Termodynamics – Forms of Energy

Energetic transformations during chemical and phycical processes, energy transfer, transformations of different kinds of energy, heat and work.

- Important are only initial and final states
- Does not depend on mechanism of transformations
- Predicts direction, spontaneity and extent of reactions
- Does not consider time, rate, or mechanisms

Heat Chemical energy Light Mechanical work Electrical energy Nuclear energy

Heat and Energy

Benjamin Thomson count Rumdorf 1798 heat originates from mechanical work - drilling of cannon barrels

James Prescot Joule 1849 transformations of different kinds of energy to heat Heat = Energy

Energy

1 Joule \cong energy of a heartbeat

1 calorie = 4.1868 J

 $1 \text{ eV} (\text{molecule})^{-1} = 96.485 \text{ kJ} \text{ mol}^{-1}$

Work $W_{mechan} = F \times I = m \times a \times I$ $1 J = 1 N m = 1 kg m^2 s^{-2}$

 $W_{el} = P \times t$ 1 J = 1 W s = 1 kg m² s⁻²

Universe, System, Surroundings

Universe = System + Surroundings

System = a part of the Universe insulated from external effects

Thermodynamic Systems

Termodynamic Processes

Isothermal	Constant temperature	dT = 0
Isobaric	Constant pressure	dp = 0
Isochoric	Constant volume	dV = 0
Adiabatic	No exchange of heat	dQ = 0
Diathermal	Exchange of heat	dQ ≠ 0

System Description

*Extensive variables: depend on contributions from different parts of the system, are additive - mass, electrical charge, molar amount,

*Intensive variables : not additive - temperature, pressure, viscosity, concentration, density,

Thermodynamic state of a system is described by **Intensive variables** (T, p, c)

State function : physical characteristic whose value depends on the state of the system

U, H, S, G are functions of T, p, c

Thermodynamic Processes

Thermodynamic processes procede from an initial to final state = equilibrium At equilibrium, TD properties of a system are constant

Equilibria

- Thermal
- Phase
- Chemical

Thermodynamic processes Reversibile - slow, always close to equilibrium, direction can be reversed

Irreversibile – finite time, definite changes

Heat, Temperature, Calorimetry

Measuring of heat by changes in temperature

 $Q = C \times \Delta T$ C = heat capacity $\Delta T = Q / C$

 $Q = m \times c_s \times \Delta T$

 c_s = specific heat = amount of heat necessary to increase the temperature of 1 g of a compound by 1 K without a phase transformation [J K⁻¹ g⁻¹]

$$c_{M}$$
 = specific molar heat [J K⁻¹ mol⁻¹]
 c_{M} = M c_{s}

DSC Differential Scanning Calorimetry

Dulong-Petit Rule

1819 P. L. Dulong (NCI₃), A. T. Petit – specific heat (c_s) is different for different compounds, BUT

specific molar heat c_M is constant for different compounds

 $c_{M} = 3R = 24.94 \text{ J K}^{-1} \text{ mol}^{-1}$

For elements A > 35, at normal and high temps

Was used during 19th century for atomic mass estimates of elements: $c_M = M c_s$

Bi
$$c_s = 0.123 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$c_s = \frac{c_M}{M}$$

11

Zeroth Law of Thermodynamics

If two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other.

 $T_A = T_C$ and $T_B = T_C$ then $T_A = T_B$

An empirical definition of temperature

If there is no heat energy transfer between two bodies in thermal contact, then they are both at the same temperature.

Heat Transfer

$$\frac{Q}{t} = \frac{KA(T_1^{hot} - T_2^{cold})}{l}$$

Q = heat t = time K = thermal conductivity A = area T = temperature I = length

Kinetic and Potential Energy

Kinetic energy E_k – active, does work

$$E_k = \frac{1}{2}mv^2$$

Potential energy – inactive, ready to do work, outcome of relative position or structure

Kinetic and Potential Energy

A grativational system. The E_p gained when a weight is lifted is converted to E_k as the weight falls.

C A system of oppositely charged particles. The E_p gained when the charges are separated is converted to E_k as the attraction pulls them together.

B A system of two balls attached by a spring. The E_p gained when the spring is stretched is converted to E_k of the moving balls when it is released.

D A system of fuel and exhaust. A fuel is higher in chemical E_p than the exhaust. As the fuel burns, some of its E_p is converted to E_k of the moving car.

Kinetic and Potential Energy

Kinetic

Translation

Rotations

Vibrations

Ek (vibration) Energy due to back-and-forth motion of each pair of atoms

Ep (atom) Energy due to attraction between nucleus and electrons: repulsion between electrons

Ep (bond) Energy due to attraction between nuclei and shared electrons

Ep (nuclei) Energy due to attraction between particles in nucleus

B Contributions to potential energy (E_p)

Potential

Electronic (e-n / e-e inside atom)

Bonding (valence e in molecules)

Nuclear

Molecular Energies

Total energy of molecules Individual componets of E_{tot} are independent – very different magnitudes

E_{tot} = transl. + rotat + vibrat + electron

Energy States – Vibrational Levels Quantization of vibrational energy

 $E(vibrat) = hv_0 (v + \frac{1}{2})$ v = vibrational quantum number

Selection rule $\Delta v = \pm 1$

Zero Point Energy: For v = 0 E(vibrat) = $\frac{1}{2} hv_0$ $E(disoc) = 432 \text{ kJ mol}^{-1}$ H_2 $E(v = 0) = 25 \text{ kJ mol}^{-1}$

At normal temperature, molecules are in their vibrational **ground** state v = 0, not enough energy to populate higher levels 19

Energy States – Rotational Levels

Quantization of rotational energy

E(rotat) = ($\hbar^2/2I$) J(J +1) J = rotational quantum number I = rotational momentum (μ r²)

Selection rule $\Delta J = \pm 1$

At normal temperature, molecules are **in many excited** rotational states, rotational energy is comparable to thermal motion energy of molecules

Internal Energy, U

U is a state function – depends on T, p, ...

U = Sum of translational, rotational, vibrational, lattice vibrations, bond energies,.....

The value of U cannot be measured or calculated

Changes of U can be measured during exchange of: heat Q, work W, electrical energy E_{el}

 $\Delta U = U_{fin} - U_{init}$ Does not depend on mechanism or pathway of transformation of U, but only on initial and final states

Changes of U

Exchange of Energy (Heat Q, Work W,...)

 $\Delta U = U_{fin} - U_{init} < 0$

Energy released to surroundings

 $\Delta U = U_{fin} - U_{init} > 0$

Energy acquired from surroundings

Exchange of Heat, Q

Heat, Q is not a state function

Heat released Heat absorbed from to surroundings surroundings +Q (Q > 0) -Q (Q < 0)WRT the System

Volume Work, W

First Law of Thermodynamics

The law of conservation of energy

The energy of an isolated system is constant

First Law of Thermodynamics

The change in internal energy of a closed system is equal to sum of the heat supplied to the system and the work done on it: $\Delta U = Q + W$

Equivalence of work and heat

Work done on surroundings -W (W < 0) Expansion of gas dV > 0

Heat released to surroundings –Q (Q < 0) Work done on system +W (W > 0) Compression of gas dV < 0

Heat absorbed from surroundings +Q (Q > 0)

27

Reaction Heat at Constant Volume, Q_v

Constant volume V = const.

when $\Delta V = 0$ then $p \Delta V = 0$ and W = 0

 $\Delta U = Q_V$

Reaction Heat at Constant Pressure, Q_p

Constant pressure p = const. Common situation in chemistry.

 $\Delta U = Q_p - p \Delta V$ Volume work done on surroundings

 $U_2 - U_1 = Q_p - p (V_2 - V_1)$

 $Q_p = (U_2 + p V_2) - (U_1 + p V_1) = H_2 - H_1 = \Delta H$

Enthalpy H = U + p V is a state function, H is not heat

Upon absorption of Q_p , heat is partially transformed to U and partially to W

Exothermic and Endothermic Processes

Exothermic Processes

 $\Delta H < 0$ System releases heat to surroundings, energy content of the system decreases

Endothermic Processes

 $\Delta H > 0$ System absorbs heat from surroundings, energy content of the system increases

Standard State

Values of state functions U, H, G, S depend on T, p, c

Standard State = defined conditions allowing comparison

Agreement, defined for g, l, solutions

 $T_{st} = 298.15 \text{ K}$ $p_{st} = 100000 \text{ Pa} = 1 \text{ bar}$ (formely $p_{st} = 1 \text{ atm} = 101325 \text{ Pa}$) $c_M = 1 \text{ M}$

Marked by superscript zero H⁰

Caveat: Standard State is not the same as standard conditions (STP) for gases p = 101.325 kPa T = 273.15 K

Enthalpy of Elements

Enthalpy of elements and compounds H is not known

A convention adopted for elements :

 $H^0 = 0$

At Standard State (T = 298.15 K, p = 1 bar) And in physical state in which an element exists at Standard State conditions

Formation Enthalpy, ΔH_{f}^{0}

 ΔH_{f}^{0} for a reaction in which **1 mol of a compound is** formed from elements in standard states (H⁰ = 0) Standard State conditions of p, T

33

 ΔH_r^0 gives information how much products of a reaction differ in energy from starting compounds

Can be calculated from: 1) Formation enthalpies in reaction

Reactants \rightarrow Products

 $\Delta \mathbf{H}_{r}^{0} = \Sigma \mathbf{n}_{\text{prod}} \Delta \mathbf{H}_{f}^{0} (\text{Prod}) - \Sigma \mathbf{n}_{\text{react}} \Delta \mathbf{H}_{f}^{0} (\text{Reakt})$

n = stoichiometric coefficients !!!!

Reaction Enthalpy, ∆H⁰_r

 $N_2O_4(g) + 4 H_2(g) \rightarrow N_2(g) + 4 H_2O(g)$

 $\Delta H^{0}_{sluč} = \begin{array}{ccc} N_{2}O_{4}(g) & 9.66 \text{ kJ mol}^{-1} \\ H_{2}(g) & 0 \text{ kJ mol}^{-1} \\ N_{2}(g) & 0 \text{ kJ mol}^{-1} \\ H_{2}O(g) & -241.82 \text{ kJ mol}^{-1} \end{array}$

 $\Delta H_r = [1mol(\Delta H(N_2)) + 4mol(\Delta H(H_2O))] - [1mol(\Delta H(N_2O_4)) + 4mol(\Delta H(H_2))]$

 $\Delta H_r = [1mol(0 \text{ kJ mol}^{-1}) + 4mol(-241.82 \text{ kJ mol}^{-1})] - [1mol(9.66 \text{ kJ mol}^{-1}) + 4mol(0 \text{ kJ mol}^{-1})]$

= -976 kJ

$2 \text{ KOH}(s) + \text{CO}_2(g) \rightarrow \text{K}_2\text{CO}_3(s) + \text{H}_2\text{O}(g)$

KOH(s)	-424.7 kJ mol ⁻¹
$CO_2(g)$	-393.5 kJ mol ⁻¹
$K_2CO_3(s)$	-1150.18 kJ mol ⁻¹
$H_2O(g)$	-241.82 kJ mol-1

 $\Delta H = [1mol(\Delta H(K_2CO_3)) + 1mol(\Delta H(H_2O))] - [2mol(\Delta H(KOH)) + 1mol(\Delta H(CO_2))]$

 $\Delta H = [1 \text{mol}(-1150.18 \text{ kJ mol}^{-1}) + 1 \text{mol}(-241.82 \text{ kJ mol}^{-1})] - [2 \text{mol}(-424.7 \text{ kJ mol}^{-1}) + 1 \text{mol}(-393.5 \text{ kJ mol}^{-1})]$ = -149.1 kJ

Enthalpy is an extensive variable (magnitude of Δ H depends on molar amount):

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ $\Delta H = -802 \text{ kJ}$

 $2CH_4(g) + 4O_2(g) \rightarrow 2CO_2(g) + 4H_2O(g)$ $\Delta H = -1604 \text{ kJ}$

Reaction enthalpy, ΔH^0_r depends on physical state of reactants and products

 $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$ $\Delta H = -802 \text{ kJ}$

 $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(l)$ $\Delta H = -890 \text{ kJ}$

Reversed reaction has opposite sign of ΔH_r (First Hess Law or Lavoisier-Laplace Law)

 $\operatorname{CO}_2(g) + 2\operatorname{H}_2\operatorname{O}(g) \to \operatorname{CH}_4(g) + 2\operatorname{O}_2(g) \qquad \Delta \operatorname{H} = +802 \text{ kJ}$

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ $\Delta H = -802 \text{ kJ}$

First Hess Law or Lavoisier-Laplace Law

Thermal effect of a reaction in one direction is equal to the reverse reaction with an opposite sign.

 $\Delta H_{f}^{0} = -394 \text{ kJ mol}^{-1}$

 $\Delta H_{r}^{0} = +394 \text{ kJ mol}^{-1}$

 $C_{(s)} + O_{2(g)}$

 $\rm CO_{2\,(g)}$

Germain Henri Hess (1802 - 1850)

Ionisation energy of H

Electron affinity of H⁺

Electron affinity of F

Ionisation energy of F⁻

Second Hess Law

If a reaction takes place in several steps then its standard reaction enthalpy is the sum of the standard enthalpies of the individual reactions into which the overall reaction may be divided.

The enthalpy change for a chemical reaction is independent of the pathway or number of steps provided that the final and initial reaction conditions are identical.

 $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} \qquad \Delta H^{0}{}_{f} = -393.5 \text{ kJ mol}{}^{-1}$ $2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_{2}O_{(g)} \qquad \Delta H^{0}{}_{r} = -483.6 \text{ kJ mol}{}^{-1}$

 $C_{(s)} + 2 H_2 O_{(g)} \rightarrow CO_{2(g)} + 2 H_{2(g)} \Delta H_r^0 = +90.1 \text{ kJ mol}^{-1}$

 $\Delta H_{f}^{0}(H_{2}O, g) = -242 \text{ kJ mol}^{-1}$

Can be calculated from:

2) bond enthalpies ΔH_b^0 of all bonds formed or broken during a reaction

Reactants \rightarrow Products

$$A-A+B-B \rightarrow A-B+A-B$$

Energy used for breaking A-A and B-B bonds Energy released upon formation of A-B bonds

 $\Delta H_{r}^{0} = \Sigma \times \Delta H_{b}^{0} (A-A) - \Sigma \times \Delta H_{b}^{0} (A-B)$

Bond Energies in Diatomic Molecules

Energy used to separate two atoms to an infinite distance

Energy of bonding electrons is the lowest when atoms are at a bonding distance. Energy used to break the bond is consumed by increasing energy of electrons.

During the bond formation the corresponding energy is released.

 $H_{2(g)} + Br_{(g)} \rightarrow H_{(g)} + HBr_{(g)} \qquad \Delta H_r^0 = +70 \text{ kJ mol}^{-1}$

 $E(H-H) = 436 \text{ kJ mol}^{-1}$ $E(H-Br) = 366 \text{ kJ mol}^{-1}$

Bond Energies in Diatomic Molecules

 $H_{2(g)} + Br_{2(g)} \rightarrow 2 HBr_{(g)} \qquad \Delta H^0_r = -103 \text{ kJ mol}^{-1}$

 $E(H-H) = 436 \text{ kJ mol}^{-1}$ $E(H-Br) = 366 \text{ kJ mol}^{-1}$

 $E(Br-Br) = 193 \text{ kJ mol}^{-1}$

629 kJ mol⁻¹

732 kJ mol⁻¹

Energy used for breaking bonds

Energy released upon formation of bonds

Bond Energies in Polyatomic Molecules $\Delta H^{0}_{r} = -483.6 \text{ kJ mol}^{-1}$ $2 H_{2(q)} + O_{2(q)} \rightarrow 2 H_2 O_{(q)}$ $H_2O_{(q)} \rightarrow 2 H_{(q)} + O_{(q)}$ $\Delta H_{r}^{0} = +926.9 \text{ kJ mol}^{-1}$ $E(H-H) = 436 \text{ kJ mol}^{-1}$ $2 H_{2(g)} + O_{2(g)} \rightarrow 4 H^{\bullet}_{(g)} + 2 O^{\bullet}_{(g)}$ $E(O=O) = 498.3 \text{ kJ mol}^{-1}$ $4 \operatorname{H}^{\bullet}_{(a)} + 2 \operatorname{O}^{\bullet}_{(a)} \rightarrow 2 \operatorname{H}^{\bullet}_{2} \operatorname{O}_{(a)}$ $2 \overline{H_{2(q)}} + \overline{O}_{2(q)} \rightarrow 2 \overline{H_2O_{(q)}}$ $\Delta H_{r}^{0} = 2(436) + (498.3) - 2(926.9) = -483.5 \text{ kJ mol}^{-1}$

Total enthalpy – both O-H bond are broken

Bond Energies in Polyatomic Molecules

 $H_2O_{(g)} \rightarrow 2 H_{(g)}^{\bullet} + O_{(g)}^{\bullet} \qquad \Delta H_r^0 = +926.9 \text{ kJ mol}^{-1}$

 $H_2O_{(g)} \rightarrow OH_{(g)} + H_{(g)}^{\bullet} \qquad \Delta H_r^0 = ? +492 \text{ kJ mol}^{-1}$

 $(926.9)/2 = 463.5 \text{ kJ mol}^{-1}$

 $CH_3OH_{(g)} \rightarrow CH_3O_{(g)} + H_{(g)} \qquad \Delta H_r^0 = +437 \text{ kJ mol}^{-1}$

Bond Energies in Polyatomic Molecules

$$CH_{4(g)} \rightarrow CH_{3'(g)} + H'_{(g)}$$

 $CH_{4(g)} \rightarrow C^{\bullet}_{(g)} + 4 H^{\bullet}_{(g)}$

 $\Delta H_{r}^{0} = +435 \text{ kJ mol}^{-1}$

 $\Delta H_{r}^{0} = +1663 \text{ kJ mol}^{-1}$

1663/4 = 416 kJ mol⁻¹

 $\begin{array}{rll} 400 \ kJ \ mol^{-1} & HCCl_{3} \\ 414 \ kJ \ mol^{-1} & H_{2}CCl_{2} \\ 422 \ kJ \ mol^{-1} & H_{3}CCl \end{array}$

Average Bond Energy

 $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)} \Delta H^0_r = -790 \text{ kJ mol}^{-1}$

 $E(C-H) = 416 \text{ kJ mol}^{-1}$ $E(O=O) = 498 \text{ kJ mol}^{-1}$ $E(C=O) = 799 \text{ kJ mol}^{-1}$ $E(O-H) = 464 \text{ kJ mol}^{-1}$

Heat Balance of Reactions

 $CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(g)} \Delta H_r^0 = -775 \text{ kJ mol}^{-1}$

 ΔH_{f}^{0} kJ mol⁻¹

$CH_4(g)$:	-102
$O_2(g)$:	0
$CO_2(g)$:	-393
$H_2O(g)$:	-242

 $\Delta H_{r}^{0} = [(-393) + 2(-242)] - [-102 + 0] = -775 \text{ kJ}$

Enthalpy at Phase Transitions

Enthalpy at Phase Transitions

Endothermic		Exothermic	
Sublimation	$\Delta H_{subl} > 0$	Depozition	$\Delta H_{dep} < 0$
Evaporation	$\Delta H_{vap} > 0$	Condensation	$\Delta H_{con} < 0$
Melting	$\Delta H_{melt} > 0$	Solidification	$\Delta H_{sol} < 0$

Enthalpy at Phase Transitions

