1 Structure of Crystalline Compounds Periodical repeat of the same building units 2 Lattice and Structure Structural Motiff Lattice point 3 Unit Cell Periodical repeat of unit cells = crystal 4 Five Planar Lattices 5 STM Nb/Se 6 Lattice and Unit Cell Unit CellLattice point Unit Cell Parameters a, b, c – edge lengths α, β, γ – angles 7 Seven Crystal Systems 8 14 Bravais Lattices 9 Z Y X ( 1 1 1) Miller Indices (h k l) x h ∗ = intercept 1 z l ∗ = intercept 1 y k ∗ = intercept 1 a b c 10 STM Picture of Fe in (110) Plane 11 Miller Indices h = 1 / ∞ = 0 k = 1 / 1 = 1 l = 1 / ∞ = 0 ( 0 1 0) x h ∗ = intercept 1 z l ∗ = intercept 1 y k ∗ = intercept 1 12 Miller Indices 13 Three Cubic Cells Primitive (P) Body centered (I) Face centered (F) 14 Primitive (P) Body centered (I) Face centered (F) 15 a a a d D a = edge d = face diagonal (d2 = a2 + a2 = 2a2) D = body diagonal (D2 = d2 + a2 = 2a2 + a2 = 3a2) a2 ⋅=d a3 ⋅=D Cube 16 Space filling 52% Coord. No. 6 Primitive Cubic Cell, Po - Litviněnko 17 Primitive Cubic Cell atoms touch along edge (a) a = 2r then r = Cell volume V = a3 = 8r3 Volume of atoms in the cell VA = 4/3 π r3 Space filling = Va/V 100 = 52% a 2 a r x 8 vertices = 1/8 atom vertes 1 atom cell Number of lattice points in the cell Space filling 18 Space filling 68% Coord. no 8 Body Centered Cell, W 19 x 8 vertices = 1 atom + center = 1 atom 2 atoms/cell 1/8 atom vertex D = 4r = a = then r = V = a3 = Atoms touch along body diagonal (D) a3 ⋅ 3 r4 4 a3 ⋅ 3 3 r4 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ Body Centered Cell, W a d D r Number of lattice points in the cell 20 21 Space filling 74% Coord. no 12 Face Centered Cell, Cu (= Close Cubic Packing) 22 x 8 vertices = 1 atom x 6 faces = 3 atoms 4 atoms/cell 1/8 atom vertex d = 4r = a = or r = V = a3 = Atoms touch along face diagonal (d) a2 ⋅ 2 r4 4 a2 ⋅ 1/2 atom face 3 2 r4 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ Face Centered Cell a d r Number of lattice points in the cell 23 Space Filling 74%4√2a/4Face centered 34%8√3a/8Diamond 68%2√3a/4Body centered 52%1a/2Primitive cubic Space Filling No. of atoms Radius 24 Close Packing on a Plane Square packing Lots of free space 4 neighboring atoms Hexagonal packing The best use of space 6 neighboring atoms 25 Holes B and C cannot be filled at the same time by atoms in the second layer 26 hexagonal cubic Two layers of close packing Johannes Kepler 1611 27 Close Packing in Space cubichexagonal Johannes Kepler 1611 28 cubichexagonal Close Packing 29 cubichexagonal Close Packing 30 cubic hexagonal Mg, Be, Zn, Ni, Li, Be, Os, He Cu, Ca, Sr, Ag, Au, Ar, F2, C60, opal (300 nm) Close Packing 31 Close Packing of Large Structures 32 Structure of Dry Ice 33 Coordination Polyhedra 34 Cubic Close Packing = Face Centered Cell Layers (ABC) Close packed layers are oriented perpendicular to body diagonal of cubic cell 35 Tetrahedral T+ Tetrahedral T-Octahedral O For N close packed atoms, there are N octahedral and 2N tetrahedral holes per one cell 36 Two Types of Holes Cubic Close Packing = Face Centered Cell Number of atoms in a cell N = 4 Tetrahedral (2N = 8)Octahedral (N = 4) 37 Cation/Anion Radius Ratio 0.225 – 0.4144 – Tetrahedral 0.414 – 0.7326 – Octahedral 0.732 – 1.008 – Cubic 1.00 (substitution)12 – Cub. and Hex. r/RCoord. No. Void radius decreases 38 39 Structures Derived from Cubic Close Packing Li2O BiF3 40 Sodium Chloride, NaCl Cubic Close Packing of Cl, Na occupies octahedral holes Z = ? Coord. No. Na = 6 Cl = 6 41Two close packed lattices of cations and anions 42 Structure of Pyrite - FeS2 Na+ ClFe2+ S2 2Derive more complex structures from simple structural types 43K2[PtCl6], Cs2[SiF6], [Fe(NH3)6][TaF6]2 Fluorite, CaF2 (Inverse Type Li2O) F / Li Ca / O 44 Sfalerite, ZnS Cubic Close Packing of S Zn occupies ½ of tetrahedral holes Cubic Close Packing of Zn S occupies ½ of tetrahedral holes 45 Sfalerite, ZnS 46 Diamond, C 47 6,16Å 2,50 Å 4,10Å cubic hexagonal SiO2 cristobalite SiO2 tridymite Ice Diamond, C lonsdaleite 48 Structure of Group 14 Elements Diamond structure – cell size increases down the group 49 Wurzite, ZnS Hexagonal Close Packing of S Zn occupies ½ of tetrahedral holes Polymorphs of ZnS 50 13-15 and 12-16 Semiconductors Sfalerite Wurzite InP, GaAs HgTe, CdTe ZnO, CdSe AlN, GaN 51 [Cr(NH3)6]Cl3, K3[Fe(CN)6] BiF3/Li3Bi Cubic Close Packing of Bi (4) F occupies tetrahedral holes (8) and octahedral holes (4) Cubic Close Packing of Bi (4) Li occupies tetrahedral holes (8) and octahedral holes (4) 52 CsCl 53 CsCl is not a body centered cubic cell 54 Primitive cubic ReO3 55 Perovskite, CaTiO3 Two equivalent views at perovskite unit cell Ti CaO Ti O Ca 56 CsCl Perovskite, CaTiO3 57 Rutile, TiO2 Coordination Number Rule AxBy c.n.(A) / c.n.(B) = y / x Coordination Numbers are in an inverse ratio of stoichiometric coefficients 58 Phase Transitions at High Pressure Incr. coordination number Incr. density Elongation of bond lengths Nonmetal-Metal transition Sfalerite Sodium Chloride High Pressure Effects 59 Lattice Energy L = Ecoul + Erep Ion pair n = Born’s exponent (experimental data from compressibility measurements) Energy released upon the formation of 1 mol of ionic solid from its ions in the gas phase d eZZ E BA coul 2 04 1 πε = nrep d B E = 60 Madelung’s Constant Ecoul = (e2 / 4 π e0) × (zA zB / d) × [+2(1/1) - 2(1/2) + 2(1/3) - 2(1/4) + ....] Ecoul = (e2 / 4 π e0) × (zA zB / d) × (2 ln 2) Counts all interactions in the crystal lattice Madelung’s constant M (for linear arrangement of ions) = sum of a convergent series 61 Madelung’s Constant for NaCl Ecoul = (e2 / 4 π e0) * (zA zB / d) × [6(1/1) - 12(1/√2) + 8(1/√3) - 6(1/√4) + 24(1/√5) ....] Ecoul = (e2 / 4 π e0) × (zA zB / d) × M Convergent series 62 Madelung’s Constants for Different Structures 1.64132ZnS Wurtzite 1.63805ZnS Sfalerite 2.519CaF2 1.76267CsCl 1.74756NaCl MStructural type 63 Lattice Energy 1 mol of ions Attractive Repulsive L = Ecoul + Erep Find minimum dL/d(d) = 0 nA BA A d B N d eZZ MNL += 0 2 4πε d eZZ MNE BA ACoul 0 2 4πε = nArep d B NE = 64 Lattice Energy ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ += nd eZZ MNL BA A 1 1 4 0 2 πε nEl. config. 10Kr 12Xe 9Ar 7Ne 5He Born – Mayer equation d* = 0.345 Å Born – Lande equation ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= d d d eZZ MNL BA A * 0 2 1 4πε 65 Lattice Energy Kapustinski M/v is approx. constant for all types of structures v = number of ions in formula unit M replaced by 0.87 v, no need to know the structure ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −= dd ZZ vL BA 345,0 11210 66 structure M CN stoichio M / v CsCl 1.763 (8,8) AB 0.882 NaCl 1.748 (6,6) AB 0.874 ZnS sfalerite 1.638 (4,4) AB 0.819 ZnS wurtzite 1.641 (4,4) AB 0.821 CaF2 fluorite 2.519 (8,4) AB2 0.840 TiO2 rutile 2.408 (6,3) AB2 0.803 CdI2 2.355 (6,3) AB2 0.785 Al2O3 4.172 (6,4) A2B3 0.834 v = number of ions in formula unit Kapustinski 67 ∆Hf o = - 411 kJ mol−1 ∆Hsubl o = 108 kJ mol−1 ½ D= 121 kJ mol−1 EA = - 354 kJ mol−1 IE = 502 kJ mol−1 L=?Na(s) + 1/2 Cl2 (g) Na(g) + 1/2 Cl2 (g) Na(g) + Cl (g) Na+ (g) + Cl (g) Na+ (g) + Cl- (g) NaCl (s) 0 = −∆Hf o + ∆Hsubl o + 1/2 D + IE + EA + L 0 = 411 + 108 +121 + 502 + (-354) + L L = − 788 kJ mol−1 Born-Haber Cycle 68 Lattice Energy of NaCl Calculated from Born – Lande eq. L = − 765 kJ mol−1 Considers only ionic contribution Measurement from Born–Haber cycle L = − 788 kJ mol−1 Ionic and covalent contribution