#### **Liquids Molecular** – vdW forces, H-bonds

**Metallic** – melted metals, ions + electrons, electrostatic forces

**lonic** – melted salts, FLINAK (LiF + NaF + KF), freely moving anions and cations, ion electric conductivity,  $EtNH_3^+NO_3^-$  m.p. 12 °C



Cl<sup>-</sup>, AlCl<sub>4</sub><sup>-</sup>, Al<sub>2</sub>Cl<sub>7</sub><sup>-</sup>, Al<sub>3</sub>Cl<sub>10</sub><sup>-</sup>, PF<sub>6</sub><sup>-</sup>, SnCl<sub>3</sub><sup>-</sup>, BCl<sub>3</sub><sup>-</sup>, BF<sub>4</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>, OSO<sub>2</sub>CF<sub>3</sub><sup>-</sup> (triflate), CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub><sup>-</sup>, N(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub><sup>-</sup>, PO<sub>4</sub><sup>3-</sup>,

### **Hole Theory of Liquids**

**Solids** (molecular) – close packing in lattice, molecules touch, vdW radii

Liquids – same nearest-neighbor distances as in solids, lower density, coordination number decreases with increasing temperature Ar (s) c.n. 12 Ar (l) c.n. 10 – 11 at melting, density lower by 12% Ar (l) c.n. 4 at critical temperature

**Liquids** – free space (voids) in nearly close packed structure, molecules with a high  $E_{kin}$  move through the structure, molecules with a low  $E_{kin}$  engage in vdW interactions

#### **Hole Theory of Liquids**

Two types of molecules in liquids:

molecules neighboring a vacation (hole) – similar to (g)
molecules surrounded by other molecules – similar to (s)

Structure of liquids is between regular structure of solids and random motion of gases.

E<sub>kin</sub> of liquid molecules is too high to keep them in lattice positions, but too low to leave vdW interactions and escape from a container

#### **Surface Tension**



Molecules on a **surface** of a liquid interact with other molecules **inside** liquid – unequal forces

A force in a **surface** of a liquid, that keeps the surface area at minimum – spherical shape.

Surface Tension = Energy to form 1 m<sup>2</sup> of new surface  $[N m^{-1} = J m^{-2}]$ 

4

#### **Surface Tension**

Surface Tension = Energy to form new surface = to take molecules from inside a liquid (strongly held) and bring them to surface (weakly bound)

Free surface energy E

 $E = \gamma S$   $\gamma = surface tension [N m<sup>-1</sup> = J m<sup>-2</sup>]$ S = surface area

 $F = \gamma I$  [N m<sup>-1</sup> = J m<sup>-2</sup>]

dE



#### **Surface Tension**

Vodoměrka Desinfection Surfactants - soaps

| Phase boundary (T = 20 °C) | γ, Si |
|----------------------------|-------|
| Water / Air                | 72.7  |
| Hg / Air                   | 472   |
| Benzene / Air              | 28.8  |
| Water / Air (100 °C)       | 58.0  |
|                            |       |

#### γ, Surface tension [mJ m<sup>-2</sup>]



#### **Surface Tension of Water**



### **Surface Tension Meaurements**



Tensiometer Plate - Wilhelmy

Tensiometer Ring – DeNouy

 $2 \pi D \gamma = F$ 

Hanging droplet

dE'

JC

# Paper Chromatography



#### Viscosity

Internal friction, resistance to flow Increases with intermolecular forces:



Increases with chain length, entanglement Decreases with increasing temp  $\eta = A \exp(E / RT)$ 

Stokes equation  $F = 6 \pi \eta r v$   $\eta = viscosity [kg m^{-1} s^{-1}]$  r = ball radiusv = speed



10

#### **Evaporation and Condensation**

Molecules at surface with sufficient  $E_{kin}$  and correct movement direction can overcome vdW forces and surface tension and leave liquid to gas phase even below boiling point

Evaporation of liquid = Energetically rich molecules leave – liquid cools

**Condensation** = collisions of vapor molecules (g) with surface (I), loss of  $E_{kin}$ , molecules trapped by vdW forces into (I)

vaporization and condensation enthalpy

 $\Delta H_{vap} > 0$  endo  $\Delta H_{condi} < 0$  exo





#### Vapor pressure increases with temp (760 torr = 101.325 kPa)







| Temp.        | 20 °C | 25 °C | 50 °C |
|--------------|-------|-------|-------|
| Compound     |       |       |       |
| Water        | 17.5  | 23.8  | 92.5  |
| Diethylether | 377   | 470   | 1325  |

[torr]

#### **Vapor Pressure and Kinetic Theory**



## **Vapor Pressure and Temperature**



Kinetic energy



17

Boiling point = temp, at which vapor pressure equals ambient pressure

Normal boiling point = temp, at which vapor pressure equals ambient pressure of 101.325 kPa

Sublimation point = temp, at which vapor pressure of a solid equals ambient pressure

Normal sublimation point = temp, at which vapor pressure of a solid equals ambient pressure of 101.325 kPa

18

**Boiling and sublimation** can be induced by heating or lowering ambient pressure

# Normal Boiling Points of Group 14– 17 Hydrides





# p-T Phase Diagram

#### **Critical Point of Benzene**

307.4 °C



Phase boundary (meniscus) between I and g disappears

309.2 °C

## Water Density (g, l, s)



#### p-T Phase Diagram



Increasing pressure decreases melting point of water = anomaly

Increasing pressure causes solidification of liquid

#### **Clausius-Clapeyron Equation**

**Clapeyron eq. of phase transition** 

For I-g equil: 1)  $V_m(g) >> V_m(I)$ , then  $\Delta V_m = V_m(g)$ 2)  $V_m(g)$  from id. gas eq.

**Differential Clausius-Clapeyron eq.** 

$$\frac{d\ln p}{dT} = \frac{\Delta H_m}{RT^2}$$

$$V_m(g) = \frac{RT}{p}$$

24

m

m

 $T\Delta V$ 

Integrated Clausius-Clapeyron eq.

$$\ln\left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right) = \frac{-\Delta \mathbf{H}}{\mathbf{R}}\left(\frac{1}{\mathbf{T}_2} - \frac{1}{\mathbf{T}_1}\right)$$

dp

dT

## **Antoine Equation**

$$\log_{10} p = A - \frac{B}{C+T}.$$

p = vapor pressure (bar) T = temp (K)

#### Water

| Temp. interval (K) | Α       | В        | С        |
|--------------------|---------|----------|----------|
| 379 573.           | 3.55959 | 643.748  | -198.043 |
| 273 303.           | 5.40221 | 1838.675 | -31.737  |
| 304 333.           | 5.20389 | 1733.926 | -39.485  |
| 334 363.           | 5.07680 | 1659.793 | -45.854  |
| 344 373.           | 5.08354 | 1663.125 | -45.622  |

#### **Trouton Rule**

 $\Delta G = 0$  in equilibrium, at phase transitions  $\Delta G = \Delta H - T\Delta S = 0$ 

For different liquids (nonpolar) at normal
boiling point, vaporization molar entropy is roughly the same:

 $\Delta S$ 

$$\Delta S_{m,vap}^{0} = \frac{\Delta H_{m,vap}^{0}}{T_{b}} = 90JK^{-1}mol^{-1}$$

liquid

Not true for water at 100 °C – very strong H bonds = ordered structure = small entropy of liquid water  $\Delta S^{0}_{vap} = 109 \text{ J K}^{-1} \text{ mol}^{-1}$ 

## Diffusion

In liquids and gases, in solids at increased temperature

Spontaneous mixing of compounds Mass transfer Equalization of concentrations Result of random movements of molecules



First Fick's law

for diffusion flux J



#### **First Fick's Law**

