Molecular Orbital Theory (MO)

Combination of **atomic** orbitals on **all atoms** in a molecule

- Suitable symmetry
- Similar energy

n AOs forms *n* MOs

Diatomic molecules: H₂, F₂, CO,....

Polyatomic molecules: BF₃, CH₄,....

Bonding MO in an H₂ molecule

Wave Interference

LCAO = Linear Combination of Atomic Orbitals

Node

Combination of 2 wave functions (orbitals) with the SAME sign

 $\Psi = c_1 \Psi_A + c_2 \Psi_B$ $\Psi^* = c_3 \Psi_A - c_4 \Psi_B$

Combination of 2 wave functions (orbitals) with OPPOSITE sign

LCAO = Linear Combination of Atomic Orbitals

 $\Psi = c_1 \Psi_A + c_2 \Psi_B$ $\Psi^* = c_3 \Psi_A - c_4 \Psi_B$

Ψ* Antibonding MO

Number of MO = Number of AO

LCAO = Linear Combination of Atomic Orbitals

 \mathbf{x}

Differences between VB and MO

Localized bonds Delocalized bonds

π **MO by Combination of p AO**

Antibonding ^π MO

Bonding ^π MO

H_3^+

Antibonding MO

Energy incr. stability decr.

Bonding MO

Number of nodal planes incr.

LCAO = Linear Combination of AO

LCAO n atoms with m orbitals

 $\Psi_i = c_1 \Psi_1 + c_2 \Psi_2 + c_3 \Psi_3 + ... + c_n \Psi_n$ 6 AOs (s+2p+3s) will form 6 MOs

•MO with the lowest energy •no nodal plane •the most bonding •combination of one AO on each atom •all AOs with the same sign

Filling Electrons to MOs

Aufbau Hund Pauli

Rules for filling electrons to MOs

Antibonding MO

Bond Order

Bond Order = $\frac{1}{2}$ (number of e in bonding MOs – number of e in antibonding MOs)

Bond Order

One-electron bond: 1 bonding electron forms a stronger bond than 2 bonding and 1 antibonding electrons

17

2s

 $1s$

AO
of Be

MOs by Combination of p AOs

MOs by Combination of p AOs

MOs by Combination of p AOs

Pi Bond in Ethene

Types of MO

Better overlap decreases energy of bonding MO and increses energy of antibonding MO: σ $>$ π $>$ δ

MO from d orbitals

23d(z²) d(z²) d(z²) d(x²−y²) d(x²−y²) d(x²−y²) d(x²−y²) d(x²−y²) d(yz) d(yz) d(xy) d(xy) ²³

Mixing of s-p orbitals

Energetically similar orbitals on the same atom can mix

from H_2 to N_2

Diatomic Molecules

1nteraction Diagram for Li₂ to N₂

Diatomic Molecules

Diatomic Molecules in the Gas Phase

N₂ Triple bond

Oxygen and its Molecular lons

Multiplicity

M = 2 **S** + 1

S = sum of unpaired spins (½) in an atom or a molecule

Singlet Oxygen 14 Triplet Oxygen 32 $2q$ p v p : $\sigma_{\!\! g}$ 95 kJ mol⁻¹ ą, Ξq, ą $1 \times$ Oxygen $1 \times$ Oxygen Oxygen Atomic Orbital Molecular Orbital Atomic Orbital $1 \times$ Oxygen
Atomic Orbital

 $1 \times$ Oxygen

Atomic Orbital

Oxygen

Molecular Orbital

Isoelectronic Molecules

MO in Polar Molecules

 $\Psi = c_1 \Psi_A + c_2 \Psi_B$

 $\chi(A) \ll \chi(B)$ ionic bond $c_1 \rightarrow 0$ bonding MO = Ψ_B $c_4 \rightarrow 0$ antibonding MO = Ψ_A

 $\chi(A) \leq \chi(B)$ a polar bond c_1 < c_2 bonding MO has higher contribution from B c_3 > c_4 antibonding MO has higher contribution from A

Same contribution from A and B 37 $\chi(A) = \chi(B)$ a nonpolar bond $c_1 = c_2 \ c_3 = c_4$

MO in Polar Molecules - HF

38**Bonding MO concentrated on an atom with high electronegativity - F Antibonding MO concentrated on an atom with low electronegativity - H**

Molecular Orbitals in CH 4

 $\left| \uparrow \right|$

Atomic orbitals used

 C s + 3×p 4H 4×s

> C + 4H 8 electrons

Molecular Orbitals in CH 4

PES in Agreement with the MO Model

Benzene

A Benzene, C_6H_6

Bonding MOs in Benzene

 $+\pi_1$

 $\overline{5}$

 C_6H_6

1,3-butadiene

LUMO

HOMO

Molecular lons

IE. $\overline{O_2}$ \rightarrow $\overline{O_2}^+$ + e^-

Splitting off the weakest bound e in HOMO

Molecular Ions

CN + e −→ CN-

Adding e to HOMO

Excitation of Molecules E_{tot} = E(electronic) + E(vibrat) + E(rotat) + E_{other} Individual parts of $\mathsf{E_{tot}}$ are independent – very different magnitudes (Bornova-Oppenheimmer approximation) E(electron) = 100 kJ mol^{−1} ¹ UV and visible E(vibrat) 1.5 – 50 kJ mol^{–1} Infrared (IR) E(rotat) 0.1 – 1.5 kJ mol^{–1} Microwave and far IR

Rotational Energy

Quantization of rotational energy

 $E(rotat) = (\hbar^2/2I) J(J + 1)$ J = rotat quantum number $I =$ moment of inertia (m r^2)

 $\mathsf{m} = \mathsf{m}_\mathsf{1} \mathsf{m}_\mathsf{2} / (\mathsf{m}_\mathsf{1} + \mathsf{m}_\mathsf{2})$

Selection Rule ΔJ = ±1

At normal temperature, molecules are in many excited rotational states, rotational energy is comparable to thermal energy of molecular motion

Vibrational Energy Quantization of vibrational energy

 $E(\text{vibrat}) = k \hbar^2 (v + \frac{1}{2})$ v = vibrat quantum number

Selection Rule Δ^v = ±1

Zero Point Energy: for $v = 0$ E(vibrat) = $\frac{1}{2}k \hbar^2$ H_2 E(disoc) = 432 kJ mol⁻¹ $E(v = 0) = 25$ kJ mol⁻¹

At normal temperature, molecules are in ground vibrational state $v = 0$

Vibrational Energy

Rotational – Vibrational Spectrum of HCl(g)

Types of Vibrations

Infrared and Raman Spectroscopies

Infrared spectroscopy

Vibration must change dipole moment of a molecule (HCl, H₂O)

Raman spectroscopy

Vibration must change polarization of a molecule (H_2)

 $\ddot{\mathbf{v}} = 1/2\pi \ (\mathbf{k}/\mathbf{m})^{1/2}$