Oxidation and Reduction

Lavoisier

Oxygen discovery – new element, routing of flogiston theory

Burning = binding of oxygen = oxidation

 $2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$ $S + \text{O}_2 \rightarrow S\text{O}_2$

Reduction = removal of oxygen

 $\begin{array}{l} \operatorname{Fe_2O_3}+3 \ \mathrm{C} \rightarrow 2 \ \mathrm{Fe}+3 \ \mathrm{CO} \\ \operatorname{CuO}+\operatorname{H_2} \rightarrow \operatorname{Cu}+\operatorname{H_2O} \end{array}$

Oxidation and Reduction

Concept of oxidation and reduction Oxidation Reduction

Loss of electron (from HOMO) Gain of electron (to LUMO)

Incr of oxidation number

Decr of oxidation number

$$Fe^{3+} \leftarrow Fe^{2+} \rightarrow Fe$$

Oxidized form Reduced form More electrons

Oxidation

Loss of electron

Incr of oxidation number

Oxidation

Reduction Gain of electron Decr of oxidation numbe

Oxidation and Reduction

Oxidation and reduction must proceed simultaneously

Oxidation and Reduction

Half-reactions

Ox $Zn \rightarrow Zn^{2+} + 2e^{-}$

Red $Cu^{2+} + 2 e^{-} \rightarrow Cu$

Redox pairs: Zn^{2+}/Zn , Cu^{2+}/Cu No free electrons in redox reactions. Oxidation and reduction cannot proceed separately, Must be simultaneous, electron neutral reactions $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ **Exchange of 2 electrons**

Redox Pairs

The stronger the reduced form gives up electrons, the weaker oxidized form accepts electrons.

Zn²⁺/Zn Na⁺/Na

Cu²⁺/ Cu F_2/F^-

Redox series:

Na, Zn, Fe,.... Reducing agent = loses electrons O_2 , F_2 , CI_2 , I_2 ,Oxidizing agent = accepts electrons

Balancing Redox Equations

Find oxidation states of all atoms in compounds Find elements changing their oxidation state Find oxidizing agent(s) and reducing agent(s) Draw redox half-equations Find total number of electrons needed for **oxidation** and **reduction** Balance number of electrons – electroneutrality, no free electrons **Balance remaining elements**

Animal Electricity

Luigi Galvani (1737-1798)

Galvanic or Voltaic Cells

Alessandro Volta (1745-1827)

Separation of reduction and oxidation: $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ Spontaneous redox reaction produce electric current Chemicl energy converts to electrical energy

Salt bridge Flow of ions, NOT electrons

Electrodes

- Anode Oxidation (A O vowels)
- $M \rightarrow M^{n+} + n e^{-}$ Cathode Reduction (K R)
- $M^{n+} \rightarrow M^{(n+1)+} + e^{-}$ $M^{n+} + n e^{-} \rightarrow M$
- $2 X^- \rightarrow X_2 + 2 e^ M^{(n+1)+} + e^- \rightarrow M^{n+}$
- $4 \text{ OH}^- \rightarrow 2 \text{ H}_2\text{O} + \text{O}_2 + 4 \text{ e}^-$

 $6 H_2O \rightarrow 4 H_3O^+ + O_2^- + 4 e^-$

 $2 H_3O^+ + 2 e^- \rightarrow H_2 + 2 H_2O$

 $2 H_2O + 2 e^- \rightarrow H_2 + 2 OH^-$

Metal Electrodes

Metal immersed in soln of its salt (ions) oxidation → Mⁿ⁺ + n e⁻ Μ reduction

Double layer Potential depends on: •Type of metal Concentration of cation •Temperature

Nernst equation

$$E_{Zn,Zn^{2+}} = E^{\circ}_{Zn,Zn^{2+}} + \frac{RT}{2F} \ln a_{Zn^{2+}}$$

 $E = E^{\circ} + (RT/nF) \ln a(M^{n+})$ $E = E^{\circ} + (RT/nF) \ln [M^{n+}]$

Activity

Concentration

14

Nernst Equation

Reduction $M^{n+} + n e^{-} \rightarrow M$ $E_{M,M^{n+}} = E^{\circ}_{M,M^{n+}} - \frac{RT}{nF} \ln Q$

E° = standard **reduction** potential

n = number of exchanged electrons

 $Q = [products] / [educts] = [M] / [M^{n+}]$

 $E = E^{\circ} - (RT/nF) \ln (1 / [M^{n+}]) = E^{\circ} + (RT/nF) \ln [M^{n+}]$

Standard Hydrogen Electrode

Potential of one redox pair, E and E⁰, cannot be measured directly

Can measure electromotoric force of a cell, potential difference of two redox pairus

Hydrogen Electrode selected as a standard: $E^0(H_2, H^+) = 0$

 $2 H_{3}O^{+} + 2 e^{-} \leftrightarrows H_{2} + 2 H_{2}O$ $E = E^{0} - (RT/2F) \ln \{p(H_{2}) / [H^{+}]^{2}\} = E^{0} + (RT/2F) \ln \{[H^{+}]^{2} / p(H_{2})\}$ $E^{0} = 0 \quad [H^{+}] = 1 \quad p(H_{2}) = p_{H2} / p_{0} = 1 \quad T = 298 \text{ K}$ E = 0

Standard Hydrogen Electrode

Electrochemical Series

Standard <u>reduction</u> potentials $M^{n+} + n e^- \rightarrow M$ (in water at 25 °C)

Redox pair	E ⁰ , V
$2 \text{ OF}_2 + 4 \text{ e}^- \rightarrow 4 \text{ F}^- + \text{O}_2$	+3.2
$F_2 + 2 e^- \rightarrow 2 F^-$	+2.87
$MnO_4^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 4 H_2O$	+1.51
$Cl_2 + 2 e^- \rightarrow 2 Cl^-$	+1.36
$Cu^{2+} + 2e^{-} \rightarrow Cu$	+0.34
$2 H_3O' + 2 e^- \rightarrow H_2 + 2 H_2O$	0.00
$Fe^{2+} + 2e^- \rightarrow Fe$	-0.44
$Zn^{2+} + 2e^{-} \rightarrow Zn$	-0.76
$Na^+ + e^- \rightarrow Na$	-2.71
$3 N_2 + 2 e^- \rightarrow 2 N_3^-$	-3.6

Standard Reduction Potentials

 $F_2 + 2 e^- \rightarrow 2 F^ E^0 = +2.87 V$ positive E^0 F₂ is a strong oxidation agent reaction equil. shifted to right $2 F^- \rightarrow F_2 + 2 e^- = E^0 = -2.87 V$ F⁻ is a weak reduction agent Na⁺ + $e^- \rightarrow$ Na $E^0 = -2.71 \text{ V}$ negative E^0 **Na**⁺ is a weak oxidation agent reaction equil. shifted to left $Na \rightarrow Na^+ + e^- E^0 = +2.71 V$ Na is a strong reduction agent

Standard Reduction Potentials

Standard Reduction Potentials

 $F_2 + 2 e^- \rightarrow 2 F^- = E^0 = +2.87 V$

(Standard oxidation potential) opposite sign $2 \ F^- \rightarrow F_2 \ + 2 \ e^- \qquad E^0 = -2.87 \ V$

Electromotoric Force

Anode Zn Zn²⁺ | Cu²⁺ | Cu Cathode

 $[M^{n+}] = 1 M$

 $E_{Zn} = E_{Zn}^{0} + (RT/2F) \ln [Zn^{2+}] = E_{Cu}^{0} = E_{Cu}^{0} + (RT/2F) \ln [Cu^{2+}]$

convention!!! E_{cell} = E(right) – E(left) E_{cell} intensive variable, **not multiplied by n!!!**

 $E_{cell} = E_{Cu}^{0} - E_{Zn}^{0} = +0.34 - (-0.76) = +1.10 V$

When $E_{cell} > 0$ then reaction is spontaneous, producing current Zn + Cu²⁺ \leftrightarrows Zn²⁺ + Cu

Electromotoric Force

E_{cell} [V] = EMS = EMF

22

Free Energy

 $\Delta G^{0} = - n F E^{0}_{cell}$

Maximum E^0_{cell} is directly proportional to the difference of free energies of reactants and products

Method for measuring ΔG^0 of reactions

Nernst Equation

 $Zn + Cu^{2+} \leftrightarrows Zn^{2+} + Cu$

 $\Delta G = -n F E_{cell} \qquad Q = [Zn^{2+}] / [Cu^{2+}]$

 $\Delta G = \Delta G^0 + RT \ln (Q)$

 $-n F E_{cell} = -n F E_{cell}^0 + RT ln (Q)$

$$E_{cell} = E^{0}_{cell} - \frac{RT}{nF} \ln Q$$

Walther Hermann Nernst (1864-1941)

Nernst Equation

 $Zn + Cu^{2+} \leftrightarrows Zn^{2+} + Cu$ $Q = [Zn^{2+}] / [Cu^{2+}]$

$$E_{cell} = E^0_{cell} - \frac{RT}{nF} \ln Q$$

 $\Delta G = -n F E_{cell}$

When $Q = [Zn^{2+}] / [Cu^{2+}] < K$ then $E_{ell} > 0$

Equilibrium

 $Q \rightarrow K$ $\Delta G^0 = - RT \ln (K)$

 $\Delta G = \Delta G^0 + RT \ln (K)$

 $\Delta G = 0$ the cell reached equilibrium $E_{cell} = 0$ battery is empty $\Delta G = -n F E_{cell}$

Electric current flows from anode to cathode Concentrations change Cell spontaneously discharges and reaches equilibrium Free energies in both half-cells become equal

Redox Electrodes

An electrode of inert metal submerged in a solution of oxidized and reduced forms (metal cations, organic compounds,...)

Pt | Fe³⁺, Fe²⁺|| Ag⁺ | Ag Fe³⁺ + e \Rightarrow Fe²⁺

$$E_{Fe^{3+},Fe^{2+}} = E^{0}_{Fe^{3+},Fe^{2+}} + \frac{RT}{F} \ln \frac{a_{Fe^{3+}}}{a_{Fe^{2+}}}$$

Nernst-Peters equation

$$E_{red,ox} = E^{0}_{red,ox} + \frac{RT}{nF} \ln \frac{a_{ox}}{a_{red}}$$

Redox Electrodes

An electrode of inert metal submerged in a solution of oxidized and reduced forms (metal cations, organic compounds,...)

Pt | Cr³⁺, Cr²⁺ || Ag⁺ | Ag Cr³⁺ + e \leftrightarrows Cr²⁺

 $E_{cell} = E(right) - E(left)$

=
$$E^{0}(Ag^{+}, Ag) - E^{0}(Cr^{3+}, Cr^{2+})$$

= +0.80 V - (-0.41 V) = +1.21 V

 $Ag^+ + Cr^{2+} \rightarrow Ag + Cr^{3+}$

Redox Electrodes

Equilibrium $E_{cell} = 0$ E(right) = E(left)

 $E^{0}(Ag^{+},Ag) - RT/F \ln 1/[Ag^{+}]_{eq} = E^{0}(Cr^{3+},Cr^{2+}) - RT/F \ln [Cr^{2+}]_{eq} / [Cr^{3+}]_{eq}$

$$\begin{split} \mathsf{E}^{0}(\mathsf{Ag}^{+},\mathsf{Ag}) - \mathsf{E}^{0}(\mathsf{Cr}^{3+},\mathsf{Cr}^{2+}) = \\ &-\mathsf{RT}/\mathsf{F}\,\mathsf{In}\,\left[\mathsf{Cr}^{2+}\right]_{\mathsf{eq}}/\left[\mathsf{Cr}^{3+}\right]_{\mathsf{eq}} - \mathsf{RT}/\mathsf{F}\,\mathsf{In}\,\left[\mathsf{Ag}^{+}\right]_{\mathsf{eq}} \end{split}$$

 $\ln [Cr^{3+}]_{eq} / [Cr^{2+}]_{eq} [Ag^{+}]_{eq} =$

 $\ln K_{eq} = [E^{0}(Ag^{+},Ag) - E^{0}(Cr^{3+},Cr^{2+})] F / RT$

Measurements of equilibrium constants K_{eq} 30

Concentration Galvanic Cell

 $E(left) = E^{0}(Ag^{+},Ag) + (RT/F) \ln[Ag^{+}]_{anode}$

 $E(right) = E^{0}(Ag^{+},Ag) + (RT/F) \ln[Ag^{+}]_{cathode}$

 $E_{cell} = E(right) - E(left)$

 $E_{čl} = RT/F \ln[Ag^+]_{cathode} - RT/F \ln[Ag^+]_{anode}$

$$E_{cell} = \frac{RT}{F} \ln \frac{[Ag^+]_{cathode}}{[Ag^+]_{anode}}$$

31

 $E_{cell} > 0$ $E_{cell} = 0$

 $E_{cell} < 0$

Types of Cells

Galvanic

Electrolytic

Spontaneous redox reaction produces electric current

 $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$

Non-spontaneous redox reaction can be driven by added electric work

 $Zn^{2+} + Cu \rightarrow Zn + Cu^{2+}$

Galvanic and Electrolytic Cells

Electrodes Anode – Oxidation (AO) Cathode – Reduction (K R)

Galvanic cell – Zn \rightarrow Zn²⁺ + 2 e⁻ Electrons produced Galvanic cell + $Cu^{2+} + 2 e^{-} \rightarrow Cu$ Electrons consumed

Electrolytic cell + $Cu \rightarrow Cu^{2+} + 2 e^{-}$ $2 Br^{-} \rightarrow Br_{2} + 2 e^{-}$ Electrolytic cell – $Zn^{2+} + 2 e^{-} \rightarrow Zn$ $Ag^{+} + e^{-} \rightarrow Ag$

Electrolysis

Electrolyte: aqueous solutions, melts

Electrodes: inert Pt, C, Ti, Hg, Fe,....

Salt melts:

Cathode: $Ag^+ + e^- \rightarrow Ag$

Anode: 2 Br⁻ \rightarrow Br₂ + 2 e⁻

Electrolysis of NaCl Melt

Electrolysis of NaCl Melt

Electrolysis of Aqueous Solutions

Aqueous solutions of salts:

Electrode reactions: solvent or salt ions

Water: Cathodic reduction 2 H₂O + 2 e⁻ \rightarrow H₂ + 2 OH⁻ E⁰ = -0.83 V

Metals with reduction potencial $E^0 < -0.83$ V cannot be reduced at cathode: Al, Mg, Na, K, Li

Anodic oxidation 6 $H_2O \rightarrow 4 H_3O^+ + O_2^- + 4 e^- E^0 = +1.23 V$ Ions with $E^0 > 1.23 V$ cannot be oxidized at anode : F⁻, Mn^{2+}/MnO_4^-

Electrolysis of Aqueous Solutions

Faraday's Law

1 F = charge of 1 mole of electrons = $N_A e$ = 6.022 10²³ mol⁻¹ 1.602 10⁻¹⁹ C

 $1 F = 96487 C mol^{-1}$

Charge of 1 F precipitates 1/n mol of ions Mⁿ⁺

I = q / t 1 A = 1C per 1s

Charge passed: q = ItNumber of moles of e: n(e) = q / F = It / FNumber of moles of ions M^{n+} : n(M) = It / nFMass of metal: $m(M) = n(M) A_r = A_r It / nF$

Michael Faraday (1791-1867)

Electrochemical Power Sources

Primary Power Sources = cannot be recharged

Leclanche, dry cell, 1.5 V

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

 $2 \text{ MnO}_2 + 2 \text{ H}_2\text{O} + 2 \text{ e}^ \rightarrow 2 \text{ MnO(OH)} + 2 \text{ OH}^-$

Electrochemical Power Sources

Secondary Power Sources = rechargable

NiCd, 1.3 V Cd + 2 OH⁻ \rightarrow Cd(OH)₂ + 2 e⁻ 2 NiO(OH) + 2 H₂O + 2 e⁻ \rightarrow 2 Ni(OH)₂ + 2 OH⁻

Lead battery, 2.04 V Pb + SO₄²⁻ \rightarrow PbSO₄ + 2 e⁻ PbO₂ + SO₄²⁻ + 4 H₃O⁺ + 2 e⁻ \rightarrow PbSO₄ + 6 H₂O Discharge = diluting H₂SO₄

Electrochemical Power Sources

LiON, 2.5 V

 $Li \rightarrow Li^+ + e^-$

 $x Li^+ + TiS_2 + x e^- \rightarrow Li_x TiS_2 (x = 0-1)$

Lithium Titanium Disulfide

