Entropy, S

Natural processes have a preferred direction of progress, systems tend to progress in the direction of increasing entropy

Entropy = a measure of the number of ways in which a system may be arranged = a measure of accessible energy levels = a measure of thermal effects of reversible processes

Reversible processes = a small change in conditions could reverse the direction

Irreversible processes

Spontaneous Processes

Proceed in a given direction without being driven by an outside source of energy

Increase entropy S of Universe

Proceed in a direction towards states with highest probabilities

Lead to disipitation of energy

Spontaneous Processes

Expansion of gas

Heat transfer

Hot

Cold

 $\Delta S = R \ln V_{fin}/V_{init}$ (1 mol of ideal gas)

Spontaneous

Energy Spontaneous

 $\Delta S = C_p \ln T_2 / T_1$

Universe, System, Surroundings

4

Universe = System + Surroundings

Second Law of Thermodynamics

Entropy of universe increases Spontaneous processes increase entropy of universe

$$\Delta S_{univ} = \Delta S_{syst} + \Delta S_{surr}$$

 $\Delta S_{univ} > 0$ Spontaneous processes

 $\Delta S_{univ} < 0$ Process does not proceed in given direction

 $\Delta S_{univ} = 0$ Equilibrium

To establish spontaneity of a process, we need to know ΔS_{syst} and ΔS_{surr}

Third Law of Thermodynamics

Entropy of ideal crystal at 0 K equlas **zero**

ideal crystal does not exist0 K cannot be attained

Reference state – perfect ordering – motions, vibrations, rotations ceased

S = k In WW = number of microstates of a system At 0 K W = 1, S = 0

Boltzmann Equation

S = k ln W k = R/N_A = 1.38066 10^{-23} J K⁻¹

W = number of microstates of a system

It is possible to establish value of S for a given state (in contrast to H or U)

Ludwig Edward Boltzmann

Boltzmann Equation

k = Boltzmann constant = $1.3807 \quad 10^{-23} \text{ J K}^{-1}$ W = number of microstates of a system

In $W_{fin} = S / k = 41 / 1.3807 10^{-23} = 10^{24}$

Standard Entropy

S⁰ = Standard molar entropy of a substance látky at 298 K and 1 bar

(increase of S on heating a substance from 0 K to 298 K)

 $S^0 = \Delta S = S (298 \text{ K}) - S (0 \text{ K})$

J mol⁻¹ K⁻¹

Standard Entropies S⁰ at 298 K and 1 bar

Substance	S ⁰ , J K ⁻¹ mol ⁻¹	Substance	S ⁰ , J K ⁻¹ mol ⁻¹
S ₈ (g)	431	H ₂ O (g)	189
SF ₆ (g)	292	H ₂ O (I)	70
O ₂ (g)	205	H ₂ O (s)	41
CO ₂ (g)	248	CaCO ₃ (s)	93
CO(g)	198	CaO(s)	40
H ₂ (g)	131	Sn (s) white	52
CH ₃ OH (g)	240	Sn (s) gray	44
CH ₃ OH (I)	127	C(s) graphite	6
C ₂ H ₅ OH (I)	161	C(s) diamond	2

Entropy decreases : g > I > s

Substance	S ⁰ , J K ⁻¹ mol ⁻¹
H ₂ O (g)	189
H ₂ O (I)	70
H ₂ O (s)	41
Na (g)	153
Na (s)	51

Dissolution

Substance	S ⁰ , J K ⁻¹ mol ⁻¹
CH ₃ OH (I)	127
CH ₃ OH (aq)	133
NH ₄ CI (s)	94
NH₄CI (aq)	168

Molecular mass, number of atoms in a molecule, number of vibrations and rotations

Substance	S ⁰ , J K ⁻¹ mol ⁻¹
K (g)	160
Cl ₂ (g)	223
P ₄ (g)	280
As ₄ (g)	289

Substance	S ⁰ , J K ⁻¹ mol ⁻¹
F ₂ (g)	203
Cl ₂ (g)	223
Br ₂ (g)	245
l ₂ (g)	260

Heavy molecules – energy levels close spaced, more available states

Chemical composition More complicated molecules

Substance	S ⁰ , J K ⁻¹ mol ⁻¹
NaCI (s)	74
MgCl ₂ (s)	90
AICI ₃ (s)	167

Strong covalent bonds – low entropy

Entropy increases:

3D < 2D < 1D < 0D structures

Substance	S ⁰ , J K ⁻¹ mol ⁻¹
Sn (s) white	52
Sn (s) gray (diamond)	44
C(s) graphite, 2D	6
C(s) diamond, 3D	2
P ₄ (s) white, 0D	44
P ₄ (s) black, 2D	29

Reaction Entropy

 $\Delta S_{r}^{0} = \Sigma n_{prod} S_{prod}^{0} - \Sigma n_{react} S_{react}^{0}$ Products – Reactants

CH₄(g) + 2 O₂(g) → CO₂(g) + 2 H₂O(1) $\Delta S^{o}_{r} = [2(69.9) + 213.6] - [182.6 + 2(205.0)] = -242.8 \text{ J K}^{-1}$

 $\Delta S_r^0 < 0$ for reactions: Formation of solids or liquids from gases Total number of moles of gases decresas

 $\Delta S_r^0 > 0$ for reactions: Formation of gases from solids or liquids Total number of moles of gases incresas

Second Law of Thermodynamics

Entropy of universe increases Spontaneous processes increase entropy of universe

$$\Delta S_{univ} = \Delta S_{syst} + \Delta S_{surr}$$

 $|\Delta S_{univ}| > 0$ Spontaneous processes

 $\Delta S_{univ} < 0$ Process does not proceed in given direction

 $\Delta S_{univ} = 0$ Equilibrium

To establish spontaneity of a process, we need to know ΔS_{syst} and ΔS_{surr}

Heat Exchange between System and Surroundings

At p = constHeat (surr) = $-\Delta H$ (system)Given off (+)Lost (-)Removed (-)Absorbed (+)

We can establish ΔS_{surr}

At 298 K $Sb_4O_6(s) + 6C(s) \rightarrow 4Sb(s) + 6CO_2(g) \Delta H = 778 \text{ kJ}$ $\Delta S_{surr} = -\Delta H/T = -778 \text{ kJ} / 298 \text{ K} = -2.6 \text{ kJ K}^{-1}$

$$\Delta S_{surr} = \frac{-\Delta H_{syst}}{T}$$

Heat Exchange

Transfer of the same amount of heat at lower temperature increases relatively more entropy of surroundings – cold surroundings are more ordered and then more disturbed

Reaction Entropy

 $2Fe(s) + 3H_2O(g) \rightarrow Fe_2O_3(s) + 3H_2(g)$ $\Delta S^{\circ}_{r} = [S^{\circ}(Fe_2O_3(s) + 3S^{\circ}H_2(g)] - [2S^{\circ}Fe(s) + 3S^{\circ}H_2O(g)]$ $\Delta S^{\circ}_{r} = -141.5 \text{ J K}^{-1}$

Is this reaction spontaneous at 298 K, is $\Delta S^{\circ}_{univ} > 0$?

 $\Delta S_{univ} = \Delta S_{syst} + \Delta S_{surr}$

$$\Delta S^{\circ}_{r} = \Delta S^{\circ}_{syst} = -141.5 \text{ J K}^{-1}$$

21

Reaction Spontaneity

 $\Delta S^{\circ}_{surr} = -\Delta H^{\circ}_{syst}/T = -\Delta H^{\circ}_{r}/T$

 $\Delta H^{\circ}_{r} = \overline{\Delta H^{\circ}_{f}(Fe_{2}O_{3}(s)) + 3\Delta H^{\circ}_{f}(H_{2}(g))}$ $- 2\Delta H^{\circ}_{f}(Fe(s)) - 3\Delta H^{\circ}_{f}(H_{2}O(g)) = -100 \text{ kJ}$

 $\Delta S^{\circ}_{surr} = -\Delta H^{\circ}_{syst}/T = 336 \text{ J K}^{-1}$

 $\Delta S^{\circ}_{univ} = \Delta S^{\circ}_{syst} + \Delta S^{\circ}_{surr}$ = - 141.5 + 336 = 194.0 J K⁻¹

Reaction is spontaneous at 298 K, $\Delta S^{\circ}_{univ} > 0$

Entropy of Phase Transitions

 $H_2O(I) \leftrightarrows H_2O(g)$ at 373 K

$H_2O(s) \leftrightarrows H_2O(I)$ at 273 K

$$\Delta S_{surr}^{0} = \frac{-\Delta H_{melt}}{T_{m}}$$

Entropy of Phase Transitions

$H_2O(I) \leftrightarrows H_2O(g)$ při 373 K

Phase Transitions are **equilibrium** processes at which $\Delta S^{\circ}_{univ} = 0$

 $\Delta S^{\circ}_{syst} = S^{\circ}(H_2O(g)) - S^{\circ}(H_2O(I)) = 195.9 \text{ J } \text{K}^{-1} - 86.6 \text{ J } \text{K}^{-1}$ = 109.1 J K⁻¹ H₂O(g) 1 mol = 18 g ~ 18 cm³ H₂O(g) 1 mol = 31 liter at 100 °C

 $\Delta S^{\circ}_{surr} = -\Delta H_{vap} / T = -40.7 \text{ kJ}/373 \text{ K} = -109.1 \text{ J K}^{-1}$

 $\Delta S^{\circ}_{univ} = \Delta S^{\circ}_{syst} + \Delta S^{\circ}_{surr} = 0$

Second Law of Thermodynamics

$$\Delta S_{univ} = \Delta S_{syst} + \Delta S_{surr}$$

$$\Delta S_{univ} = \Delta S_{syst} + \frac{-\Delta H_{syst}}{T}$$

Spontaneous Processes and Gibbs Energy

Reaction is spontaneous when $\Delta S_{univ} > 0$

 $\Delta S_{univ} = \Delta S_{syst} + \Delta S_{surr} = \Delta S_{syst} - \Delta H_{syst}/T > 0$

Multiply by $-\overline{T}$

Multiply by –1 reverse unequal.

 $\Delta H - T\Delta S_{syst} < 0$

 $\Delta G \equiv Gibbs Free Energy (= -T\Delta S_{univ})$

 $\Delta \mathbf{G} = \Delta \mathbf{H}_{\text{syst}} - \mathbf{T} \Delta \mathbf{S}_{\text{syst}}$

When ΔG is negative, reaction is spontaneous I_{26}

Gibbs Free Energy

- 1. ΔG is a state function
- ∆G° Gibbs Free Energy at standard cond.
 298 K
 - 1 bar for gases
 - 1 mol I⁻¹ concentration
- 3. ΔG° tabulated

 $1/2O_2(g) + N_2(g) \leftrightarrows N_2O(g)$ $\Delta G_f^{\circ}(f)$

 $\Delta G_{f}^{\circ}(N_{2}O) = 104.18 \text{ kJ mol}^{-1}$

Reactants are more stabile than products Kinetic factors of N₂O stability

Standard Gibbs Free Energy of Formation

- ΔG_{f}° calculated from ΔH_{f}° and S°
 - C(graphite) + $O_2(g) \leftrightarrows CO_2(g)$

 $\Delta H_{f}^{\circ} = \Delta H_{r}^{\circ} = -393.5 \text{ kJ mol}^{-1}$

 $\Delta S^{\circ} = S^{\circ} (CO_2(g)) - S^{\circ} (C(graphite)) - S^{\circ} (O_2(g))$ $\Delta S^{\circ} = 213.60 - 5.74 - 205.00 = 2.86 \text{ J K}^{-1} \text{ mol}^{-1}$

 $\Delta G^{\circ}_{f} = \Delta H^{\circ}_{f} - T\Delta S^{\circ}_{f}$

 $\Delta G_{f}^{\circ} = -393.5 - (298)(2.86) = -394.360 \text{ J K}^{-1} \text{ mol}^{-1}$

Standard Gibbs Free Energy of Formation

(at 25 °C)

 ΔG_{f}°

Substance	∆G° _f , kJ mol⁻¹
NH ₃	- 16.45
CO ₂	- 394.4
NO ₂	+ 51.3
H ₂ O (g)	- 228.6
H ₂ O (I)	- 237.1
C ₆ H ₆	+ 124.3
C₂H₅OH	- 174.8
AgCl	- 109.8
CaCO ₃	– 1128.8 29

ΔG_{r}^{0} Calculated from ΔG_{f}^{0}

 $\Delta G_{r}^{0} = \Sigma n_{prod} \Delta G_{f}^{0} (prod) - \Sigma n_{react} \Delta G_{f}^{0} (react)$

 $aA + bB \leftrightarrows cC + dD$

 $\Delta G^0 = c\Delta G^0_f(C) + d\Delta G^0_f(D) - a\Delta G^0_f(A) - b\Delta G^0_f(B)$

 $3NO(g) \leftrightarrows N_2O(g) + NO_2(g) \quad \Delta G^0 = ?$

 $\Delta G^0 = \Delta G^0_f(N_2O) + \Delta G^0_f(NO_2) - 3\Delta G^0_f(NO)$

 $\Delta G_{r}^{0} = 104.18 + 51.29 - 3(86.55) = -104 \text{ kJ mol}^{-1}$

Influence of Temperature on AG ⁰		
$\Delta \mathbf{G}^0 = \Delta \mathbf{H}^0 - \mathbf{T} \Delta \mathbf{S}^0$		
ΔH^0 +	ΔS^0 +	ΔG^0 Negative at high T
ΔH^0 +	ΔS^0 –	ΔG^0 Positive at all T
ΔH^0 –	ΔS^0 +	ΔG^0 Negative at all T
ΔH^0 –	ΔS^0 –	ΔG^0 Negative at low T

Chemical Equilibria

In laboratory Na₂CO₃ + CaCl₂ \rightarrow CaCO₃ + 2 NaCr

Natron on banks of salt lakes in Egypt CaCO₃ + 2 NaCl \rightarrow Na₂CO₃ + CaCl₂

C. L. Berthollet (1748-1822) An excess of a product can reverse the course of chemical reaction Reversibile reaction $Na_2CO_3 + CaCl_2 = CaCO_3 + 2 NaCl$

Reaction Quotient Q

Reversibile reaction : $aA + bB \leftrightarrows cC + dD$

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Unequilibrium concentrations powered to stoichiometric coefficients

Q = Reaction quotient

How far a reaction proceeded from reactants to products $Q = 0/1 \rightarrow 0$

A complete reaction:

At the start of reaction:

 $Q = 1/0 \rightarrow \infty$ (for a = b = c = d = 1) [A] = [B] = 1 M [C] = [D] = 0

[A] = [B] = 0 [C] = [D] = 1 M Chemical Composition and ΔG One of the most important equations in chemistry ! $\Delta G = \Delta G^0 + RT \ln Q$ Q = Reaction quotient

 $3NO(g) \Rightarrow N_2O(g) + NO_2(g) \Delta G^0 = -104 \text{ kJ mol}^{-1}$

NO = 0.3 atm; $N_2O = 2 \text{ atm}$; $NO_2 = 1 \text{ atm}$ Which direction?

$$Q_P = \frac{P_{N20} P_{N02}}{P_{N0}^3} = \frac{(2)(1)}{(0.3)^3} = 74.1$$

 $\Delta G = \Delta G^{0} + RT \ln Q = -104.0 + (8.314 \text{ J K}^{-1} \text{ mol}^{-1})(298 \text{ K}) \ln (74.1)$

 $\Delta G = -93.3 \text{ kJ mol}^{-1}$ Reaction is spontaneous to the right more NO decomposes to products 34

 $\Delta G^{0} \text{ and Equilibrium Constant K}$ $\Delta G = \Delta G^{0} + RT \ln Q$ At equilibrium $\Delta G = 0$ and Q = K $\Delta G^{0} = -RT \ln K$ $K = e^{-\frac{\Delta G^{0}}{RT}}$

 $aA + bB \leftrightarrows cC + dD$

$$K = \frac{\begin{bmatrix} C \end{bmatrix}^{c}{}_{eq} \begin{bmatrix} D \end{bmatrix}^{d}{}_{eq}}{\begin{bmatrix} A \end{bmatrix}^{a}{}_{eq} \begin{bmatrix} B \end{bmatrix}^{b}{}_{eq}}$$

Equilibrium concentrations

Reaction Quotient Q and Equilibrium Constant K

Q = K. System at equilibrium, no change.

Q > K. Concentrations of products are larger then equilibrium concentrations. A part of the products must convert back to reactants to attain equilibrium. Reaction shift to the left.

Q < K. Concentrations of reactants are larger then equilibrium concentrations. A part of the reactants must react to products to attain equilibrium. Reaction shift to the right.

ΔG^0 and Equilibrium Constant K

 $3NO(g) \leftrightarrows N_2O(g) + NO_2(g) \Delta G^0 = -104 \text{ kJ mol}^{-1}$

$$K = e^{-\frac{\Delta G^0}{RT}} = e^{\frac{-(-104,000)}{(8.314)(298)}} = 1.8 \times 10^{18}$$

$$K = \frac{\left[NO_2\right]^1 \left[N_2O\right]^1}{\left[NO\right]^3}$$

ΔG^0 and Equilibrium Constant K $\Delta G^0 = - RT \ln K$

ΔG^0	K	At equilibrium $(\Delta G = 0)$
< 0	> 1	More products
> 0	< 1	More reactants
= 0	= 1	

39

Equilibrium Constant K

$$K_{C} = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}}$$

K is a function only of temperature Pure phases (I, s) do not influence equilibrium Concentration of solvent is not considered K is dimensionless Concentrations related to standard state 1 M

Guldberg-Waage Law

1864 Law of mass action

 $aA + bB \leftrightarrows cC + dD$

K = Equilibrium Constant

$$K = \frac{\left[C\right]^{c}{}_{eq}\left[D\right]^{d}{}_{eq}}{\left[A\right]^{a}{}_{eq}\left[B\right]^{b}{}_{eq}}$$

Cato Maximilian Guldberg (1836-1902) Peter Waage (1833-1900) ⁴¹

Guldberg-Waage Law

 $cC + dD \leftrightarrows aA + bB$

Reverse reaction, $K_{new} = 1/K$

 $ncC + ndD \leftrightarrows naA + nbB$

Multiply equation by a constant $K_{new} = (K)^n$

Sum of chemical equations

$$K_{new} = K_1 \times K_2$$

Guldberg-Waage Law

$$2 \operatorname{NO}_2 \rightleftharpoons 2 \operatorname{NO} + \operatorname{O}_2 \qquad \mathrm{K}_1$$

 $2 \operatorname{SO}_2 + \operatorname{O}_2 \leftrightarrows 2 \operatorname{SO}_3 \qquad \operatorname{K}_2$

 $\overline{NO_2 + SO_2} \xrightarrow{\leftarrow} NO + SO_3 \qquad K_3 = ?$

$$K_3 = (K_1 \times K_2)^{1/2} = \sqrt{K_1 \times K_2}$$

Attaining Chemical Equilibrium $H_2 + I_2 \rightarrow 2 HI$ $2 HI \rightarrow H_2 + I_2$

LeChatelier's Principle

Reversibile reactions

If a chemical system at equilibrium experiences a change in concentration, temperature, volume, or partial pressure, then the equilibrium shifts to counteract the imposed change and a new equilibrium is established.

Henri LeChâtelier (1850-1936)

Addition of H₂

$$K_{C} = \frac{\left[HI\right]^{2}}{\left[H_{2}\right]\left[I_{2}\right]}$$

Concentrations

K is const.

 $CO_2(g) + H_2(g) \leftrightarrows H_2O(g) + CO(g)$ Trapping water, shift to right

NaCl (s) + H_2SO_4 (l) \leftrightarrows Na₂SO₄ (s) + HCl (g) Gaseous HCl escapes, shift to right

 $H_2(g) + I_2(g) \leftrightarrows 2HI(g)$

Addition of inert N_2 , does not take part in reaction, no change in number of moles, no shift

Transfer of Oxygen and CO_2 hemoglobin+ O_2 \leftrightarrows oxyhemoglobinFe²⁺ highspinFe²⁺ lowspin

 O_2 -hemoglobin \leftrightarrows hemoglobin \leftrightarrows CO-hemoglobin

 $H_2O + CO_2 + CO_3^{2-} \implies 2 HCO_3^{-}$

Pressure

Reactions with changing number of moles of gases $2 NO_2(g) \leftrightarrows N_2O_4(g)$ K is const.

$$\Delta n_g = (n_{prod} - n_{react}) = 1 - 2 = -1$$
V halved, p 2x bigger
$$Q = \frac{1}{2} K_p$$

Increased pressure shifts reaction to the right

New equilibrium

Pressure

$N_2(g) + 3 H_2(g) \leftrightarrows 2 NH_3(g) \Delta H = -92 kJ mol^{-1}$

- the reaction is exothermic
- decreasing number of moles of gases

According to LeChatelier, the yield will be at (1868-1934) maximum at high pressure and low NP in Chemistry 1918 temperature At low temperature, the reaction is slow uses Fe catalyst to speed up **Conditions** 20-100 MPa and 400-600 °C

Fritz Haber

Pressure

$N_2(g) + 3 H_2(g) \leftrightarrows 2 NH_3(g)$

Equilibrium Constant K p V = n R T p = (n / V) R T = c R T

 $p = p_1 + p_2 + p_3 + \dots$ Partial pressures

 $N_2(g) + 3 H_2(g) \leftrightarrows 2 NH_3(g)$

Equilibrium Constant K

 $jA + kB \leftrightarrows lC + mD$

 $K_p = K_c (RT)^{\Delta n}$

 $\Delta n = (l+m) - (j+k)$

$$K_{p} = \frac{(P_{C}^{l})(P_{D}^{m})}{(P_{A}^{j})(P_{B}^{k})} = \frac{(C_{C} \times RT)^{l}(C_{D} \times RT)^{m}}{(C_{A} \times RT)^{j}(C_{B} \times RT)^{k}}$$
$$= \frac{(C_{C}^{l})(C_{D}^{m})}{(C_{A}^{j})(C_{B}^{k})} \times \frac{(RT)^{l+m}}{(RT)^{j+k}} = K(RT)^{(l+m)-(j+k)}$$
$$= K(RT)^{\Delta m}$$

Heterogeneous Equilibria

 $CaCO_3(s) \leftrightarrows CaO(s) + CO_2(g)$ $K = [CO_2][CaO] / [CaCO_3] = [CO_2] = p(CO_2)$ Activity (concentration) of pure liquids and solids is constant and does not appear in K.

 $[CaO] = [CaCO_3] = const.$ Addition does not change K

Heterogeneous Equilibria

 $2H_2O(l) \leftrightarrows 2H_2(g) + O_2(g)$ $K = [H_2]^2[O_2]$ $K_p = p^2(H_2) p(O_2)$

 $2H_2O(g) \leftrightarrows 2H_2(g) + O_2(g)$ $K = [H_2]^2[O_2] / [H_2O]^2 \qquad K_p = p^2(H_2) p(O_2) / p^2(H_2O)$

$\Delta G^0 = - RT \ln K$

Temperature

$$\ln K = -\frac{\Delta G^0}{RT} = -\frac{\Delta H^0}{RT} + \frac{\Delta S^0}{R}$$

K changes with T

Compare K at T_1 and T_2 (K₁ and K₂)

$$\ln K_2 = -\frac{\Delta H^0}{RT_2} + \frac{\Delta S^0}{R}$$

van't Hoff equation

$$\ln K_2 - \ln K_1 = \ln \frac{K_2}{K_1} = \frac{\Delta H^0}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Temperature

$2 \text{ NO}_2(g) \leftrightarrows \text{N}_2\text{O}_4(g) \Delta H^\circ = -63 \text{ kJ mol}^{-1}$

$$\ln \frac{K_2}{K_1} = \frac{\Delta H^0}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Exothermic reactions shift to right

 $T_2 < T_1$ on cooling = K incr., $K_2 > K_1$

Heat is a product in exothermic reaction 2 NO₂(g) \leftrightarrows N₂O₄(g) + Q

Equilibria in Exothermic Reactions

 $N_2(g) + 3 H_2(g) \leftrightarrows 2 NH_3(g) \qquad \Delta H^\circ = -92 \text{ kJ mol}^{-1}$

Yield decreases with increasing T

Decr. K and yield $K = \frac{[NH_3]^2}{[N_2][H_2]^3}$

$$\ln \frac{K_2}{K_1} = \frac{\Delta H^0}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Temperature

 $CaCO_3(s) \leftrightarrows CaO(s) + CO_2(g) \quad \Delta H^\circ = 556 \text{ kJ mol}^{-1}$

Endothermic reactions shift to right on heating $T_2 > T_1$, $K_2 = \Delta H^0 (1)$

K incr, $K_2 > K_1$, K = p(CO₂)

 $\ln \frac{K_2}{K_1} = \frac{\Delta H^0}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$

Heat is a reactant in endothermic reactions

 $CaCO_3(s) + Q \leftrightarrows CaO(s) + CO_2(g)$

Equilibrium Concentrations

 $H_{2}(g) + F_{2}(g) \leftrightarrows 2HF(g)$ K = 1.15 10² = [HF]² / [H₂][F₂] [H₂]₀ = 1.00 *M* [F₂]₀ = 2.00 *M* [HF]₀ = 0

	$H_2(g)$	$F_2(g)$	2HF(<i>g</i>)
Initial	1.00	2.00	0
Change	- <i>X</i>	- X	+2 <i>x</i>
Equilibrium	1.00 – <i>x</i>	2.00 – <i>x</i>	2 <i>x</i>

K = 1.15 10² = [HF]² / [H₂][F₂] = $(2x)^2$ / (1.00 - x)(2.00 - x)

Equilibrium Concentrations

 $x_{1,2} = [-b \pm (b^2 - 4ac)^{\frac{1}{2}}]/2a$

 $x_1 = 2.14 \text{ mol } I^{-1} \text{ a } x_2 = 0.968 \text{ mol } I^{-1}$

Use $x_2 = 0.968 \text{ mol } I^{-1}$ $[H_2] = 1.000 \text{ } M - 0.968 \text{ } M = 3.2 \text{ } 10^{-2} \text{ } M$ $[F_2] = 2.000 \text{ } M - 0.968 \text{ } M = 1.032 \text{ } M$ [HF] = 2 (0.968 M) = 1.936 M