1 Molecular Orbital Theory (MO) Bonding MO in an H2 molecule Combination of atomic orbitals on all atoms in a molecule • Suitable symmetry • Similar energy n AOs forms n MOs Diatomic molecules: H2, F2, CO,.... Polyatomic molecules: BF3, CH4,.... 2 Wave Interference + – – – – – ++ +Constructive Destructive 3 LCAO = Linear Combination of Atomic Orbitals Combination of 2 wave functions (orbitals) with the SAME sign Combination of 2 wave functions (orbitals) with OPPOSITE sign Ψ = c1 ΨA + c2 ΨB Ψ* = c3 ΨA − c4 ΨB 4 LCAO = Linear Combination of Atomic Orbitals Ψ Bonding MO Ψ* Antibonding MO Atomic orbitals 1 s1 s Number of MO = Number of AO ADD SUBSTRACT Ψ = c1 ΨA + c2 ΨB Ψ* = c3 ΨA − c4 ΨB 5 LCAO = Linear Combination of Atomic Orbitals 6 Ψ Bonding MO Ψ* Antibonding MO 7 Differences between VB and MO H H VB MO H H Localized bonds Delocalized bonds 8 stabilization destabilization Energetic In comparison with free atoms Y Bonding MO Y* Antibonding MO 9 π MO by Combination of p AO Antibonding π MO Bonding π MO 10 H3 + Number of nodal planes incr. Energy incr. stability decr. Bonding MO Antibonding MO Nonbonding MO 11 H3 + Bonding MO Antibonding MO Energy incr. stability decr. Number of nodal planes incr. 12 LCAO = Linear Combination of AO LCAO n atoms with m orbitals Ψi = c1 Ψ1 + c2 Ψ2 + c3 Ψ3 +...+ cn Ψn 6 AOs (s+2p+3s) will form 6 MOs •MO with the lowest energy •no nodal plane •the most bonding •combination of one AO on each atom •all AOs with the same sign 13 Antibonding MO Bonding MO Filling Electrons to MOs Aufbau Hund Pauli Rules for filling electrons to MOs 14 Bond Order Bond Order = ½ (number of e in bonding MOs − number of e in antibonding MOs) 2 * eMOeMO BO − = 15 Bond Order 1s 1s σ1s σ1s∗ H2 + cation 1s 1s σ1s σ1s∗ 1s 1s σ1s σ1s∗ 1s 1s σ1s σ1s∗ He2 + cation H2 molecule He2 molecule 0.5 0.5 0.0 1.0 16 Bond Order --- 1.08 0.74 1.06 Bond length, Å 2300.512He2 + 0022He2 432102H2 2550.501H2 + Bond energy, kJ mol−1 Bond Order Antibond. electrons Bond. electrons Molecule One-electron bond: 1 bonding electron forms a stronger bond than 2 bonding and 1 antibonding electrons 17 18 z z x x y y z z x x y y + + + − − − MOs by Combination of p AOs 19 MOs by Combination of p AOs Antibonding MO σ2pz* Bonding MO σ2pz 20 MOs by Combination of p AOs Antibonding MO π2px* Bonding MO π2px 21 Pi Bond in Ethene HOMO = highest occupied MO LUMO = lowest unoccupied MO 22 Types of MO Better overlap decreases energy of bonding MO and increses energy of antibonding MO: σ > π > δ 23 d(z2) d(z2) d(x2−y2) d(x2−y2) d(xy) d(xy) d(xz) d(xz) d(yz) d(yz) σ π δ σ∗ π∗ δ∗ MO from d orbitals 24 Mixing of s-p orbitals Mixing s-p No mixing s-p Energetically similar orbitals on the same atom can mix Small s-p gap Large s-p gap 25 Energy from H2 to N2from O2 to Ne2 Mixing s-pNo mixing s-p s2s s*2s 26 Diatomic Molecules π2 p Increasing s-p mixing 27 2s 2px 2py 2pz 2px 2py 2pz 2s σ2s σ*2s σ2p σ*2p π2p π2p π*2p π*2p E Interaction Diagram for Li2 to N2 28 29 30 Diatomic Molecules 31 Diatomic Molecules in the Gas Phase Bond length (pm) Ebond(kJ mol-1) Li-Li σ2s 2 267 110 Be...Be σ2s 2 σ*2s 2 ? ? B-B σ2s 2 σ*2s 2 π2p 2 159 290 C=C σ2s 2 σ*2s 2 π2p 4 124 602 N≡N σ2s 2 σ*2s 2 π2p 4 σ2p 2 110 942 O=O σ2s 2 σ*2s 2 σ2p 2 π2p 4 π*2p 2 121 494 F-F σ2s 2 σ*2s 2 σ2p 2 π2p 4 π*2p 4 142 155 32 N2 Triple bond O2 paramagnetic molecule 33 Oxygen and its Molecular Ions 1.01.52.02.5Bond order ↑↓↑↑ Bond length, pm Occupation of HOMO πx* a πy* Number of valence electrons 149126121112 ↑↓↑↓↑↑ 14131211 O2 2−O2 −O2O2 + 34 Multiplicity M = 2 S + 1 S = sum of unpaired spins (½) in an atom or a molecule 2½ 2 1½ 1 ½ 0 S ↑↑↑quartet4 ↑↑↑↑quintet5 ↑↑triplet3 ↑↑↑↑↑sextet6 ↑dublet2 ↑↓singlet1 M 35 Triplet Oxygen 3Σ Singlet Oxygen 1Δ 95 kJ mol-1 36 Isoelectronic Molecules O2 −, Cl2 +, ⋅ClO13 F2, O2 2−, ClO−14 O2 +, ⋅NO, SO+11 O2, SO12 N2, CO, CN−, BF, NO+, TiO, SiO10 BO, CN, CP, CO+9 Diatomic SpeciesNumber of valence electrs 37 MO in Polar Molecules Ψ∗ = c3 ΨA − c4 ΨΒ Ψ = c1 ΨA + c2 ΨΒ χ(A) = χ(B) a nonpolar bond c1 = c2 c3 = c4 Same contribution from A and B χ(A) < χ(B) a polar bond c1 < c2 bonding MO has higher contribution from B c3 > c4 antibonding MO has higher contribution from A χ(A) << χ(B) ionic bond c1 → 0 bonding MO = ΨΒ c4 → 0 antibonding MO = ΨA 38 MO in Polar Molecules - HF antibonding MO nonbonding MO bonding MO weakly bonding MO Bonding MO concentrated on an atom with high electronegativity - F Antibonding MO concentrated on an atom with low electronegativity - H 39 Molecular Orbitals in CH4 C + 4H 8 electrons Atomic orbitals used C s + 3×p 4H 4×s 40 Molecular Orbitals in CH4 AO carbon MO of methane AO hydrogen 41 PES in Agreement with the MO Model Area = 3 Area = 1 42 43 Benzene H H H H H H Separate sigma and pi system 44 Bonding MOs in Benzene 45 C3H3 + C4H4 2+ 46 C5H5¯ 47 C6H6 48 H H H H H H 1,3-butadiene HOMO LUMO 49 Molecular Ions O2 → O2 + + e− Splitting off the weakest bound e in HOMO IE 50 Molecular Ions CN + e− → CN− Adding e to HOMO 51 Excitation of Molecules Etot = E(electronic) + E(vibrat) + E(rotat) + Eother Individual parts of Etot are independent – very different magnitudes (Bornova-Oppenheimmer approximation) E(electron) 100 kJ mol−1 UV and visible E(vibrat) 1.5 – 50 kJ mol−1 Infrared (IR) E(rotat) 0.1 – 1.5 kJ mol−1 Microwave and far IR 52 Rotational Energy Quantization of rotational energy E(rotat) = (ħ2/2I) J(J +1) J = rotat quantum number I = moment of inertia (m r2) m = m1m2/(m1 + m2) Selection Rule ΔJ = ±1 At normal temperature, molecules are in many excited rotational states, rotational energy is comparable to thermal energy of molecular motion 53 Vibrational Energy Quantization of vibrational energy E(vibrat) = k ħ2 (v + ½) v = vibrat quantum number Selection Rule Δv = ±1 Zero Point Energy: for v = 0 E(vibrat) = ½ k ħ2 H2 E(disoc) = 432 kJ mol−1 E(v = 0) = 25 kJ mol−1 At normal temperature, molecules are in ground vibrational state v = 0 54 Vibrational Energy 2173H2 + 2990.3D2 4159.2H2 Vibrational energy, cm−1 Molecule ΰ = 1/2π (k /m)½ 55 Rotational – Vibrational Spectrum of HCl(g) IR region ν0 = 2886 cm−1 ν0 Δv = ±1 ΔJ = ±1 56 Types of Vibrations Valence Deformation 57 Infrared and Raman Spectroscopies Infrared spectroscopy Vibration must change dipole moment of a molecule (HCl, H2O) Raman spectroscopy Vibration must change polarization of a molecule (H2) 58 ΰ = 1/2π (k /m)½