Entropy, S

Natural processes have a preferred direction of progress, systems tend to progress in the direction of increasing entropy

Entropy = a measure of the number of ways in which a system may be arranged = a measure of accessible energy levels = a measure of thermal effects of reversible processes

Reversible processes = a small change in conditions could reverse the direction

Spontaneous Processes

Proceed in a given direction without being driven by an outside source of energy

Increase entropy S of Universe

Proceed in a direction towards states with highest probabilities

Lead to disipitation of energy

Spontaneous Processes

Expansion of gas

Heat transfer

 $\Delta S = R \ln V_{fin}/V_{init}$ (1 mol of ideal gas)

Spontaneous

 $\Delta \mathrm{S} = \mathrm{C}_{\mathrm{p}} \ln \mathrm{T}_2/\mathrm{T}_1$

Universe, System, Surroundings

4

Universe = System + Surroundings

Second Law of Thermodynamics

Entropy of universe increases Spontaneous processes increase entropy of universe

$$
\Delta S_{\text{univ}} = \Delta S_{\text{syst}} + \Delta S_{\text{surr}}
$$

 $\Delta S_{\text{univ}} > 0$ Spontaneous processes

 ΔS_{univ} < 0 Process does not proceed in given direction

 $\Delta S_{\text{univ}} = 0$ Equilibrium

To establish spontaneity of a process, we need to know $\Delta \rm S_{syst}$ and $\Delta \rm S_{surr}$

Third Law of Thermodynamics

Entropy of ideal crystal at 0 K equlas **zero**

• ideal crystal does not exist • 0 K cannot be attained

Reference state – perfect ordering motions, vibrations, rotations ceased

 $S = k \ln W$ W = number of microstates of a system At $0 K$ W = 1, S = 0

Boltzmann Equation

 $S = k \ln W$ k = R/N_A = 1.38066 10⁻²³ J K⁻¹ W = number of microstates of a system

It is possible to establish value of S for a given state (in contrast to H or U)

Ludwig Edward Boltzmann

On October 5, 1906 committed suicide in Duinu by Trieste

Boltzmann Equation

k = Boltzmann constant = 1.3807 10^{–23} J K^{⊥1} W = number of microstates of a system

ln W_{fin} = S / k = 41 / 1.3807 10^{−23} = 10²⁴

Standard Entropy

 $S⁰$ = Standard molar entropy of a substance látky at 298 K and 1 bar

(increase of S on heating a substance from 0 K to 298 K)

 $S⁰ = \Delta S = S (298 K) - S (0 K)$

J mol−¹ K−¹

Standard Entropies S0 at 298 K and 1 bar

Entropy decreases : g > l > s

Dissolution

Molecular mass, number of atoms in a molecule, number of vibrations and rotations

Heavy molecules – energy levels close spaced, more available states

Chemical composition More complicated molecules

Strong covalent bonds – low entropy

Entropy increases:

3D < 2D < 1D < 0D structures

ENTROPY AND STRUCTURE 0.58 e.u. 2.3 e.u. 10.0 e.u. $15.5 e.u.$ 18.5 e.u. 41.8 e.u. $SiO₂$ Pb (solid) Hg (liquid) Be Hg (gas)

16

Reaction Entropy

 $\Delta \text{S}^0_{\ \ \text{r}} = \Sigma \text{ n}_{\text{prod}} \text{ S}^0_{\ \text{prod}} - \Sigma \text{ n}_{\text{react}} \text{ S}^0_{\ \text{react}}$ Products [−] Reactants

 $CH₄(g) + 2 O₂(g) \rightarrow CO₂(g) + 2 H₂O(l)$ $\Delta S^\text{o}_{\text{r}} = [2(69.9) + 213.6] - [182.6 + 2(205.0)] = -242.8 \text{ J K}^{-1}$

 $\Delta S^0_r < 0$ for reactions: Formation of solids or liquids from gases Total number of moles of gases decresas

 ΔS^0 > 0 for reactions: Formation of gases from solids or liquids Total number of moles of gases incresas

Second Law of Thermodynamics

Entropy of universe increases Spontaneous processes increase entropy of universe

$$
\Delta S_{\text{univ}} = \Delta S_{\text{syst}} + \Delta S_{\text{surr}}
$$

 $\Delta S_{\text{univ}} > 0$ Spontaneous processes

 ΔS_{univ} < 0 Process does not proceed in given direction

 $\Delta S_{\text{univ}} = 0$ Equilibrium

To establish spontaneity of a process, we need to know $\Delta \rm S_{syst}$ and $\Delta \rm S_{surr}$

Heat Exchange between System and Surroundings

At p = const Heat $\bf{(surr)} = -\Delta H \bf{ (system)}$ Given of $(+)$ $\qquad \qquad \text{Last} \left(\text{–} \right)$ Removed $(-)$ Absorbed $(+)$

We can establish ΔS_{surr}

At 298 K $Sb_4O_6(s) + 6C(s) \rightarrow 4Sb(s) + 6CO_2(g) \Delta H = 778 \text{ kJ}$ Δ**Ssurr = –**Δ**H/T = –778 kJ / ²⁹⁸ K = –2.6 kJ K–¹**

Heat Exchange

20 Transfer of the same amount of heat at lower temperature increases relatively more entropy of surroundings – cold surroundings are more ordered and then more disturbed

Reaction Entropy

 $2Fe(s) + 3H_2O(g) \rightarrow Fe_2O_3(s) + 3H_2(g)$ $\Delta \textsf{S}^\circ$ _r = [S $^\circ$ (Fe₂O₃(s) + 3S $^\circ$ H₂(g)] – [2S $^\circ$ Fe(s) + 3S $^\circ$ H₂O(g)] ΔS° = -141.5 J K⁻¹

ls this reaction spontaneous at 298 K, is $\Delta \mathbf{S}^\circ_{\mathsf{univ}}$ **> 0?**

 ΔS _{univ} = ΔS _{syst} + ΔS _{surr}

$$
\Delta S^\circ_{r} = \Delta S^\circ_{syst} = -141.5 \text{ J K}^{-1}
$$

21

Reaction Spontaneity

$$
\Delta S^\circ_{\text{surr}} = -\Delta H^\circ_{\text{syst}}/T = -\Delta H^\circ_{\text{r}}/T
$$

 ΔH° _r= $\Delta H^\circ_{\rm f}$ (Fe $\rm _2O_3(s))$ + 3 $\rm \Delta H^\circ_{\rm f}$ (H $\rm _2(g))$ – 2∆H°_f(Fe (s)) | $-$ 3 Δ H $^{\circ}$ _f(H₂O(g)) = $-$ 100 kJ

 $\Delta \bf{S}^\circ_{\hspace{0.5mm} \text{surr}} = - \, \Delta \bf{H}^\circ_{\hspace{0.5mm} \text{syst}} \! / \text{T} = 336 \, \bf{J} \, \bf{K}^{\!-\!1}$

 $\Delta \textbf{S}^\circ_{\ \ \textsf{univ}}$ = $\Delta \textbf{S}^\circ_{\ \ \textsf{syst}}$ + $\Delta \textbf{S}^\circ_{\ \ \textsf{surr}}$ = – 141.5 + 336 = 194.0 J K–1

Reaction is spontaneous at 298 K, Δ**S°univ > 0**

22

Entropy of Phase Transitions

 $\mathsf{H}_2\mathsf{O}(\mathsf{I}) \leftrightarrows \mathsf{H}_2\mathsf{O}(\mathsf{g})$ at 373 K

$\mathsf{H}_2\mathsf{O}(\mathsf{s}) \leftrightarrows \mathsf{H}_2\mathsf{O}(\mathsf{I})$ at 273 K

$$
\Delta S_{\text{surr}}^0 = \frac{-\Delta H_{\text{melt}}}{T_{\text{m}}}
$$

Entropy of Phase Transitions

 $\mathsf{H}_{2}\mathsf{O}(\mathsf{I}) \leftrightarrows \mathsf{H}_{2}\mathsf{O}(\mathsf{g})$ při 373 K

Phase Transitions are **equilibrium** processes at which $\Delta \mathbf{S}^\circ_{\ \mathbf{univ}} = \mathbf{0}$

 $\Delta \mathsf{S}$ $_{\rm O}$ \degree_{syst} = S°(H₂O(g)) − S°(H₂O(l)) = 195.9 J K⁻¹ − 86.6 J K − 1 = 109.1 J K− 1 $\text{H}_{2}\text{O}(l)$ 1 mol = 18 g ~ 18 cm³ $H_2O(g)$ 1 mol = 31 liter at 100 °C

 $\Delta \mathsf{S}^\circ_{\mathsf{surr}}$ = $-\Delta \mathsf{H}_{\mathsf{vap}}$ / T $\,$ = -40.7 kJ/373 K = -109.1 J K − 1

 $\Delta \rm{S}^{\circ}_{~univ}$ $=\Delta \bf{S}^\circ_{\hspace{0.5mm}\rm syst} + \Delta \bf{S}^\circ_{\hspace{0.5mm}\rm surr} = 0$

Second Law of Thermodynamics

$$
\Delta S_{\text{univ}} = \Delta S_{\text{syst}} + \Delta S_{\text{surr}}
$$

$$
\Delta S_{univ} = \Delta S_{syst} + \frac{-\Delta H_{syst}}{T}
$$

Spontaneous Processes and Gibbs Energy

Reaction is spontaneous when $\Delta S_{\text{univ}} > 0$

 ΔS _{univ} = ΔS _{syst} + ΔS _{surr} = ΔS _{syst} $-\,\Delta \rm H_{syst}/T\ > 0$

Multiply by – T

Multiply by –1 reverse unequal.

 $\Delta \rm H - T \Delta \rm S_{syst}~<~0.$

 $\Delta \mathbf{G}$ \equiv $\bm{\mathsf{Gibbs}}$ **Free Energy** ($=-\text{T}\Delta \text{S}_{\text{univ}}$)

 $\Delta \mathbf{G} \ = \Delta \mathbf{H}_{\text{syst}} - \mathbf{T} \Delta$ $\mathbf{S}_{\mathbf{s}\mathbf{y}\mathbf{s}\mathbf{t}}$

When ∆G is negative, reaction is spontaneous ! $_{\scriptscriptstyle 26}$

Gibbs Free Energy

- 1. ΔG is a state function
- 2. ΔG° Gibbs Free Energy at standard cond. - 298 K
	- 1 bar for gases
	- 1 mol $\mathsf{I}^{\text{-1}}$ concentration
- 3. ΔG° tabulated

 $1/2O_2(g) + N_2(g) \leftrightarrows N_2O(g)$ $\Delta {\sf G}^\circ_{\;\;{\sf f}}\left({\sf N}_2{\sf O}\right)$ = 104.18 kJ mol $^{\sf -1}$

Reactants are more stabile than products Kinetic factors of $\mathsf{N}_2\mathsf{O}$ stability \blacksquare

Standard Gibbs Free Energy of Formation

- $\Delta \bf{G}^\circ_{~f}$ calculated from $\Delta \bf{H}^\circ_{~f}$ and \bf{S}°
	- $C(graphite) + O_2(g) = CO_2(g)$

 $\Delta H_{\text{f}}^{\circ} = \Delta H_{\text{r}}^{\circ} = -393.5 \text{ kJ} \text{ mol}^{-1}$

 $\Delta S^{\circ} = S^{\circ} (\text{CO}_2(g)) - S^{\circ} (\text{C}(\text{graphite})) - S^{\circ} (\text{O}_2(g))$ $\Delta S^{\circ} = 213.60 - 5.74 - 205.00 = 2.86$ J K⁻¹ mol⁻¹

 $\Delta \text{G}^\circ_{\ \ \text{f}} = \ \Delta \text{H}^\circ_{\ \ \text{f}} - \text{T} \Delta \text{S}^\circ_{\ \ \text{f}}$

 $\Delta \text{G}^{\circ}_{\;\text{f}}$ = –393.5 – (298)(2.86) = – 394.360 J K⁻¹ mol⁻¹

Standard Gibbs Free Energy of Formation

(at 25 °**C)**

Δ**G°f**

$\Delta\mathbf{G^0}_\mathrm{r}$ Calculated from $\Delta\mathbf{G_\mathrm{f}^0}$

 $\Delta\mathbf{G^0}_\mathbf{r} = \Sigma \; \mathbf{n}_\text{prod} \; \Delta\mathbf{G^0}_\mathbf{f} \left(\mathbf{prod} \right) \; - \Sigma \; \mathbf{n}_\text{react} \; \Delta\mathbf{G^0}_\mathbf{f} \left(\mathbf{react} \right)$

 $aA + bB = cC + dD$

 $\Delta G^0 = c \Delta G^0_f(C) + d\Delta G^0_f(D) - a\Delta G^0_f(A) - b\Delta G^0_f(B)$

 $\overline{3NO(g)}$ $\overline{\rightarrow}$ $\overline{N_2O(g)}$ $\overline{N_2O(g)}$ $\overline{\Delta G^0}$ = ?

 $\Delta \rm{G}^0 = \; \Delta \rm{G}^0 \rm{_{f} (N_2O)} + \; \Delta \rm{G}^0 \rm{_{f} (NO_2)} - 3 \Delta \rm{G}^0 \rm{_{f} (NO)}$

 $\Delta {\rm G}^0_{\;\rm r} = 104.18 + 51.29 - 3(86.55) \; = \; -104$ kJ mol $^{\rm -1}$

Chemical Equilibria

In laboratory $\mathsf{Na_{2}CO_{3}} + \mathsf{CaCl}_{2} \rightarrow \ \mathsf{CaCO}_{3} + 2$ $\mathsf{NaCo_{4}}$

Natron on banks of salt lakes in Egypt CaCO_{3} + 2 $\textbf{NaCl}\rightarrow\text{Na}_{2}\text{CO}_{3}$ + CaCl_{2}

C. L. Berthollet (1748-1822)

An excess of a product can reverse the course of chemical reaction Reversibile reaction $\mathsf{Na_{2}CO_{3}}$ + CaCl $_{2}$ $\overline{\Longleftarrow}$ CaCO $_{3}$ + 2 NaCl

Reaction Quotient Q

Reversibile reaction : aA + bB 与 cC + dD

Unequilibrium concentrations powered to stoichiometric coefficients

Q = Reaction quotient

How far a reaction proceeded from reactants to products $Q = 0/1 \rightarrow 0$

A complete reaction: $[A] = [B] = 0$

 $Q = 1/0 \rightarrow \infty$ (for $a = b = c = d = 1$)

At the start of reaction: $[A] = [B] = 1 M$ $[C] = [D] = 0$

 $[C] = [D] = 1 M$

Chemical Composition and Δ **G** $\Delta \mathbf{G} = \Delta \mathbf{G}$ **0 + RT lnQ** Q = Reaction quotient **One of the most important equations in chemistry !**

 $3NO(g) \rightharpoonup N_2O(g) + NO_2(g)$ ΔG 0 = -104 kJ mol⁻¹

 $NO = 0.3$ atm; $N_2O = 2$ atm; $NO_2 = 1$ atm Which direction?

$$
Q_P = \frac{P_{N2O} P_{NO2}}{P_{NO}^3} = \frac{(2)(1)}{(0.3)^3} = 74.1
$$

 $\Delta {\bf G} = \Delta {\bf G}$ 0 + RT lnQ = -104.0 + (8.314 J K⁻¹ mol⁻¹)(298 K) ln (74.1)

more NO decomposes to products 34 $\Delta {\rm G} = -93.3$ kJ mol⁻¹ Reaction is spontaneous to the right

35

Δ**G0 and Equilibrium Constant K** $\Delta G = \Delta G^0 + RT \ln Q$ **At equilibrium** $\Delta G = 0$ and $Q = K$ Δ**G⁰ ⁼**[−] **RT lnK** *RT G* K = e $- \overline{\Delta G}^0$ =

 $aA + bB = cC + dD$

$$
K = \frac{[C]^c_{eq}[D]^d_{eq}}{[A]^a_{eq}[B]^b_{eq}}
$$

[] [] **Equilibrium concentrations**

Reaction Quotient Q and Equilibrium Constant K

Q = K. System at equilibrium, no change.

Q > K. Concentrations of products are larger then equilibrium concentrations. A part of the products must convert back to reactants to attain equilibrium. Reaction shift to the left.

37Q < K. Concentrations of reactants are larger then equilibrium concentrations. A part of the reactants must react to products to attain equilibrium. Reaction shift to the right.

Δ**G0 and Equilibrium Constant K**

 $3NO(g) = N_2O(g) + NO_2(g)$ $\Delta G^0 = -104 \text{ kJ} \text{ mol}^{-1}$

$$
K = e^{-\frac{\Delta G^0}{RT}} = e^{\frac{-(-104,000)}{(8.314)(298)}} = 1.8 \times 10^{18}
$$

$$
K = \frac{[NO_2]^{\text{T}}[N_2O]^{\text{T}}}{[NO]^3}
$$

Δ**G0 and Equilibrium Constant K** $\Delta G^0 = -RT \ln K$

Equilibrium Constant K

$$
K_C = \frac{[C]^c[D]^d}{[A]^a[B]^b}
$$

K is a function only of temperature Pure phases (l, s) do not influence equilibrium Concentration of solvent is not considered K is dimensionlessConcentrations related to standard state 1 M

Guldberg-Waage Law

1864 Law of mass action

aA + bB \leftrightarrows cC + dD

K = Equilibrium Constant

$$
K = \frac{[C]^c_{eq}[D]^d_{eq}}{[A]^a_{eq}[B]^b_{eq}}
$$

41 Cato Maximilian Guldberg (1836-1902) Peter Waage (1833-1900)

Guldberg-Waage Law

 cC + dD \leftrightarrows aA + bB

Reverse reaction, K_{new} = 1/ K

ncC + ndD ' naA + nbB

Multiply equation by a constant $\mathsf{K}_{\mathsf{new}}\mathsf{=}(\mathsf{K})^n$

Sum of chemical equations

$$
K_{\text{new}} = K_1 \times K_2
$$

Guldberg-Waage Law

$$
2\,\text{NO}_2 \leftrightarrows 2\,\text{NO} + \text{O}_2 \qquad \text{K}_1
$$

 $2 SO_2 + O_2 \leftrightarrows 2 SO_3$ K_2

 $NO₂ + SO₂ \leftrightarrows NO + SO₃$ $K₃ = ?$

$$
\mathbf{K}_3 = (\mathbf{K}_1 \times \mathbf{K}_2)^{1/2} = \sqrt{\mathbf{K}_1 \times \mathbf{K}_2}
$$

Attaining Chemical Equilibrium $H_2 + I_2 \rightarrow 2 H1$ 2 HI \rightarrow H₂ + I₂

LeChatelier's Principle

Reversibile reactions

If a chemical system at equilibrium experiences a change in concentration, temperature, volume, or partial pressure, then the equilibrium shifts to counteract the imposed change and a new equilibrium is established.

Henri LeChâtelier (1850-1936)

Addition of H_2

$$
K_C = \frac{[HI]^2}{[H_2][I_2]}
$$

Concentrations

K is const.

 $CO_2(g) + H_2(g) = H_2O(g) + CO(g)$ Trapping water, shift to right

NaCl (s) + $\mathsf{H}_2\mathsf{SO}_4\left(\mathsf{I}\right)\leftrightarrows\mathsf{Na}_2\mathsf{SO}_4\left(\mathsf{s}\right)$ + HCl (g) Gaseous HCl escapes, shift to right

 $\textsf{H}_2^{} \left(\textsf{g} \right)$ + $\textsf{I}_2^{} \left(\textsf{g} \right)$ \leftrightarrows 2HI $\left(\textsf{g} \right)$

Addition of inert N_2 , does not take part in reaction, no change in number of moles, no shift

Transfer of Oxygen and CO 2hemoglobin + \textsf{O}_2 $\, \, \leftrightarrows$ oxyhemoglobin Fe²⁺ highspin Fe²⁺ lowspin

O₂-hemoglobin ≒ hemoglobin ≒ CO-hemoglobin

 $\mathsf{H_2O}$ + CO₂ + CO₃ $2-52 HCO₃$

Pressure

Reactions with changing number of moles of gases $2 \text{ NO}_2(g) = N_2\text{O}_4(g)$ K is const.

$$
\Delta n_g = (n_{prod} - n_{react}) = 1 - 2 = -1
$$

W halved, p 2x bigger

$$
Q = \frac{1}{2} K_p
$$

Increased pressure shifts reaction to the right

equilibrium

Pressure

$N_2(g) + 3 H_2(g) = 2 NH_3(g)$ $\Delta H = -92$ kJ mol⁻¹

- the reaction is exothermic
- decreasing number of moles of gases

According to LeChatelier, the yield will be at ₍₁₈₆₈₋₁₉₃₄₎ maximum at high pressure and low NP in Chemistry 1918temperature At low temperature, the reaction is slow uses Fe catalyst to speed up Equilibrium Concentration **Conditions** 20-100 MPa and 400-600 °C

 H_2

NH.

Fritz Haber

Time

Pressure

$N_2(g) + 3 H_2(g) = 2 NH_3(g)$

Equilibrium Constant K $p V = n R T$ $p = (n / V) R T = c R T$

 $p = p_1 + p_2 + p_3 + \ldots$. Partial pressures

 $N_2(g) + 3 H_2(g) \leftrightarrows 2 NH_3(g)$

$$
K = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3} = \frac{G_{\text{NH}_3}^2}{(C_{\text{N}_2})(C_{\text{H}_2}^2)}
$$

$$
= \frac{\left(\frac{P_{\text{NH}_3}}{RT}\right)^2}{\left(\frac{P_{\text{N}_2}}{RT}\right)\left(\frac{P_{\text{H}_2}}{RT}\right)^3} = \frac{P_{\text{NH}_3}^2}{(P_{\text{N}_2})(P_{\text{H}_2}^2)} \times \frac{\left(\frac{1}{RT}\right)^2}{\left(\frac{1}{RT}\right)^4}
$$

$$
= \frac{P_{\text{NH}_3}^2}{(P_{\text{N}_2})(P_{\text{H}_2}^2)} (RT)^2
$$

$$
= K_{\text{p}} (RT)^2
$$

Equilibrium Constant K

 $jA + kB \leftrightarrows lC + mD$

K p $=\rm{K}_c\ (RT)^{\Delta n}$

 $\Delta n = (l + m) - (j + k)$

$$
K_{\mathbf{p}} = \frac{(P_{\mathbf{C}}^{l})(P_{\mathbf{D}}^{m})}{(P_{\mathbf{A}}^{l})(P_{\mathbf{B}}^{k})} = \frac{(C_{\mathbf{C}} \times RT)^{l}(C_{\mathbf{D}} \times RT)^{n}}{(C_{\mathbf{A}} \times RT)^{l}(C_{\mathbf{B}} \times RT)^{k}}
$$

$$
= \frac{(C_{\mathbf{C}}^{l})(C_{\mathbf{D}}^{m})}{(C_{\mathbf{A}}^{l})(C_{\mathbf{B}}^{k})} \times \frac{(RT)^{l+m}}{(RT)^{l+k}} = K(RT)^{(l+m)-(j+k)}
$$

$$
= K(RT)^{\Delta n}
$$

Heterogeneous Equilibria

CaCO $_3$ (*s*) \leftrightarrows CaO(*s*) + CO $_2$ (*g*) $\mathsf{K} = [\mathsf{CO}_2][\mathsf{CaO}] \text{ / } [\mathsf{CaCO}_3] = [\mathsf{CO}_2] = \mathsf{p}(\mathsf{CO}_2)$ Activity (concentration) of pure liquids and solids is constant and does not appear in K.

[CaO] = [CaCO $_{3}$] = const. $\;\;$ Addition does not change K

Heterogeneous Equilibria

 $2H_2O(l) \leftrightarrows 2H_2(g) + O_2(g)$ $K = [H_2]^2 [O_2]$ $K_p = p^2 (H_2) p(O_2)$

 $2H_2O(g) \Leftrightarrow 2H_2(g) + O_2(g)$ $K = [H_2]^2 [O_2] / [H_2 O]^2$ $K_p = p^2 (H_2) p(O_2) / p^2 (H_2 O)$

Δ**G0 ⁼**[−] **RT lnK**

Temperature

$$
\ln K = -\frac{\Delta G^0}{RT} = -\frac{\Delta H^0}{RT} + \frac{\Delta S^0}{R}
$$

K changes with T

Compare K at ${\sf T}_1$ and ${\sf T}_2$ \quad (K $_1$ and K $_2)$

$$
\ln K_2 = -\frac{\Delta H^0}{RT_2} + \frac{\Delta S^0}{R}
$$

van't Hoff equation

$$
\ln K_2 - \ln K_1 = \ln \frac{K_2}{K_1} = \frac{\Delta H^0}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)
$$

Temperature

2 NO $_{2}$ (g) $\, \leftrightarrows\, {\sf N}_{2}{\sf O}_{4}\, (\sf g)$ $\,$ $\vartriangle{\sf H}^\circ$ = $-$ 63 kJ mol $^{-1}$

$$
\ln \frac{K_2}{K_1} = \frac{\Delta H^0}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)
$$

Exothermic reactions shift to right

$$
T2 < T1
$$

on cooling = K incr., K₂ > K₁

Heat is a product in exothermic reaction 2 NO $_{2}$ (g) $\, \leftrightarrows\, \mathsf{N}_{2}\mathsf{O}_{4}\, (g) + \mathsf{Q}$

Equilibria in Exothermic Reactions

⎟ $\overline{}$

−

1 \bullet 2

⎞

 \int

 $\mathsf{N}_2(\mathsf{g})$ + 3 $\mathsf{H}_2(\mathsf{g}) \leftrightarrows 2\;\mathsf{NH}_3(\mathsf{g})\quad\;$ $\Delta\mathsf{H}^\circ$ = $-$ 92 kJ mol⁻¹

Yield decreases with increasing T

 $\overline{}$ $\overline{}$

 $\frac{1}{2}$ ΔH^0 | 1 | 1

 $=$ $\frac{\Delta}{\sqrt{2}}$

1

K

K

 \setminus

 \int

 $\rm 0$

 $\ln \frac{Z_2}{K_1} = \frac{Z_1}{R} \left(\frac{Z_1}{T_1} - \frac{Z_2}{T_2} \right)$

H

Decr. K and yield

\n
$$
K = \frac{[NH_3]^2}{[N_2][H_2]^3}
$$

57

Temperature

 $CaCO₃(s) = CaO(s) + CO₂(g)$ $\Delta H^{\circ} = 556$ kJ mol⁻¹

Endothermic reactions shift to right on heating ${\sf T_2}$ > ${\sf T_1}$

K incr, K $_{2}$ > K $_{1}$, K = p(CO $_{2})$

 $\ln \frac{K_2}{K_1} = \frac{\Delta H^0}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$

Heat is a reactant in endothermic reactions $CaCO₃(s) + Q \rightharpoonup CaO(s) + CO₂(q)$

Equilibrium Concentrations

 $H_2(g) + F_2(g) \leftrightarrows 2HF(g)$ K = 1.15 10² = [HF]² / [H₂][F₂] $[H_2]_0 = 1.00$ *M* $[F_2]_0 = 2.00$ *M* $[HF]_0 = 0$

K = 1.15 10 2 = [HF] 2 / [H 2][F 2] = (2 *x*) 2 / (1.00 − *^x*)(2.00 − *x*)

Equilibrium Concentrations

 $x_{1,2} = [$ $\mathsf{b} \pm (\mathsf{b}^2 -$ 4ac) ½] / 2a

*x*₁ = 2.14 mol l^{−1} a *x*₂ = 0.968 mol l^{−1}

Use *x*₂ = 0.968 mol l^{−1} [H 2] = 1.000 *M* − 0.968 *M* = 3.2 10-2 *M* [F 2] = 2.000 *M* − 0.968 *M* = 1.032 *M* [HF] = 2 (0.968 *M*) = 1.936 *M*