Solutions

Homogeneous mixture of molecules in gas, liquid or solid phase

• True solutions

Micellar and colloidal solutions (suspensions):
 particles 1 nm – 10 mm

Tyndall effect – light dispersion

1

Types of Solutions

Comp 1	Comp 2	State	Example
G	G	G	Air
G	L	L	Carbonated water (CO ₂)
G	S	S	H ₂ (850 cm ³) in Pd(1 cm ³)
L	L	L	Ethanol in water
S	L	L	NaCl in water
S	S	S	Brass (Cu/Zn) Solder (Sn/Pb) 2

Composition of Solutions

Mass fraction and percent w/w

$$\frac{1 = \text{solvent}}{2 = \text{solute}}$$

Volume fraction and percent v/v

$$v\% = \frac{V_2}{\Sigma V_i} 100$$

Before mixing

Mass concentration w/v g cm⁻³

$$c = \frac{m_2}{V_{solution}} = \frac{m_2 \rho_{solution}}{m_{solution}}$$

Composition of Solutions

Molar concentration [mol I⁻¹]

$$c_M = \frac{n_2}{V_{solution}}$$

Molal concentration [mol kg⁻¹] Does not depend on T

$$c_m = \frac{n_2}{m_1}$$

1 = solvent2 = solute

Molar fraction

$$x_i = \frac{n_i}{n_1 + n_2 + \dots + n_i + \dots}$$

Composition of Solutions

ppm	1 part in 10 ⁶ parts
ppb	1 part in 10 ⁹ parts
ppt	1 part in 10 ¹² parts

Solubility

Complicated process – no simple theory of solubility

Empirical rule : Like dissolves like

Good solubility :

Polar compounds in polar solvents (water, acetone, alcohols, CH_3CN , DMF, DMSO,....)

Nonpolar compounds in nonpolar solvents (CCl₄, alkanes, benzene,...)

Factors Influencing Solubility

- 1. Solute type
- 2. Solvent type

Like dissolves Like !

- 3. Temperature
- 4. Pressure (gases Henry's Law)
- 5. Other dissolved compounds salting out

Solubility in Water and Hexane

TABLE 13.3 Solubilities of Some Alcohols in Water and in Hexane

Alcohol	Solubility in H ₂ O ^a	Solubility in C ₆ H ₁₄
CH ₃ OH (methanol)	∞	0.12
CH_3CH_2OH (ethanol)	∞	∞
CH ₃ CH ₂ CH ₂ OH (propanol)	∞	∞
$CH_3CH_2CH_2CH_2OH$ (butanol)	0.11	∞
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH (pentanol)	0.030	∞
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH (hexanol)	0.0058	∞
CH ₃ CH ₂ OH (heptanol)	0.0008	∞

Solvent – Solute Interactions

Dissolution in 3 steps

1. Separation of solute molecules

Usually endothermic $(+\Delta H_{AA})$ process except dissolution of gases. Lattice energy for ionic compounds. Increase of entropy $(+\Delta S)$

2. Formation of voids in solvent

Usually endothermic (+ Δ H_{BB}) process except dissolution in gases.

3. Solvatation of solute molecules by solvent

Usually exothermic (– ΔH_{AB}) process except dissolution of gases in gases. (+ ΔS)

$$\Delta H_{diss} = \Delta H_{AA} + \Delta H_{BB} + \Delta H_{AB}$$

9

Dissolution in 3 Steps

Solvent – Solute Interactions

In case that dissolution is energetically neutral or slightly endothermic (+ Δ H), it can still proceed because of the entropic driving force (+ Δ S) !

Entropy of mixing is always positive. A mixture has higher entropy than pure components.

 $\Delta \mathbf{G}^{\mathbf{0}} = \Delta \mathbf{H}^{\mathbf{0}} - \mathbf{T} \Delta \mathbf{S}^{\mathbf{0}}$

 $\Delta G^0 < 0$

Ideal and Nonideal Solutions

Solution Enthalpy

NaOH in water NH₄NO₃ in water $\Delta H_{soln} = -44.48 \text{ kJ mol}^{-1}$ $\Delta H_{soln} = +26.4 \text{ kJ mol}^{-1}$

Solvent – Solute Interactions

Solubility depends on enthalpy ΔH and entropy ΔS of solution

 $\Delta \mathbf{G}^{\mathbf{0}} = \Delta \mathbf{H}^{\mathbf{0}} - \mathbf{T} \, \Delta \mathbf{S}^{\mathbf{0}}$

Hydration - Solvation

Dissolution of NaCl

Solution Enthalpies

Table 12.5 Enthalpies of solution, ΔH_{sol} , at 25°C for very dilute aqueous solutions, in kilojoules per mole*

Anion								
Cation	fluoride	chloride	bromide	iodide	hydroxide	carbonate	nitrate	sulfate
lithium	+4.9	-37.0	-48.8	-63.3	-23.6	-18.2	-2.7	-29.8
sodium	+1.9	+3.9	-0.6	-7.5	-44.5	-26.7	+20.4	-2.4
potassium	-17.7	+17.2	+19.9	+20.3	-57.1	-30.9	+34.9	+23.8
ammonium	-1.2	+14.8	+16.0	+13.7			+25.7	+6.6
silver	-22.5	+65.5	+84.4	+112.2	2 1 22	+41.8	+22.6	+17.8
magnesium	-12.6	-160.0	-185.6	-213.2	+2.3	-25.3	-90.9	-91.2
calcium	+11.5	-81.3	-103.1	-119.7	-16.7	-13.1	-19.2	-18.0
aluminum	-27	-329	-368	-385	<u> </u>	_		-350.

"The value for silver iodide, for example, is the entry found where the row labeled "silver" intersects the column labeled "iodide." A positive value of $\Delta H_{\rm rot}$ indicates an endothermic process.

Solubility and Temperature

Solubility with increasing temperature

- Increases (majority, 95%)
- Consatnt (NaCl)
- Decreases (ususally sulfates)

Solubility and Temperature

Fractional crystallization

Solubility of gases and Temperature

Henry's Law

Molar solubility increases with partial pressure of the component S [mol I^{-1}] = const × partial pressure (at const. T)

$$S_2 = k_H \times P_2$$

Table 12.4 Henry's law constants for gases in water at 20°C

Gas	k _H , mol/L∙atm		
air	7.9×10^{-4}		
argon	1.5×10^{-3}		
carbon dioxide	2.3×10^{-2}		
helium	3.7×10^{-4}		
hydrogen	8.5×10^{-4}		
neon	5.0×10^{-4}		
nitrogen	7.0×10^{-4}		
oxygen	1.3×10^{-3}		

Henry's Law

Molar solubility increases with partial pressure of the component

Electrolytic Dissociation

In water NaCl \rightarrow Na⁺ + Cl⁻

strong electrolytes

HCN \leftrightarrows H⁺ + CN⁻ Dissociation degree $\alpha = n_{disoc} / n_0$ weak electrolytes

Svante Arrhenius (1859-1927) NP in Chemistry1903

Dissociation constant

 $K_d = \frac{\left[H^+\right]\left[CN^-\right]}{\left[HCN\right]}$

 $[H^+] = [CN^-] = \alpha [HCN]_0$ $[HCN] = (1 - \alpha) [HCN]_0 \qquad \alpha << 1$

 $K_{d} = (\alpha [HCN]_{0})^{2} / (1 - \alpha) [HCN]_{0} = \alpha^{2} [HCN]_{0}$

Ostwald Dilution Law

 $K_{d} = (\alpha [HCN]_{0})^{2} / (1 - \alpha) [HCN]_{0} = \alpha^{2} [HCN]_{0}$

$$\alpha^2 = \frac{K_d}{[HCN]_0}$$

With increasing concentration of electrolyte dissociation degree decreases

Dilution increases dissociation degree

 $F = const q_1 q_2 / r^2$

Dilution increases interionic distances, r, attractive force decreases

Electrolytic Conductivity

Electrolytic Conductivity

Ionic compound solutions

Free moving of ions Charge cerriers

> Electrical resistance, R [I = lengthA = area $\rho = \text{specific resistivity}$ [Ω

 ρ = specific resistivity [Ω m]

 $\sigma = 1 / \rho =$ specific conductivity

Molar conductivity, $\Lambda = \sigma / c$ Λ decreases with incr concentration²⁷

Electrolyte Activity

Asociation of ions at increasing concentration, ion pairs Number of particles decrease Conductivity decreasses – ion pairs do not carry electric current. Only free ions remain active – correction of concentration for **association**

Activity, a

 $a = \gamma_{\pm} c$

Mean activity coefficient, g_{\pm} (values 0 – 1) log $\gamma_{\pm} = -0.509 | z_{+} z_{-} | \sqrt{I}$ $z_{+} z_{-}$ ion charges

Ionic strength of solution, $I = \frac{1}{2} \sum c_i z_i^2 - c_i \text{ molality [mol <math>\Re g^{-1}$]

Mean Activity Coefficient, γ_{\pm}

Molality [mol kg⁻¹]

Comp.	0.001	0.01	0.1	
HCI	0.966	0.904	0.796	
NaCl	0.966	0.904	0.780	at 25
BaCl ₂	0.880	0.729	0.512	
ZnSO ₄	0.700	0.387	0.150	

$$= \frac{1}{2} \sum C_i Z_i$$

 $\log \gamma_{\pm} = -0.509 \mid z_{+} \mid z_{-} \mid \sqrt{1}$

°C

Solubility Product

 $x [A(H_2O)_n]^{y+} + y B(H_2O)_n]^{x-}$

hydratované (solvatované) ionty

tuhá látka, krystal

Solubility product: $K_s = [A]^x [B]^y$

 H_2O

Conditions:

- Strong electrolyte, 100% dissociation
- Ionic strength $I = \frac{1}{2} \Sigma c_i z_i^2 = 0$
- Activity coefficients $\gamma = 1$
- No extra ions or side reactions

Fulfilled only rarely!

Solubility Product

Solid phase activity = 1

Solubility Product

 $K_{s} = [A]^{x} [B]^{y} = (x R)^{x} (y R)^{y}$

R = Solubility

$$R = \left(\frac{K_s}{x^x y^y}\right)^{\frac{1}{x+y}}$$

Table 16.5 Solubility products at 25°C

Compound	Formula	K _{ep}	Compound	Formula	K _{sp}
aluminum hydroxide	Al(OH)3	$1.0 imes 10^{-33}$	fluoride	PbF ₂	3.7×10^{-8}
antimony sulfide	Sb ₂ S ₃	1.7×10^{-93}	iodate	$Pb(IO_3)_2$	2.6×10^{-13}
barium carbonate	BaCO,	8.1×10^{-9}	iodide	PbI ₂	1.4×10^{-6}
fluoride	BaF ₂	$1.7 imes 10^{-6}$	suitate	PDSO ₄	1.6×10^{-29}
sulfate	$BaSO_4$	$1.1 imes 10^{-10}$	sunde	105	0.0 ^ 10
bismuth sulfide	Bi ₂ S ₃	$1.0 imes10^{-97}$	magnesium	MANUE DO	a = v 10-11
calcium carbonate	CaCO ₁	8.7×10^{-9}	carbonate	MgNH ₄ PO ₄ MgCO	1.0×10^{-5}
fluoride	CaF ₂	4.0×10^{-11}	fluoride	MgE.	64×10^{-9}
hydroxide	Ca(OH) ₂	5.5×10^{-6}	hydroxide	Mg(OH),	1.1×10^{-11}
sulfate	$CaSO_4$	2.4×10^{-5}	mercury(I) chloride	He.Cl.	1.3×10^{-18}
copper(I) bromide	CuBr	4.2×10^{-8}	iodide	Hg ₃ I ₅	1.2×10^{-28}
chloride	CuCl	1.0×10^{-6}	mercury(II) sulfide, black	HøS	1.6×10^{-52}
iodide	Cul	5.1×10^{-12}	sulfide, red	HgS	1.4×10^{-53}
sulfide	Cu ₂ S	$2.0 \times 10^{-3.0}$	nickel(II) hydrovide	Ni(OH).	6.5×10^{-18}
copper(II) iodate	$Cu(IO_3)_2$	1.4×10^{-7}	cilvar bramida	AmBr	77 × 10 ⁻¹³
oxalate	$Cu(C_2O_4)$	2.9×10^{-3}	carbonate	Ag.CO	6.7×10^{-12}
sumde	Cus	1.3×10^{-20}	chloride	AgCl	1.6×10^{-10}
iron(II) hydroxide	Fe(OH) ₂	1.6×10^{-14}	hydroxide	AgOH	1.5×10^{-8}
sulfide	FeS	6.3×10^{-10}	iodide	Agl	8.0×10^{-17}
iron(III) hydroxide	Fe(OH) ₃	2.0×10^{-39}	sulfide	Ag ₂ S	6.3×10^{-51}
lead(II) bromide	PbBr ₂	$7.9 imes10^{-5}$	zinc hydroxide	Zn(OH)	2.0×10^{-17}
chloride	PbCl ₂	1.6×10^{-5}	sulfide	ZnS	1.6×10^{-24}

Colligative Properties

Properties of solutions that do not depend on the kind of solute but only on its amount number of molecules.

- Vapor pressure
 - Lowering the vapor pressure by dissolved solute
- Boiling point
 - Boiling point elevation by dissolved solute = ebulioscopic effect
- Melting point
 - Melting point depression by dissolved solute = cryoscopic effect
- Osmosis
 - Osmotic pressure = difference of concentrations of dissolved compounds

Lowering the Vapor Pressure

- Addition of solute to the solvent lowers the vapor pressure by two mechanisms:
- 1. Increased entropy decreases driving force to evaporation
- 2. Dilution of solvent decreases number of molecules capable of leaving the surface of solution

36

Lowering the Vapor Pressure of a Solution

Dilution of solvent decreases number of molecules capable of leaving the surface of solution

Raoult's Law

Vapor pressure of solvent above a solution

 $p_{solvent} = x_{solvent} P^{0}_{solvent}$ $p_{tot} = p_{solvent} + p_{solute}$ = 0 for nonvolatile compounds $p_{tot} = x_{solvent} P^{0}_{solvent}$

Raoult's Law $P_1 = x_1 P_1^{\circ}$ $(x_1 = solvent)$ $x_1 = 1 - x_2$ $(x_2 = solute)$ $P_1 = (1 - x_2) P_1^{\circ}$ $P_1 = P_1^{\circ} - x_2 P_1^{\circ}$ $P_1^{\circ} - P_1 = \Delta P_1 = x_2 P_1^{\circ}$ Lowering of vapor pressure

Two volatile compounds, A and B $P_A = x_A P_A^{\circ}$ $P_B = x_B P_B^{\circ}$ $P_{tot} = P_A + P_B = x_A P_A^{\circ} + x_B P_B^{\circ}$

Boiling Point Elevation and Melting Point Depression

0

Boiling Point Elevation

Boiling Point = temperature at which the vapor pressure equals the ambient pressure

Boiling Point Elevation

 $\Delta T_b = i k_b c_m$ i = van't Hoff factor, number of particles $k_b = ebullioscopic constant$ $c_m = molality [mol kg^{-1}]$

Melting Point Depression

 $\Delta T_{f} = i k_{f} c_{m}$

i = van't Hoff factor, number of particles k_f = cryoscopic constant c_m = molality [mol kg⁻¹]

Solvent	Freezing point, °C	k _₽ K∙kg/mol	Boiling point, °C	k _b , K∙kg/mol
acetone	-95.35	2.40	56.2	1.71
benzene	5.5	5.12	80.1	2.53
camphor	179.8	39.7	204	5.61
carbon tetrachloride	-23	29.8	76.5	4.95
cyclohexane	6.5	20.1	80.7	2.79
naphthalene	80.5	6.94	217.7	5.80
phenol	43	7.27	182	3.04
water	0	1.86	100.0	0.51

Osmosis

Osmosis

Osmotic Pressure

 $\Pi = c_M R T$ for ionic solutions $\Pi = i c_M R T$ c_M = molar concentration R = gas constant P = osmotic pressure T = temperature, K i = van't Hoff factor

Similar to ideal gas equation. Similar effect = molecular collisions create pressure

Osmosis

Dialysis – separation of large molecules from solution, small molecules pass through the membrane

Isotonic solution

Hypotonic solution

Hypertonic solution

Colloidal Systems

- Colloids are suspensions with particles larger than molecules, but small enough to resist gravitational precipitation. Size 10 tp 2000 Å.
- Types of colloids:
 - aerosols (g + l or s, fog, smoke)
 - foam (I + g, whip cream, beer foan
 - emulsion (I + I, milk)
 - sol (I + s, paint)
 - solid foam (s + g, marshmallow),
 - solid emulsion (s + l, butter),
 - solid sol (s + s, ruby glass).

Micell

Colloidal Systems

Lyophilic colloids, TD stable

High molecular weight (solution of polystyrene in acetone, solution protein or nucleic acid in water

Micellar Aggregation of solute molecules – micells (10 - 1000 particles)

Lyophobic colloids, TD unstable Must be stirred or protective micellar layer