Solutions

Homogeneous mixture of molecules in gas, liquid or solid phase

• **True** solutions

• **Micellar and colloidal** solutions (suspensions): particles 1 nm – 10 mm

Tyndall effect – light dispersion

1

Types of Solutions

Composition of Solutions

Mass fraction and percent w/w

$$
1 = \text{solvent}
$$
\n
$$
w\% = \frac{m_2}{m_{solution}} 100
$$
\n
$$
2 = \text{solute}
$$

Volume fraction and percent v/v

$$
v\% = \frac{V_2}{\Sigma V_i} 100
$$

Before mixing

Mass concentration w/v g cm-³ *solution*

$$
c = \frac{m_2}{V_{solution}} = \frac{m_2 \rho_{solution}}{m_{solution}}
$$

Composition of Solutions

Molar concentration [mol l^{−1}]

$$
c_M = \frac{n_2}{V_{solution}}
$$

Molal concentration [mol kg^{−1}] Does not depend on T

$$
c_m = \frac{n_2}{m_1}
$$

 $1 =$ solvent $2 =$ solute

Molar fraction

$$
x_i = \frac{n_i}{n_1 + n_2 + \dots + n_i + \dots}
$$

Composition of Solutions

Solubility

Complicated process – no simple theory of solubility

Empirical rule : Like dissolves like

Good solubility :

Polar compounds in polar solvents (water, acetone, alcohols, CH₃CN, DMF, DMSO,....)

Nonpolar compounds in nonpolar solvents $(CCI₄,$ alkanes, benzene,...)

Factors Influencing Solubility

- 1. Solute type
- 2. Solvent type

Like dissolves Like !

- 3. Temperature
- 4. Pressure (gases Henry's Law)
- 5. Other dissolved compounds salting out

Solubility in Water and Hexane

TABLE 13.3 Solubilities of Some Alcohols in Water and in Hexane

Solvent – Solute Interactions

Dissolution in 3 steps

1. Separation of solute molecules

Usually endothermic (+ $\Delta H_{\rm AA}$) process except dissolution of gases. Lattice energy for ionic compounds. Increase of entropy (+ ΔS)

2. Formation of voids in solvent

Usually endothermic (+ Δ H $_{\rm BB}$) process except dissolution in $\,$ gases.

3. Solvatation of solute molecules by solvent

Usually exothermic ($-\left.\Delta \mathsf{H}_{\mathsf{AB}}\right)$ process except dissolution of gases in gases. (+ ΔS)

$$
\Delta H_{\text{diss}} = \Delta H_{AA} + \Delta H_{BB} + \Delta H_{AB}
$$

9

Dissolution in 3 Steps

Solvent – Solute Interactions

In case that dissolution is energetically neutral or slightly endothermic (+ ΔH), it can still proceed because of the entropic driving force (+ ΔS) !

Entropy of mixing is always positive. A mixture has higher entropy than pure components.

Δ**G0 =**Δ**H0** −**T**Δ**S0**

Δ**G0 < 0**

Ideal and Nonideal Solutions

Solution Enthalpy

NaOH in water NH ⁴NO 3 in water

 Δ H_{soln} = − 44.48 kJ mol^{−1} Δ H_{soln} = + 26.4 kJ mol ^{–1}

Solvent – Solute Interactions

Solubility depends on enthalpy $\Delta \mathsf{H}$ and entropy Δ S of solution

 $\Delta \mathbf{G^0} = \Delta \mathbf{H^0} - \mathbf{T} \, \Delta \mathbf{S^0}$

Hydration - Solvation

Dissolution of **NaCl**

Solution Enthalpies

Table 12.5 Enthalpies of solution, ΔH_{solv} at 25°C for very dilute aqueous solutions, in kilojoules per mole*

		Anion						
Cation	fluoride	chloride	bromide	iodide	hydroxide	carbonate	nitrate	sulfate
lithium	$+4.9$	-37.0	-48.8	-63.3	-23.6	-18.2	-2.7	-29.8
sodium	$+1.9$	$+3.9$	-0.6	-7.5	-44.5	-26.7	$+20.4$	-2.4
potassium	-17.7	$+17.2$	$+19.9$	$+20.3$	-57.1	-30.9	$+34.9$	$+23.8$
ammonium	-1.2	$+14.8$	$+16.0$	$+13.7$	\longrightarrow	\sim	$+25.7$	$+6.6$
silver	-22.5	$+65.5$	$+84.4$	$+112.2$	\sim	$+41.8$	$+22.6$	$+17.8$
magnesium	-12.6	-160.0	-185.6	-213.2	$+2.3$	-25.3	-90.9	-91.2
calcium	$+11.5$	-81.3	-103.1	-119.7	-16.7	-13.1	-19.2	-18.0
aluminum	-27	-329	-368	-385				$-350.$

"The value for silver iodide, for example, is the entry found where the row labeled "silver" intersects the column labeled "iodide." A positive value of ΔH_{rel} indicates an endothermic process.

Solubility and Temperature

Solubility with increasing temperature

- Increases (majority, 95%)
- Consatnt (NaCl)
- Decreases (ususally sulfates)

Solubility and Temperature

19

Fractional crystallization

Solubility of gases and Temperature

Henry's Law

Molar solubility increases with partial pressure of the component S $[mol I^{-1}]$ = const × partial pressure (at const. T)

 $\mathsf{S}_2^{}=\mathsf{k}_\mathsf{H}^{}\times \mathsf{P}_2^{}$

Table 12.4 Henry's law constants for gases in water at 20°C

Henry's Law

Molar solubility increases with partial pressure of the component

$$
S_2 = k_H P_2
$$

Electrolytic Dissociation

In water NaCl \rightarrow Na⁺ + Cl⁻

strong electrolytes

 $HCN \; \; \Rightarrow \; H$ + + CN Dissociation degree α = N $_{\rm{disoc}}$ / N $_{\rm{0}}$

weak electrolytes

Svante Arrhenius(1859-1927) NP in Chemistry1903

Dissociation constant

 $\overline{}$ **]**
। $\overline{}$ **]**
। $\big[$ *HCN* $\big]$ *H CN K d* +−= .

 $[\mathsf{H}^{\scriptscriptstyle +}] = [\mathsf{CN}^{\scriptscriptstyle -}] = \alpha \; [\mathsf{HCN}]_0$ [HCN] = (1 α) [HCN] $_0$ \qquad α << 1

 $\mathsf{K}_{\mathsf{d}} = (\alpha \; [\mathsf{HCN}]_0)^2 / \left(1 - \alpha\right) \left[\mathsf{HCN}\right]_0 = \alpha$ $^2\left[\mathsf{HCN}\right]_0$

Ostwald Dilution Law

 $\mathsf{K}_{\mathsf{d}} = (\alpha \; [\mathsf{HCN}]_0)^2 / \left(1 - \alpha\right) \left[\mathsf{HCN}\right]_0 = \alpha$ $^2\left[\mathsf{HCN}\right]_0$

$$
\alpha^2 = \frac{K_d}{[HCN]_0}
$$

With increasing **concentration of** electrolyte **dissociation degree decreases**

Dilution increases **dissociation degree**

 $\mathsf F = \mathsf{const} \mathsf{q}_1 \mathsf{q}_2$ / r 2

25Dilution increases interionic distances, r, attractive force decreases

Electrolytic Conductivity

Electrolytic Conductivity

Ionic compound solutions

Free moving of ions Charge cerriers

> Electrical resistance, R [$l =$ length $A = area$

 ρ = specific resistivity [Ω m]

 σ = 1 / ρ = specific conductivity

 Λ decreases with incr concentration²⁷ Molar conductivity, Λ Λ = σ / c

Electrolyte Activity

Asociation of ions at increasing concentration, ion pairs Number of particles decrease Conductivity decreasses – ion pairs do not carry electric current. Only free ions remain active – correction of concentration for **association**

Activity, ^a

 $\mathsf{a}=\gamma_\pm$ c

Mean activity coefficient, $\mathsf{g}_\pm^{}$ (values 0 – 1) log γ_\pm = – 0.509 | z $_+$ z $_-$ | $\sqrt{}$ l $^ \qquad$ \qquad z $_+$ z $_-$ ion charges

29 Ionic strength of solution, I = ½ Σ c_i z_i² c_i molality [mol kg−1]

Mean Activity Coefficient, γ±

Molality [mol kg[⊣]]

$$
\mathsf{at}~25~^\circ\mathsf{C}
$$

 $I = \frac{1}{2} \sum_{i} c_i^2$

 $\log\,\gamma_{\pm}\,{=}\,-\,0.509$ | z $_{+}$ z $_{-}$ | $\sqrt{}$ |

Solubility Product

 $A_X B_Y (s)$ $\longrightarrow X [A(H_2O)_n]Y^+ + Y B(H_2O)_n]X^-$

hydratované (solvatované) ionty

tuhá látka, krystal

Solubility product: $\mathsf{K}_\mathrm{s} = [\mathsf{A}]^\mathsf{x} \, [\mathsf{B}]^\mathsf{y}$

H2O

Conditions:

- Strong electrolyte, 100% dissociation
- Ionic strength $I = \frac{1}{2} \sum c_i z_i^2 = 0$
- \bullet Activity coefficients γ = 1
- No extra ions or side reactions

Fulfilled only rarely!

Solubility Product

Solid phase activity $= 1$

Solubility Product

 $\mathsf{K}_\mathsf{s} = [\mathsf{A}]^\mathsf{x} \ [\mathsf{B}]^\mathsf{y} = (\mathsf{x} \ \mathsf{R})^\mathsf{x} \ (\mathsf{y} \ \mathsf{R})^\mathsf{y}$

 $R =$ Solubility

$$
R = \left(\frac{K_s}{x^x y^y}\right)^{\frac{1}{x+y}}
$$

Table 16.5 Solubility products at 25°C

Colligative Properties

Properties of solutions that do not depend on the kind of solute but only on its amount number of molecules.

- Vapor pressure
	- Lowering the vapor pressure by dissolved solute
- Boiling point
	- Boiling point elevation by dissolved solute = ebulioscopic effect
- Melting point
	- Melting point depression by dissolved solute = cryoscopic effect
- Osmosis
	- – Osmotic pressure = difference of concentrations of dissolved compounds

Lowering the Vapor Pressure

- Addition of solute to the solvent lowers the vapor pressure by two mechanisms:
- 1. Increased entropy decreases driving force to evaporation
- 2. Dilution of solvent decreases number of molecules capable of leaving the surface of solution

Lowering the Vapor Pressure of a Solution

Dilution of solvent decreases number of molecules capable of leaving the surface of solution

Raoult's Law

Vapor pressure of solvent above a solution

 $P_{\text{solvent}} = X_{\text{solvent}} P^0$ solvent ${\sf p}_{\sf tot} = {\sf p}_{\sf \; solvent} + {\sf p}_{\sf \; solute}$ = 0 for nonvolatile compounds ${\sf p}_{\sf tot} = {\sf x}\;_{{\sf solvent}}\;{\sf P}^0\;_{{\sf solvent}}$

Raoult's Law $P_1 = X_1 P_1^{\circ}$ $(x_1 =$ solvent) $x_1 = 1 - x_2$ $(x₂ = solute)$ P_1 = (1- x_2) P_1 ° $\mathsf{P}_\mathsf{1} = \mathsf{P}_\mathsf{1}$ ° - $\mathsf{x}_\mathsf{2} \mathsf{P}_\mathsf{1}$ ° P_1° - $P_1 = \Delta P_1 = x_2 P_1^{\circ}$ Lowering of vapor pressure

Two volatile compounds, A and B $P_A = X_A P_A^{\circ}$ $P_B = x_B P_B^{\circ}$ $P_{\text{tot}} = P_{A} + P_{B} = x_{A} P_{A}^{o} + x_{B} P_{B}^{o}$

Boiling Point Elevation and Melting Point Depression

 $\overline{0}$

Boiling Point Elevation

Boiling Point = temperature at which the vapor pressure equals the ambient pressure

Boiling Point Elevation

 Δ T $_{\sf b}$ = i k $_{\sf b}$ C $_{\sf m}$ $i = \text{van'}$ t Hoff factor, number of particles k_b = ebullioscopic constant c_m = molality [mol kg⁻¹]

Melting Point Depression

 $\Delta {\sf T}_{\sf f}$ = i k_f c_m

i = van't Hoff factor, number of particles k_f = cryoscopic constant c_m = molality [mol kg^{−1}]

Osmosis

Osmosis

Osmotic Pressure

 Π = \textsf{c}_{M} R T for ionic solutions Π = i c_M R T

 c_M = molar concentration $R = gas constant$ P = osmotic pressure $T =$ temperature, K i = van't Hoff factor

Similar to ideal gas equation. Similar effect = molecular collisions create pressure

Osmosis

Dialysis – separation of large molecules from solution, small molecules pass through the membrane

Isotonic solution

Hypotonic solution

Hypertonic solution

Colloidal Systems

- \bullet Colloids are suspensions with particles larger than molecules, but small enough to resist gravitational precipitation. Size 10 tp 2000 Å.
- \bullet Types of colloids:
	- aerosols (g + l or s, fog, smoke)
	- foam (I + g, whip cream, beer foan
	- emulsion (l + l, milk)
	- sol (I + s, paint)
	- solid foam (s + g, marshmallow),
	- solid emulsion (s + l, butter),
	- solid sol (s + s, ruby glass).

Micell

Colloidal Systems

Lyophilic colloids, TD stable

High molecular weight (solution of polystyrene in acetone, solution protein or nucleic acid in water

Micellar Aggregation of solute molecules – micells (10 - 1000 particles)

Lyophobic colloids, TD unstable Must be stirred or protective micellar layer