

Acids

Gerber - Jabir ibn Hayyan (721-815) Andreas Libau (Libavius) (1540-1616)

Gerber – prepared HNO_3 , HCI and *aqua regia* (from H_2SO_4 and salts, isolated citric, acetic, and tartaric acids Libavius - prepared HCI and *aqua regia* (dissolves Au)

The world highest tonnage per annum chemical commodity: H_2SO_4

Acids

R. Boyle (1627 - 1691): changes of color of litmus
L. Lavoisier (1743-1794) : Oxygenium = acid forming
Oxides of nonmetals reacts with water to acids
H. Davy (1779-1829)
J. Liebig (1803-1873)

Hydrogen is released during reactions of acids with metals = H governs acidic properties

Arrhenius Theory of Acids and Bases

Acids: Taste acidic Release H⁺ in aqueous soln. Reacts with base metals with release of H₂ K, Ca, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb Color litmus red (R. Boyle) Neutralize bases

Svante Arrhenius (1859-1927)

Bases: Taste bitter Release OH⁻ in aqueous soln. Color litmus blue Neutralize acids

Strong and Weak Arrhenius Acids Strong Acids : completely ionized in water (100% dissociated) $HNO_3 \rightarrow H^+_{(aq)} + NO_3^-_{(aq)}$ HCI, HNO₃, H₂SO₄, HCIO₄, HI, HBr, HCIO₃, HBrO₃, Weak Acids : partially ionized in water (0% < dissoc. degree < 100%) $CH_3CO_2H \implies H^+_{(aq)} + CH_3CO_2^-_{(aq)}$

Organic acids, H₂CO₃, H₃BO₃, H₃PO₄, H₂S, H₂SO₃, ...

Strong Arrhenius Bases

Strong Bases : completely ionized in water (100% dissociated) $KOH_{(s)} \rightarrow K^{+}_{(aq)} + OH^{-}_{(aq)}$

Alkali metal hydroxides, alkaline earth metal hydroxides, soluble hydroxides

No weak bases in Arrhenius theory

Brønsted–Lowry Acids and Bases

Wider definition, not limited to aqueous solutions **Acid** = proton donor = Arrhenius acid **Base** = proton acceptor

$H_3SO_4^+$	H ₃ O+	
H ₂ SO ₄	H ₂ O	
HSO ₄ -	HO ⁻	
SO ₄ ²⁻	O ²⁻	

Proton H⁺

H⁺ hydronium

 H_3O^+ oxonium

Grotthus mechanism – extremely fast H⁺ movement

 $H_9O_4^+ = [H_3O(H_2O)_3]^+$ lifetime $H_3O^+ 1 - 4 \text{ ps}$ M. Eigen

[H₃O(H₂O)₂₀]⁺

Protonation of solvent (S) is exothermic H⁺ + n S \rightarrow H(S)_n⁺ Δ H < 0

High Proton H+ Mobility

$$pK_a = -log K_a$$

 $1^{\circ}C - [1^{\circ}3^{\circ}] [0^{\circ}4] / [1^{\circ}0^{\circ}4] [1^{\circ}2^{\circ}]$ [1⁰2

Water is a reagent and solvent $K_{c} = [H_{3}O^{+}] [SO_{4}^{2-}] / [HSO_{4}^{-}] [H_{2}O] = [H_{2}O] \sim 55.6 \text{ M}$

Equilibrium constant of proton dissociation = ionization constant of acid

= acid dissociation constant

 $K_a = [H_3O^+] [SO_4^{2-}] / [HSO_4^{--}]$

 $HSO_4^-(aq) + H_2O \implies H_3O^+(aq) + SO_4^{2-}(aq)$

Brønsted–Lowry Strong and Weak Acids

9

$$K_a = \frac{\left[H_3O^+\right]\left[A^-\right]}{\left[HA\right]}$$

Acid Strength

 $HA(aq) + H_2O \implies H_3O^+(aq) + A^-(aq)$

Acid Strength increases

Acid	рК _а
NH ₃	35
ROH	15 – 18
H₂O	15.57
CF ₃ CH ₂ OH	12.4
PhOH	10.0
NH ₄ +	9.2
HCN	9.1
CH ₃ COOH	4.75
HF	3.2
H ₃ O ⁺	-1.75
HCI	-7
HCIO ₄	-10

 $NH_3 + H_2O \implies H_3O^+(aq) + NH_2^-(aq)$

Weak acids pK_a positive

$$pK_a = -log K_a$$

Strong acids pK_a negative

Acid Strength and ∆G

HA (aq) + H₂O \leftrightarrows H₃O⁺(aq) + A⁻(aq) K_a = [H₃O⁺] [A⁻] / [HA] pK_a = -log K_a

$\Delta G = -RT \ln K_a = 2.3 RT pK_a$

	K _a	рК _а	Δ G
Weak acids	< 1	> 0	> 0
Strong acids	> 1	< 0	< 0

Brønsted–Lowry Strong Bases

 $CaO + H_2O \rightarrow Ca(OH)_2$

 $NH_3 + H_2O \implies H_3O^+ + NH_2^-$

$$pK_a(NH_3) > pK_a(H_2O)$$

Brønsted–Lowry Weak Bases

 $NH_3(aq) + H_2O \leftrightarrows NH_4^+(aq) + OH^-(aq)$ Equilibrium constant of base protonation by water = ionization constant of base = base dissociation constant

 $K = [NH_4^+] [OH^-] / [NH_3] [H_2O]$ $K_b = [NH_4^+] [OH^-] / [NH_3] \text{ base dissociation constant}$ $pK_b = -log K_b$ 13

Brønsted–Lowry Weak Bases

Methylamin

$$CH_3NH_2 + H_2O \implies CH_3NH_3^+ + OH^-$$

$$K_{b} = \frac{[CH_{3}NH_{3}^{+}][OH^{-}]}{[CH_{3}NH_{2}]} = 4.4x10^{-4}$$

$$pK_b = -logK_b$$

Lewis Acids and Bases

Lewis Acids – acceptors of electron pair

Lewis Bases – donors of electron pair

Conjugated Pairs of Acids and Bases

Conjugated pairs of acids and bases are connected by proton exchange

pH and pOH Scales 1909 $pH = -\log [H^+]$ S. P. L. Sørensen **Beer brewing** in pure water $[H^+] = 1 \ 10^{-7} M$ $[OH^{-}] = 1 \ 10^{-7} M$ $pH = -\log [1 \ 10^{-7}]$ $pOH = -\log [1 \ 10^{-7}]$ pH = 7pOH = 7 $[H^+][OH^-] = K_w$ **Constant inaqueous solutions** $pH + pOH = pK_w = 14.00$ (ionic product of water) pH < 7 Solution is acidic pH = 7Solution is neutral pH > 7Solution is basic 18

pH and pOH Scales

рН	рОН	[H+] M	[OH-] M	
0	14	1.0	1 0 ⁻¹⁴	
2	12	0.01	10-12	
4	10	0.0001	10 ⁻¹⁰	
6	8	10 ⁻⁶	10 ⁻⁸	
8	6	10 ⁻⁸	10 -6	
10	4	10 ⁻¹⁰	0.0001	
12	2	10 ⁻¹²	0.01	
14	0	10-14	1.0	

pH and pOH Scales

Neutralization

 $H_3O^+(aq) + OH^-(aq) \rightarrow 2 H_2O(I)$ $k = 1.4 \ 10^{11}$

 $2 H_2 O(I) \rightarrow H_3 O^+(aq) + OH^-(aq)$ k = 2.5 10^{-5}

 $H^+ + OH^- \rightarrow H_2O$ $\Delta H = -56.9 \text{ kJ mol}^{-1}$

 $H_{2}SO_{4} + 2 \text{ KOH} \rightarrow 2 \text{ } H_{2}O + \text{K}_{2}SO_{4}$ $H_{3}PO_{4} + 3 \text{ NaOH} \rightarrow 3 \text{ } H_{2}O + \text{Na}_{3}PO_{4}$ $2 \text{ } HCI + \text{Mg}(OH)_{2} \rightarrow 2 \text{ } H_{2}O + \text{MgCI}_{2}$ $HCI + \text{NaHCO}_{3} \rightarrow \text{H}_{2}O + \text{NaCI} + \text{CO}_{2}$

 $K_a = [H_3O^+] [NH_3] / [NH_4^+]$ acidity constant of NH_4^+ $NH_3(aq) + H_2O \implies NH_4^+(aq) + OH^-(aq)$ $K_{b} = [NH_{4}^{+}] [OH^{-}] / [NH_{3}]$ basicity constant of NH_{3} $K_w = [H^+][OH^-]$ ion product of water $K_a \times K_b = [H_3O^+] [NH_3] / [NH_4^+] \times [NH_4^+] [OH^-] / [NH_3] = K_w$ $K_a \times K_b = K_w$ 22

K_a and K_b of Conjugated Pairs

 $NH_4^+(aq) + H_2O \leftrightarrows H_3O^+(aq) + NH_3(aq)$

K_a and K_b of Conjugated Pairs

 $pK_a = 15.74$ $[H_2O] = 55.6 \text{ mol } I^{-1}$ Water is a weak acid

 $K_w = [H_3O^+] [OH^-]$ ionic product $pK_w = 14$ $K_a = [H_3O^+] [OH^-] / [H_2O] = K_w / [H_2O]$ acidity constant

 $K_{C} = [H_{3}O^{+}] [OH^{-}] / [H_{2}O]^{2}$

Autoionization $2 H_2O(I) - H_3O^+(aq) + OH^-(aq)$

K_a and K_w of Water

Oxonium cation is a strong acid

 $pK_a = -1.75$

 $K_a = [H_3O^+] [H_2O] / [H_3O^+] = [H_2O] = 55.6 \text{ mol } I^{-1}$

 $K_{C} = [H_{3}O^{+}] [H_{2}O] / [H_{3}O^{+}] [H_{2}O]$

 $H_3O^+(aq) + H_2O(I) \implies H_2O(I) + H_3O^+(aq)$

 K_a of Oxonium Cation $H_3O^+(aq)$

pK_a of Acids

Acid strength incr.

pKa

$HA(aq) \leftrightarrows H^+(aq) + A^-(aq)$

$$K_a = \frac{\left[H_3O^+\right]\left[A^-\right]}{\left[HA\right]}$$

$HClO_4$ ClO_4^- -10HCl Cl-- 7 H_2SO_4 HSO_4^- - 3,9 H_3O^+ H_2O -1,74 HNO_3 NO_3^- -1,37 SO_4^{2-} HSO_4^- +1,96 H_2SO_3 HSO_3^- +1,90 $H_2PO_4^ H_3PO_4$ +2,16 $[Fe(H_2O)_6]^{3+}$ $[Fe(OH)(H_20)_5]^{2+}$ +2,46HF F^{-} +3,18CH₃COOH CH₃COO-+4,75 $[Al(H_2O)_6]^{3+}$ $[Al(OH)(H_2O)_5]^{2+}$ +4,97 $CO_2 + H_2O$ HCO_{3}^{-} + 6,35 $[Fe(H_2O)_6]^{2+}$ $[Fe(H_2O)_5OH]^+$ + 6,74 H_2S HS^{-} + 6,99 SO_3^{2-} HSO_3^- +7,20 HPO_4^{2-} $H_2PO_4^-$ +7,21 $[Zn(H_2O)_6]^{2+}$ $[Zn(H_2O)_5OH]^+$ +8,96 $\rm CN^-$ HCN + 9,21 NH_4^+ NH_3 + 9,25 $HCO_3^ CO_3^{2-}$ +10,33 H_2O_2 HO_3^- +11,65 HPO_4^{2-} PO_4^{3-} +12,32 HS^{-} S^{2-} +12,89 H_2O OH-+15,74OH- O^{2-} +29

26

Acid strength incl	
Acid strength in	U
Acid strength i	Č
Acid strength	•••
Acid strengt	Ţ
Acid stren	Ð
Acid stre	Ċ
Acid str	Û
Acid s	tr
Acid	S
Aci	Q
\triangleleft	$\overline{\mathbf{O}}$
	\triangleleft

$K_a \times K_b =$	K _w pK _a	$_{a} + pK_{b} = 14$
Acid	Conjug. base	рК _а
HCIO ₄	CIO ₄ -	-10
HCI	CI -	-7
H₃O⁺	H ₂ O	-1.75
HF	F -	3.2
CH₃COOH	CH₃COO [_]	4.75 C
HCN	CN-	9.1 D
NH ₄ +	NH ₃	9.2 S
PhOH	PhO [_]	10.0 ir
CF ₃ CH ₂ OH	CF ₃ CH ₂ O⁻	12.4
H ₂ O	HO	15.57
ROH	RO-	15 – 18
NH ₃	NH ₂ ⁻	35

Conjug. base strength incr.

27

Reaction Equilibrium

Reactions are shifted to weak acids and weak bases

Strong acids expel weak acids Strong bases expel weak bases

PhOH + F \rightarrow \Rightarrow PhO \rightarrow + HF Weak acid. Weak base Strong base Strong acid Equilibrium shifted to left CH₃COOH + NH₃ \Rightarrow CH₃COO \rightarrow + NH₄⁺ Equilibrium shifted to right 28

Nivelization Effect of Water

Acid	Conjug. base	рК _а
HCIO ₄	CIO ₄ [–]	-10
HCI	CI -	-7
H₃O⁺	H ₂ O	-1.75
HF	F-	3.2
CH₃COOH	CH₃COO⁻	4.75
HCN	CN⁻	9.1
NH ₄ +	NH ₃	9.2
PhOH	PhO⁻	10.0
CF ₃ CH ₂ OH	CF ₃ CH ₂ O⁻	12.4
H ₂ O	HO⁻	15.57
ROH	RO⁻	15 – 18
NH ₃	NH ₂ ⁻	35

Acids stronger than H₃O⁺ are completely dissociated in water

Basea stronger than HO⁻ are completely protonated in water 29

Acid	K _a	pK _a	Base	K _b	р <i>К</i> ь
trichloroacetic acid, CCl ₃ COOH	3.0×10^{-1}	0.52	urea, CO(NH ₂) ₂	1.3×10^{-14}	13.90
benzene sulfonic acid, C _c H ₃ SO ₃ H	2.0×10^{-1}	0.70	aniline, C.H.NH.	$4.3 imes 10^{-10}$	9.37
iodic acid, HIO3	1.7×10^{-1}	0.77	pyridine, C ₅ H ₅ N	$1.8 imes 10^{-9}$	8.75
sulfurous acid, H ₂ SO ₃	1.5×10^{-2}	1.81	hydroxylamine, NH ₂ OH	1.1×10^{-8}	7.97
chlorous acid, HClO ₂	1.0×10^{-2}	2.00	nicotine, C10H14N2	$1.0 imes 10^{-6}$	5.98
phosphoric acid, H ₃ PO ₄	7.6×10^{-3}	2.12	morphine, C17H10O3N	1.6×10^{-6}	5.79
chloroacetic acid, CH ₂ ClCOOH	1.4×10^{-3}	2.85	hydrazine, NH2NH2	1.7×10^{-6}	5.77
lactic acid, CH ₃ CH(OH)COOH	8.4×10^{-4}	3.08	ammonia, NH,	$1.8 imes10^{-5}$	4.75
nitrous acid, HNO2	$4.3 imes 10^{-4}$	3.37	trimethylamine, (CH3)3N	6.5×10^{-5}	4.19
hydrofluoric acid, HF	3.5×10^{-4}	3.45	methylamine, CH ₃ NH ₂	3.6×10^{-4}	3.44
formic acid, HCOOH	$1.8 imes 10^{-4}$	3.75	dimethylamine, (CH ₃) ₂ NH	5.4×10^{-4}	3.27
benzoic acid, CeH3COOH	$6.5 imes 10^{-5}$	4.19	ethylamine, C2H2NH2	6.5×10^{-4}	3.19
acetic acid, CH ₃ COOH	$1.8 imes10^{-5}$	4.75	triethylamine, (C ₂ H ₅) ₃ N	1.0×10^{-3}	2.99
carbonic acid, H2CO3	$4.3 imes 10^{-7}$	6.37			
hypochlorous acid, HClO	3.0×10^{-8}	7.53			
hypobromous acid, HBrO	2.0×10^{-9}	8.69			
boric acid, B(OH), [†]	7.2×10^{-10}	9.14			
hydrocyanic acid, HCN	$4.9 imes 10^{-10}$	9.31			
phenol, C,H,OH	1.3×10^{-10}	9.89			
hypoiodous acid, HIO	2.3×10^{-11}	10.64			

Table 15.3 Acidity and basicity constants at 25°C*

*The K_a and K_b listed here have been calculated from pK_a and pK_b values with more significant figures than shown so as to minimize rounding errors. Values for polyprotic acids—those capable of donating more than one proton—refer to the first deprotonation.

[†]The proton transfer equilibrium is $B(OH)_3(aq) + 2 H_2O(l) \Rightarrow H_3O^+(aq) + B(OH)_4^-(aq)$.

pH of Strong Acids and Bases

0.001 M $HNO_3 \rightarrow H^+ + NO_3^-$

 $[H^+] = 0.001 \quad pH = -\log[0.001] = 3$

0.1 M KOH \rightarrow K⁺ + OH⁻

 $[OH^{-}] = 0.1$ pOH = $-\log[0.1] = 1$ pH = 14 - pOH = 13

1 10⁻⁹ M $HCI \rightarrow H^+ + CI^-$

 $[H^+] = 1x10^{-9}$ pH = $-\log(1x10^{-9}) = 9$

 $H_2O \rightarrow H^+ + OH^ [H^+] = 1 \ 10^{-7}$

$$\mathsf{HA} \leftrightarrows \mathsf{H}^+ + \mathsf{A}^-$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$pK_a = -\log(K_a)$$

Solution of 0.1 M HCOOH, $K_a = 1.74 \ 10^{-4}$. pH = ?

HCOOH \leftrightarrows H⁺ + HCOO⁻

	НСООН	H+	HCOO ⁻
Initial	0.1	0	0
Change	— X	X	Х
Equilibrium	0.1 – x	Х	Х
	0.1	4.12 10 ⁻³	4.12 10 ⁻³

$$K_{a} = \frac{[x][x]}{[0.1-x]} = 1.7 x 10^{-4} \qquad [0.1-x] \approx 0.1$$

$$x^{2} = 1.7 x 10^{-5}$$

$$x = 4.12 x 10^{-3}$$

$$K \text{ very small,}$$

$$M = -\log(4.12 \ 10^{-3}) = 2.39$$

$$pH = \frac{1}{2} pK_{a} - \frac{1}{2} \log C_{HA}$$

$$33$$

Solution of 0.1 M HCOOH

	НСООН	H+	HCOO [_]
Initial	0.01	0	0
Change	— X	Х	X
Equilibrium	0.01 – x	Х	X
	0.01	1.22 10 ⁻³	1.22 10 ⁻³

$$K_{a} = \frac{[x][x]}{[0.01-x]} = 1.7 x 10^{-4}$$

$$x^{2} + 1.7 x 10^{-4} x - 1.76 x 10^{-6}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-1.7 x 10^{-4} \pm \sqrt{1.7 x 10^{-4} - 4(-1.76 x 10^{-6})}}{2}$$

$$x = 1.22 x 10^{-3}$$
When x comparable to c_{HA}
Then quadratic equation

$$pH = -log(1.22 \ 10^{-3}) = 2.9$$

34

Factors Influencing Acid Strength $HA + H_2O \leftrightarrows H^+ (aq) + A^- (aq) \Delta H_r$

35

Factors Influencing Acid Strength

^tBuOH pKa = 16 **Weak** acid Negative charge on O = attracts H⁺

 CH_3COOH pKa = 4.75

CCl₃COOH pKa = 0.52 **Strong** acid = low attraction to H⁺

Factors Influencing Acid Strength

Acidity along Periods Increases

Hydrides = compounds of H with elements The higher the electronegativity, the higher the acidity, the better stabilization of negative charge

Hydride	H-CH ₃	H-NH ₂	H-OH	H-F
рК _а	55	35	15.7	3.2

Acidity Increases

NaH = basic hydride:

 $\begin{aligned} &\mathsf{Na}^{+} \left(\mathsf{aq} \right) + \mathsf{H}^{-} \left(\mathsf{aq} \right) + \mathsf{H}_{2} \mathsf{O} \left(\mathsf{I} \right) & \rightarrow &\mathsf{H}_{2} \left(\mathsf{g} \right) + \mathsf{Na}^{+} \left(\mathsf{aq} \right) + \mathsf{OH}^{-} \left(\mathsf{aq} \right) \\ &\mathsf{HCI} = \mathsf{acidic hydride:} \\ &\mathsf{H}^{+} \left(\mathsf{aq} \right) + \mathsf{CI}^{-} \left(\mathsf{aq} \right) + \mathsf{H}_{2} \mathsf{O} \left(\mathsf{I} \right) & \rightarrow &\mathsf{H}_{3} \mathsf{O}^{+} \left(\mathsf{aq} \right) + \mathsf{CI}^{-} \left(\mathsf{aq} \right) \\ &\mathfrak{s}_{38} \end{aligned}$

Acidity along Groups Increases

	HX	рк _а	HX	рка
1	HF	3.2	ROH	15-16
Bond strength incr	HCI	-7	RSH	10
	HBr	-9	RSeH	-
	HI	-9.5	RTeH	7

Acidity Increases

Oxyacids

Oxyacids = OH groups bound to an electronegative central atom $\sum_{n=1}^{\infty}$

Acidity incr

n	рК _а	Strength		
0	7	Very weak		
1	2	Weak		
2	-3	Strong		
3	-8 🗸	Very strong		

)-**H**

Acidity incr

Stabilization of anions by mezomeric effekt (rezonance)
 Increasing charge on Y

 oxidation number of central atom

 Lowering of charge density on O

 electronegativity of central atom

 Removal of e. density by other O atoms (-I)

Facilitate dissociation of H⁺ = incr acid strength

41

Oxidation Number of Central Atom

Acid	Formula	Ox.no.	рК _а
Perchloric	O ₃ CI-O-H	7	-10
Chloric	O ₂ CI-O-H	5	-3
Chlorous	O CI-O-H	3	2.00
Hypochloric	CI-O-H	1	7.53

Electronegativity of Central Atom

Acid	E-O-H	Elneg	рК _а
Hypochloric	CI-O-H	3.2	7.53
Hypobromic	Br-O-H	3.0	8.69
Hypoiodic	I-O-H	2.7	10.64

Oxyacids

NaOH Mg(OH)₂ Al(OH)₃ Si(OH)₄ OP(OH)₃ O_2 S(OH)₂ O_3 ClOH

Acidity increases

M-O ionic bond = weak acids (= hydroxides) M-O covalent = strong acids

Oxyacids

Factors Influencing Acid Strength

•oxidation number of central atom
•electronegativity of central atom

pK_a of Bound Water in Metal Complexes

Acidity of Hydrated Cations

Cation	M-O, Å	рК _а
[AI(H ₂ O) ₆] ³⁺	1.89	4.9
[Ga(H ₂ O) ₆] ³⁺	1.90	2.6
[In(H ₂ O) ₆] ³⁺	2.16	3.9
[TI(H ₂ O) ₆] ³⁺	2.23	0.6

Solutions of Salts

Salts of strong acid – strong base HCI + KOH \leftrightarrows H₂O + KCI No effect on pH Neutral $H^+ + CI^- + K^+ + OH^- \leftrightarrows H_2O + K^+ + CI^-$ Salts of strong acid – weak base - hydrolysis $HNO_3 + NH_3 \implies NH_4^+ + NO_3^ NH_4^+ + H_2O \leftrightarrows NH_3 + H^+$ Acidic soln $pH = 7 - \frac{1}{2} pK_{b} - \frac{1}{2} \log c$ ⁴⁸

Solutions of Salts

Buffers

1 M acetic acid (HAc) and 1 M sodium acetate (NaAc) in 1 I of solution. NaAc decreases acidity of HAc. $HAc + H_2O \implies Ac^- + H_3O^+$ $Ac^{-} + H_2O \implies HAc + HO^{-}$ Buffer function = keep constant pH 1. Addition of H⁺ forms new molecules of HAc 2. Addition of OH⁻ forms new molecules of Ac⁻ 3. pH is constant

Table 16.4 Typical
buffer systemsComposition pK_a Acid buffers pK_a $CH_3COOH/CH_3CO_2^-$ 4.74
 $4NO_2/NO_2^ HNO_2/NO_2^-$ 3.37
 $4CIO_2/CIO_2^-$ Base buffers2.00

NH4 ⁺ /NH ₃	9.25
(CH ₃) ₃ NH ⁺ /(CH ₃) ₃ N	9.81
H ₂ PO ₄ ⁻ /HPO ₄ ²⁻	7.21

Buffers

Henderson-Hasselbalch eq Weak acid and its salt $pH = pK_a + log ([A^-] / [HA])$ Weak base and its salt $pH = pK_a + log ([B] / [BH^+])$

 $= 14 - pK_b + log ([B] / [BH^+])$

Acid-Base Equilibria

- 1. Ion product of water $K_w = [H^+][OH^-]$
- 2. Dissociation constant $K_a = [H_3O^+] [A^-] / [HA]$
- 3. Electroneutrality $[H_3O^+] = [A^-] + [OH^-]$
- 4. Mass balance $[HA]_0 = [A^-] + [HA]$

Titration – Controlled Acid-Base Reaction

Titration of strong acid (HCI) By strong base (KOH)

> Equivalence point = stoichiometric reaction

Titration of Weak Acid by Strong Base

Titration of Weak Acid by Strong Base $HAc + OH^{-} \Rightarrow Ac^{-} + H_2O$ Start of titration : $pH = \frac{1}{2}pK_a - \frac{1}{2}\log[HA]$ Half-way at $[A^{-}] = [HA]$, tj. 50% neutralized (weak acid. + salt): $pH = pK_a + log ([A^-] / [HA])$ $pH = pK_a$ At equivalence, $[A^-] = 100 [HA]$ NEVER [HA] = 0 $pH = pK_a + log (100 / 1) = pK_a + 2$

Indicators

Acid and its conjugated base have different color

$HIn + H_2O \implies H_3O^+ + In^-$

pH =

Phenolphtalein

Phenolphtalein

Colorless

57

Color change $pH = pK_{IN} \pm 1$

Indicator	Color of acid form	pH range of color change	pK _{in}	Color of base form
thymol blue	red	1.2 to 2.8	1.7	yellow
	yellow	8.0 to 9.6		blue
methyl orange	red	3.2 to 4.4	3.4	yellow
bromophenol blue	yellow	3.0 to 4.6	3.9	blue
bromocresol green	yellow	3.8 to 5.4	4.7	blue
methyl red	red	4.8 to 6.0	5.0	yellow
bromothymol blue	yellow	6.0 to 7.6	7.1	blue
litmus	red	5.0 to 8.0	6.5	blue
phenol red	yellow	6.6 to 8.0	7.9	red
thymol blue	yellow	8.0 to 9.6	8.9	blue
phenolphthalein	colorless	8.2 to 10.0	9.4	pink
alizarin yellow R	yellow	10.1 to 12.0	11.2	red
alizarin	red	11.0 to 12.4	11.7	purple

litmus

MO

FF

14

рΗ

7

0

Indicators

 $Hln + H_2O \quad \leftrightarrows \quad H_3O^+ + ln^ K_{IN} = [H_3O^+] [ln^-] / [Hln]$

A color change is recognizable if the other form is present in at least 10% amount

 $[H_3O^+] = K_{IN} ([HIn] / [In^-])$ from 10:1 to 1:10 pH = pK_{IN} ± 1

Titration of Strong Base by Strong Acid

 $[B] = [BH^{+}] \quad pH = pK_{a} + log ([B] / [BH^{+}])$ = 14 - pK_b + log ([B] / [BH^{+}]) = 14 - pK_b Equivalence pH = 14 - pK_b + log ([1] / [100]) = 14 - pK_b - 2

Titration of Weak Base by Strong Acid

HSAB = Hard and Soft Acids and Bases

Hard Acids Ti⁴⁺, Cr³⁺, Fe³⁺, Co³⁺, H⁺

Hard Bases

NH₃, NH₂R, N₂H₄, H₂O, OH⁻, O²⁻, ROH, RO⁻, OR₂, CO₃²⁻, SO₄²⁻, OCIO₃⁻, CI⁻, F⁻, NO₃⁻, PO₄³⁻, OCOMe **Soft Acids** Cu⁺, Ag⁺, Hg⁺, Hg²⁺, Pd²⁺, Pt²⁺

Soft Bases

H⁻, R⁻, C₂H₂, C₆H₆, CN⁻, CO, SCN⁻, PR₃, P(OR)₃, AsR₃, SR₂, SHR, SR⁻, I⁻

SO32- 🕂 HF

HSO3- + F-