

Its asymptotic expression is:

MSE
³
f̂h (x)

´
=

d2K
4
h4f 00 (x)2 +

cK
nh

f (x)− 1

n
f (x)2 +O

³
h6
´
+O

µ
h

n

¶
.

2.1.3 Mean integrated squared error (MISE)

A global error measure (not for a particular x) of the estimator is them mean

integrated squared error:

MISE
³
f̂h (x)

´
=

Z
E
∙³
f̂h (x)− f (x)

´2¸
dx =

Z
MSE

³
f̂h (x)

´
dx =Z

[(Kh ∗ f) (x)− f (x)]2 dx+
cK
nh
− 1

n

Z
[(Kh ∗ f) (x)]2 dx.



An asymptotic expression for it is the following:

MISE
³
f̂h (x)

´
=

d2K
4
h4
Z
f 00 (x)2 dx+

cK
nh
−1
n

Z
f (x)2 dx+O

³
h6
´
+O

µ
h

n

¶
.

The negative effect of choosing a too large or too small bandwidth (h) is

evident from this expression.

2.2 Nonparametric regression estimation

Let {(X1, Y1) , (X2, Y2) , . . . , (Xn, Yn)} de a SRS from a two-dimensional pop-

ulation (X,Y ), with E (|Y |) < ∞. We would like to estimate the regression
function of Y given X: m (x) = E (Y |X=x). The regression function can be
written as:

m (x) =
Z
yf2|1 (y|x) dy =

Z
y
f (x, y)

f1 (x)
dy =

R
yf (x, y) dy

f1 (x)

=

R
yf1|2

³
x|y

´
f2 (y) dy

f1 (x)
=

Ψ (x)

f1 (x)
,



where f1 (x) is the marginal density function of X and

Ψ (x) =
Z
yf1|2

³
x|y

´
f2 (y) dy = E

³
Y f1|2 (x|Y )

´
.

The functions Ψ (x) and f1 (x) can be estimated using the kernel method:

f̂1,h (x) =
1

nh

nX
i=1

K
µ
x−Xi

h

¶
,

Ψ̂h (x) =
1

nh

nX
i=1

K
µ
x−Xi

h

¶
Yi,

which give the Nadaraya-Watson kernel estimator (see Nadaraya (1964) and

Watson (1964)):

m̂h (x) =
Ψ̂h (x)

f̂1,h (x)
=

1
n

Pn
i=1Kh (x−Xi)Yi

1
n

Pn
i=1Kh (x−Xi)

.

Similar properties to those mentioned for the Parzen-Rosenblatt kernel density

estimator can be proved for the regression estimator.



3 Bootstrap methods for density estimation

In the next two subsections two different problems in nonparametric density es-

timation are considered: approximating the sampling distribution of the Parzen-

Rosenblatt kernel estimator (to obtain confidence intervals for the density, for

instance) and bandwidth selection. The bootstrap is used for these two aims.

3.1 Bootstrap approximation for the sampling distribution of

the Parzen-Rosenblatt kernel estimator

Before introducing the bootstrap in this setup the limit distribution of the

Parzen-Rosenblatt estimator will be presented. Other approximations will be

also considered (see Cao (1990) for futher details on these results).



3.1.1 Asymptotic distribution of the Parzen-Rosenblatt estimator

The minimal requirements for the bias and variance to tend to zero when the

sample size tends to infinity are h→ 0, nh→∞. Under these assumptions

(nh)1/2
³
f̂h (x)− f (x)

´
d→ N (B,V ) .

On the other hand, it can be proved that the asymptotically optimal value of

h, in the sense of MSE, is h = c0n
−1/5, with

c0 =

⎛⎝ cKf (x)

d2Kf
00 (x)2

⎞⎠1/5 .
This choice for h leads to the following values for the mean and the variance

of the normal limit distribution:

B =
1

2
c
5/2
0 dKf

00 (x) ,

V = cKf (x) .

In order to use the limit distribution to construct confidence intervals for f (x)

one can . . .



1. estimateB and V and use them in the normal distribution (plug-in method).

2. design a resampling plan and use the bootstrap method.

3.1.2 Plug-in approximation

It consists in estimating B and V by means of

B̂ =
1

2
ĉ
5/2
0 dKf̂

00
g (x) ,

V̂ = cKf̂h (x) ,

where g is a suitable bandwidth to estimate the second derivative of the density

function. Using the Berry-Esséen inequality the following rate of convergence

can be obtained:

sup
z∈R

¯̄̄̄
¯P h

(nh)1/2
³
f̂h (x)− f (x)

´
≤ z

i
−Φ

Ã
z − B̂

V̂

!¯̄̄̄
¯ = OP

³
n−1/5

´
.



This rate is worse than that of the theoretical normal approximation, based on

the exact mean and variance (Bn and Vn):

sup
z∈R

¯̄̄̄
P
h
(nh)1/2

³
f̂h (x)− f (x)

´
≤ z

i
− Φ

µ
z −Bn

Vn

¶¯̄̄̄
= O

³
n−2/5

´
,

but is not worse than that of the asymptotic normal, N (B,V ), which has a

rate of order OP

³
n−1/5

´
.

3.1.3 Bootstrap approximation

The bootstrap resampling plan is as follows:

1. Use the sample (X1,X2, . . . ,Xn) and a pilot bandwidth, g, to compute

the Parzen-Rosenblatt estimator, f̂g.

2. Draw bootstrap resamples
³
X∗1 ,X

∗
2 , . . . ,X

∗
n

´
from the density f̂g.



3. Construct the bootstrap version of the Parzen-Rosenblatt estimator

f̂∗h (x) =
1

nh

nX
i=1

K

Ã
x−X∗i

h

!
.

4. Approximate the sampling distribution of (nh)1/2
³
f̂h (x)− f (x)

´
by means

of the resampling distribution of (nh)1/2
³
f̂∗h (x)− f̂g (x)

´
.

If we were interested in the bias or the variance of f̂h (x) (rather than in its
asymptotic distribution) then Step 4 in the previous algorithm will be replaced
by computing the bootstrap version of the bias, E∗

³
f̂∗h (x)− f̂g (x)

´
, or the

variance, V ar∗
³
f̂∗h (x)

´
.

In the previous algorithm, the bandwidth g has to be asymptotically larger than

h. In fact, a reasonable choice for g is the minimizer of E
∙³
f̂ 00g (x)− f 00 (x)

´2¸
.

Asymptotically, this minimizer has the form

g '
⎛⎝5f (x) R K00 (t)2 dt

d2Kf
(4) (x)2 n

⎞⎠1/9 .



The convergence rate for the bootstrap aproximation is given by

sup
z∈R

¯̄̄
P
h
(nh)1/2

³
f̂h (x)− f (x)

´
≤ z

i
− P ∗

h
(nh)1/2

³
f̂∗h (x)− f̂g (x)

´
≤ z

i¯̄̄
= OP

³
n−2/9

´
,

which is better than those of the theoretical normal aproximation and the

plug-in method.

3.2 Bootstrap methods for bandwith selection

3.2.1 Asymptotic expression for the optimal bandwidth

The MISE has an asymptotic expression that may be used as a criterion to

obtain an optimal value for the smoothing parameter:

MISE (h) = AMISE (h) +O
³
h6
´
+O

µ
h

n

¶
,



with

AMISE (h) =
d2K
4
h4
Z
f 00 (x)2 dx+

cK
nh
− 1

n

Z
f (x)2 dx.

The smoothing parameter that minimizes AMISE is

hAMISE =

⎛⎝ cK

nd2K
R
f 00 (x)2 dx

⎞⎠1/5 .

There exist plenty of methods devoted to the problem of bandwidth selection.

Among them we mention plug-in methods, cross validation methods (smoothed

or not) and, of course, bootstrap methods (see, for instance, Marron (1992)).

3.2.2 Bootstrap version of MISE

The basic idea consists in providing a smoothed bootstrap resampling plan to

estimateMISE. We will follow the proposal by Cao (1993). It consists of the

following steps:



1. Given the sample (X1,X2, . . . ,Xn) a pilot bandwidth, g, is used to com-

pute the Parzen-Rosenblatt kernel estimator, f̂g.

2. Bootstrap resamples
³
X∗1 ,X

∗
2 , . . . ,X

∗
n

´
are drawn from the density f̂g.

3. For every h > 0, the bootstrap version of the Parzen-Rosenblatt estimator

is computed

f̂∗h (x) =
1

nh

nX
i=1

K

Ã
x−X∗i

h

!
.

4. The bootstrap version of MISE is constructed:

MISE∗ (h) =
Z
E∗

∙³
f̂∗h (x)− f̂g (x)

´2¸
dx.

5. MISE∗ (h) is minimized in h > 0 and the bootstrap selector is obtained:

h∗MISE = argmin
h>0

MISE∗ (h)



3.2.3 Closed expression for MISE∗

It is possible to obtain a closed expression for the bootstrap version of MISE:

MISE∗ (h) =
Z h³

Kh ∗ f̂g
´
(x)− f̂g (x)

i2
dx

+
cK
nh
− 1

n

Z h³
Kh ∗ f̂g

´
(x)

i2
dx

=
cK
nh
− 1

n3

nX
i,j=1

[(Kh ∗Kg) ∗ (Kh ∗Kg)]
³
Xi −Xj

´

+
1

n2

nX
i,j=1

[(Kh ∗Kg −Kg) ∗ (Kh ∗Kg −Kg)]
³
Xi −Xj

´
.

Such a property is not very common for the bootstrap in other setups.



3.2.4 Pilot bandwidth choice

The bandwidth selection problem for the piloto smoothing parameter, g, is

close related to minimizing the mean squared error of the density curvature:

E

"µZ
f̂ 00g (x)

2 dx−
Z
f 00 (x)2 dx

¶2#
.

The asymptotical value of the pilot bandwidth, g, minimizing the previous

expression is

g0 =

Ã R
K00 (t)2 dt

ndK
R
f (3) (x)2 dx

!1/7
.



3.2.5 Asymptotic results

Using any deterministic piloto bandwidth with the following property g−g0
g0

=

O
³
n−1/14

´
, it holds

h∗MISE − hMISE

hMISE
= OP

³
n−5/14

´
,

MISE
³
h∗MISE

´
−MISE (hMISE)

MISE (hMISE)
= OP

³
n−5/7

´
.

Using somewhat more sofisticated techniques (that let the pilot bandwidth, g,
depend on h), a slightly better rates can be obtained:

h∗MISE − hMISE

hMISE
= OP

³
n−1/2

´
.

3.2.6 Gaussian kernel case

If the kernel function, K, is Gaussian (the density la function of a N (0, 1)),
then:



• Kh is the density of a N
³
0, h2

´

• Kg is the density of a N
³
0, g2

´

• Kh ∗Kg is the density of a N
³
0, h2 + g2

´

• (Kh ∗Kg) ∗ (Kh ∗Kg) is the density of a N
³
0, 2h2 + 2g2

´

• (Kh ∗Kg) ∗Kg is the density of a N
³
0, h2 + 2g2

´

• Kg ∗Kg is the density of a N
³
0, 2g2

´



Consequently,

MISE∗ (h) =
cK
nh
− 1

n3

nX
i,j=1

K
(2h2+2g2)1/2

³
Xi −Xj

´

+
1

n2

nX
i,j=1

∙
K
(2h2+2g2)1/2

³
Xi −Xj

´
−2K

(h2+2g2)1/2
³
Xi −Xj

´
+K

(2g2)1/2
³
Xi −Xj

´¸
.

3.2.7 Comparison with other bandwidth selectors

The bootstrap method presented here is very similar to the smoothed cross

validation method proposed by Hall, Marron and Park (1992). In comparative

simulation studies (see Cao, Cuevas and González-Manteiga (1993)) it can be

observed that this bootstrap method is very competitive with other methods for

bandwidth selection. In general this bootstrap method is the one which presents

a better behaviour, together with the solve-the-equation plug-in method by

Sheather and Jones (1991) and the smooth cross validation.



There exist other bootstrap bandwidth selectors that exhibit a much worse

behaviour. Among them we include:

• Hall (1990), that resamples from the empirical cdf, so it does not mimic

the bias.

• Faraway and Jhun (1990), that choose g as the cross validation bandwidth,
that results to be too small.

• Taylor (1989), that chooses g = h , so MISE∗ (h) → 0, when h → ∞,
which produces a global minimum of MISE∗ that is inconsistent with
hMISE.



4 Bootstrap methods for nonparametric regression

estimation

In this section, two bootstrap methods are presented for nonparametric regres-
sion. The aim is to approximate the sampling distribution of the Nadaraya-
Watson estimator. The asymptotic results show the behaviour of these boot-
strap methods, conditionally on the sample of the explanatory variable as well
as in an unconditional sense.

4.1 Asymptotic distribution of the Nadaraya-Watson estima-

tor

Before embarking on presenting the bootstrap in this context, it is useful to
present the limit distribution of the Nadaraya-Watson estimator, given by

m̂h (x) =
1
n

Pn
i=1Kh (x−Xi)Yi

1
n

Pn
i=1Kh (x−Xi)

.



As in the density case, it can be proved that the minimal conditions required

for the consistency of the estimator are h → 0, nh → ∞, when n → ∞.
Under these assumptions,

(nh)1/2 (m̂h (x)−m (x))
d→ N (B,V ) .

On the other hand, it can be proved that the asimptotically optimal value for

h, in the sense of MSE, is of the form h = c0n
−1/5. For such a bandwidth,

the mean and variance for the normal limit distribution are

B =
1

2
c
5/2
0 dK

m00 (x) f (x) + 2m0 (x) f 0 (x)
f (x)

,

V = cK
σ2 (x)

f (x)
,

where f (x) is the marginal density function of X and σ2 (x) = V ar (Y |X=x)
is the conditional la variance of Y given X = x.

As for the density case, to construct confidence intervals for m (x) we may

1. Estimate B and V and use them in the corresponding normal distribution

(plug-in method).



2. Design a resampling plan using the bootstrap method.

The rates of convergence for the approximation of the (conditional or uncon-

ditional) distribution of the statistic to the normal limit distribution are:

sup
z∈R

¯̄̄̄
P Y |X

h
(nh)1/2 (m̂h (x)−m (x)) ≤ z

i
−Φ

µ
z −B

V

¶¯̄̄̄
= OP

³
n−1/5

´
,

sup
z∈R

¯̄̄̄
P
h
(nh)1/2 (m̂h (x)−m (x)) ≤ z

i
−Φ

µ
z −B

V

¶¯̄̄̄
= O

³
n−2/5

´
,

where P Y |X (B) denotes P
³
B|X1,X2,...,Xn

´
.

4.2 Plug-in approximation

The plug-in approximation consists in estimating B and V using suitable es-

timators of f (x), f 0 (x), m (x), m0 (x), m00 (x) and σ2 (x). For any of these

functions one could use bandwidth selectors intended to approximate the op-

timal bandwidths for every one (this is a rather tedious process). Using such



an aproach, estimators for the bias, B̂, and the variance, V̂ , can be ob-

tained. It may be proved for these estimators that B̂ − B = OP

³
n−2/9

´
and V̂ − V = OP

³
n−2/5

´
. Consequently the following (conditional and un-

conditional) convergence rates can be proved for the plug-in approximation:

sup
z∈R

¯̄̄̄
¯P Y |X

h
(nh)1/2 (m̂h (x)−m (x)) ≤ z

i
−Φ

Ã
z − B̂

V̂

!¯̄̄̄
¯ = OP

³
n−1/5

´
,

sup
z∈R

¯̄̄̄
¯P h

(nh)1/2 (m̂h (x)−m (x)) ≤ z
i
−Φ

Ã
z − B̂

V̂

!¯̄̄̄
¯ = OP

³
n−2/9

´
.

The first rate is worse than and the second one is the same as the rate for the

theoretical normal limit approximation (see Cao (1991)).

4.3 Wild bootstrap

This bootstrap resampling method, proposed by Wu (1986) and estudied by

Härdle and Marron (1991), proceeds as follows:



1. Using the Nadaraya-Watson estimator ofm (x) and using the initial smooth-

ing parameter, h, the residuals are constructed ε̂i = Yi − m̂h (Xi), i =

1, 2, . . . , n.

2. For every index i = 1, 2, . . . , n, and conditionally on the observed sam-

ple, {(X1, Y1) , (X2, Y2) , . . . , (Xn, Yn)}, a bootstrap residual, ε̂∗i , is drawn
from a probability distribution fulfilling E∗

¡
ε̂∗i
¢
= 0, E∗

³
ε̂∗2i

´
= ε̂2i and

E∗
³
ε̂∗3i

´
= ε̂3i . Although the third moment condition is not strictly nec-

essary, it is useful to prove the asymptotic validity of the method.

3. Using a pilot bandwidth, g, asymptotically larger than h (i.e. g/h →
∞), bootstrap versions of the observations from the response variable are

drawn: Y ∗i = m̂g (Xi) + ε̂∗i , i = 1, 2, . . . , n.

4. The bootstrap resample
n³
X1, Y

∗
1

´
,
³
X2, Y

∗
2

´
, . . . , (Xn, Y ∗n )

o
is used to

construct a bootstrap version of the Nadaraya-Watson estimator:

m̂∗h (x) =
1
n

Pn
i=1Kh (x−Xi)Y

∗
i

1
n

Pn
i=1Kh (x−Xi)

.



5. The sampling distribution of (nh)1/2 (m̂h (x)−m (x)) is approximated by

the resampling distribution of (nh)1/2
³
m̂∗h (x)− m̂g (x)

´
.

Step 2 is usually carried out by considering a random variable, V ∗, fulfilling
E∗ (V ∗) = 0, E∗

³
V ∗2

´
= 1 and E∗

³
V ∗3

´
= 1, drawing a sample of size n

from it,
³
V ∗1 , V

∗
n , . . . , V

∗
n

´
, and then definining ε̂∗i = ε̂iV

∗
i for i = 1, 2, . . . , n.

A common choice for the distribution of V ∗ is the discrete distribution that
gives positive probability to only two points: P ∗ (V ∗ = a) = p and P ∗ (V ∗ = b) =

1− p. The distribution can be obtained as the solution of the system of three

equations given by the first three moments:

ap+ b (1− p) = 0,

a2p+ b2 (1− p) = 1,

a3p+ b3 (1− p) = 1.



This gives rise to the so called wild bootstrap (or golden section bootstrap),

with a = 1−51/2
2 , b = 1+51/2

2 , p = 5+51/2

10 , i.e.

P ∗
Ã
V ∗ =

1− 51/2
2

!
=

5 + 51/2

10

P ∗
Ã
V ∗ =

1 + 51/2

2

!
=

5− 51/2
10

The selection of the pilot bandwidth g, appearing in Step 3, is strongly linked

to the estimation of m00 (x), since this is the critical term to estimate B and

V . Taking a pilot bandwidth of optimal order in this sense, g0 ' d0n
−1/9,

the following (conditional and unconditional) rates of convergence for the wild



bootstrap approximation can be obtained:

sup
z∈R

¯̄̄
P Y |X

h
(nh)1/2 (m̂h (x)−m (x)) ≤ z

i
−

−P ∗
h
(nh)1/2 (m̂∗h (x)− m̂g (x)) ≤ z

i¯̄̄
= OP

³
n−2/9

´
,

sup
z∈R

¯̄̄
P
h
(nh)1/2 (m̂h (x)−m (x)) ≤ z

i
− P ∗

h
(nh)1/2 (m̂∗h (x)− m̂g (x)) ≤ z

i¯̄̄
= OP

³
n−1/5

´
.

4.4 Smoothed bootstrap in the explanatory variable

The idea of this resampling method is to consider the variability coming from
the explanatory variable (in the wild bootstrap this part of the resampling is
kept fixed) and also to allow the resampling distribution of Y ∗|X∗=Xi

not to
be degenerate (as it is in the two-dimensional naive bootstrap).

The resampling plan, proposed by Cao and González-Manteiga (1993), consists
of the following steps:



1. Given the sample {(X1, Y1) , (X2, Y2) , . . . , (Xn, Yn)}, some estimator of
the joint distribution function of (X,Y ) is constructed:

F̂g (x, y) =
1

n

nX
i=1

1{Yi≤y}
Z x

−∞
Kg (t−Xi) dt.

It resembles the empirical cumulative distribution function in the response

variable and the smoothed distribution function in the expanatory variable.

2. Bootstrap resamples,
n³
X∗1 , Y

∗
1

´
,
³
X∗2 , Y

∗
2

´
, . . . , (X∗n, Y ∗n )

o
, are drawn from

the distribution F̂g (x, y).

3. A bootstrap version of the Nadaraya-Watson estimator is constructed:

m̂∗h (x) =
1
n

Pn
i=1Kh

³
x−X∗i

´
Y ∗i

1
n

Pn
i=1Kh

³
x−X∗i

´ .

4. The resampling distribution of (nh)1/2
³
m̂∗h (x)− m̂g (x)

´
is used to ap-

proximate sampling distribution of the statistic: (nh)1/2 (m̂h (x)−m (x)).



The optimal pilot bandwidth, g, is also of order n−1/9, i.e. asymptotically
larger than h.

The two-dimensional distribution used for the resampling mechanismo in Step

2, F̂g (x, y), can be replaced by a smoothed distribution in the two variables:

F̃g (x, y) =
1

n

nX
i=1

Z y

−∞
Kg (s− Yi) ds

Z x

−∞
Kg (t−Xi) dt.

This is equivalent to resample from the two-dimensional density

f̂g (x, y) =
1

n

nX
i=1

Kg (x−Xi)Kg (y − Yi) ,

which is the Parzen-Rosenblatt kernel estimator of the two-dimensional variable

(X,Y ).

Straight forward calculations can be used to prove that if (X∗, Y ∗) has distri-
bution F̂g (x, y), then,

• X∗ has bootstrap marginal density f̂g (x).



• The bootstrap marginal distribution of Y ∗ is the empirical cdf of the Yi:
F̂ Y
n (y) =

1
n

Pn
i=1 1{Yi≤y}.

• The regression function of the bootstrap resampling plan coincides with
the Nadaraya-Watson estimation with bandwidth g:

E (Y ∗|X∗=x) = m̂g (x) .

• In fact, the conditional distribution of Y ∗|X∗=x is

F̂g (y|x) =
1
n

Pn
i=1Kg (x−Xi)1{Yi≤y}
1
n

Pn
i=1Kg (x−Xi)

,

which is the Nadaraya-Watson kernerl estimador of the conditional distri-

bution function.

As a consequence of the last remark it is easy to design a method to simulate

bootstrap values of (X∗, Y ∗), as required in Step 2. To do this, it is enough
to simulate X∗ from the Parzen-Rosenblatt estimator constructed with the



sample of the explnatory variable (this is just the classical smooth bootstrap)

and then simulate Y ∗ from the discrete distribution that gives, to every datum

Yi, the following probability

wi (X
∗) =

Kg (X∗ −Xi)
1
n

Pn
j=1Kg

³
x−Xj

´, i = 1, 2, . . . , n.

The convergence rates of the bootstrap aproximation given by this method are:

sup
z∈R

¯̄̄
P Y |X

h
(nh)1/2 (m̂h (x)−m (x)) ≤ z

i
−

−P Y ∗|X∗
h
(nh)1/2 (m̂∗h (x)− m̂g (x)) ≤ z

i¯̄̄
= OP

³
n−2/9

´
, en probabilidad P ,

sup
z∈R

¯̄̄
P
h
(nh)1/2 (m̂h (x)−m (x)) ≤ z

i
− P ∗

h
(nh)1/2 (m̂∗h (x)− m̂g (x)) ≤ z

i¯̄̄
= OP

³
n−2/9

´
.



4.5 Comparison of convergence rates

The following table collects a summary of the convergence rates obtained with

all the approximations considered:

Approximation conditional unconditional

Normal limit (theoretical) OP

³
n−1/5

´
O
³
n−2/5

´
Plug-in OP

³
n−1/5

´
OP

³
n−2/9

´
Wild bootstrap OP

³
n−2/9

´
OP

³
n−1/5

´
Smooth bootstrap
in the explanatory
variable

OP ∗
³
n−2/9

´
in probability P

OP

³
n−2/9

´

Apart from the theoretical normal limit (useless in practice), the convergence

rates of the smooth bootstrap in the explanatory variable are equal to or better

than (both conditionally and unconditionally) the rest of the methods. In

the conditional setting the two bootstrap resmpling plans are the ones which

provide the best convergence rate (n−2/9, compared to n−1/5 for the plug-
in approximation). In the unconditional setup the smooth bootstrap in the



explanatory variable and the plug-in approximation exhibit the best rate (n−2/9,
compared to n−1/5 for the wild bootstrap).
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Cao, R. (1990). Órdenes de convergencia para las aproximaciones normal y

bootstrap en la estimación no paramétrica de la función de densidad. Trabajos

de Estad́ıstica, 5, 23-32.

Cao, R. (1991). Rate of convergence for the wild bootstrap in nonparametric

regression. Ann. Statist 19, 2226-2231.

Cao, R. (1993). Bootstrapping the mean integrated squared error. Jr. Mult.

Anal. 45, 137—160.
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