Oxidation and Reduction

Lavoisier

Oxygen discovery – new element, routing of flogiston theory

Burning = binding of oxygen ⁼ oxidation

 2 Mg + O $_2$ \rightarrow 2 MgO $\mathsf{S} \mathsf{O}_2 \rightarrow \mathsf{SO}_2$

Reduction = removal of oxygen

 $\mathsf{Fe_{2}O_{3}}$ + 3 C \rightarrow 2 Fe + 3 CO $\mathsf{CuO} + \mathsf{H}_2 \rightarrow \mathsf{Cu} + \mathsf{H}_2\mathsf{O}$

Oxidation and Reduction

Oxidation Reduction Concept of oxidation and reduction

Loss of electron (from HOMO) **Gain** of electron (to LUMO)

Incr of oxidation number

Decr of oxidation number

$$
\mathsf{Fe}^{3+} \leftarrow \mathsf{Fe}^{2+} \rightarrow \mathsf{Fe}
$$

Oxidized form **Reduced form**

More electrons

Oxidation

Loss of electron

Incr of oxidation number

Oxidation

Reduction **Gain** of electron Decr of oxidation numbe

Oxidation and Reduction

Oxidation and reduction must proceed simultaneously

Oxidation and Reduction

Half-reactions

Ox \overline{O} \rightarrow Zn²⁺ + 2 e⁻

Red Cu2+ + 2 e − → Cu

6 Zn + Cu2+ → Zn2+ + Cu **Exchange of 2 electrons** Redox pairs: Zn²⁺/Zn, Cu²⁺/ Cu No free electrons in redox reactions. Oxidation and reduction cannot proceed separately, Must be simultaneous, electron neutral reactions

Redox Pairs

The stronger the reduced form gives up electrons, the weaker oxidized form accepts electrons.

Zn²⁺/Zn Na⁺/Na

 Cu^{2+}/ Cu F₂/ F[−]

Redox series:

Na, Zn, Fe, Reducing agent = loses electrons O_2 , F_2 , Cl_2 , I_2 ,Oxidizing agent = accepts electrons

Balancing Redox Equations

Find oxidation states of all atoms in compounds Find elements changing their oxidation state Find oxidizing agent(s) and reducing agent(s) Draw redox half-equations Find total number of electrons needed for **oxidation** and **reduction** Balance number of electrons – electroneutrality, no free electrons Balance remaining elements

Animal Electricity

Luigi Galvani (1737-1798)

Galvanic or Voltaic Cells

Alessandro Volta(1745-1827)

10Separation of reduction and oxidation: Zn + Cu²⁺ \rightarrow Zn²⁺ + Cu Spontaneous redox reaction produce electric current Chemicl energy converts to electrical energy

Salt bridge Flow of ions, NOT electrons

Electrodes

- **Anode – Oxidation (A O vowels)**
- M → Mⁿ⁺ + n e[−] **Cathode – Reduction (K R)**
- $\mathsf{M}^{\mathsf{n}+}\rightarrow\mathsf{M}^{(\mathsf{n}+1)+}\,\,$ + e^- Mⁿ⁺ + n e[−]→ M
- 2 ${\mathsf X}^ \rightarrow$ ${\mathsf X}_2^{}$ + 2 ${\rm e}^ \mathsf{M}^{(\mathsf{n}+1)+}\;$ + $\mathsf{e}^{\mathsf{-}}$ \rightarrow $\mathsf{M}^{\mathsf{n}+}$
- 4 OH[−] → 2 H₂O + O₂ + 4 e[−]

 $6~\rm H_2O \rightarrow 4~\rm H_3O^+$ + $O_2~$ + 4 $\rm e^ 2 H_3O^+$ + 2 e[−] → H_2 + 2 H_2O^-

 2 H $_2$ O + 2 e[−] → H $_2$ + 2 OH[−]

Metal Electrodes

Metal immersed in soln of its salt (ions) $M \longrightarrow M^{n+} + n e^{-}$ oxidation reduction

Double layer Potential depends on: •Type of metal •Concentration of cation •Temperature

Nernst equation

$$
E_{Z_n, Z_n^{2+}} = E^{\circ} z_n z_n^{2+} + \frac{RT}{2F} \ln a_{Z_n^{2+}}
$$

 E = E $^{\circ}$ + (RT/nF) In a(M $^{\mathsf{n}+})$ $\qquad\qquad$ E = E $^{\circ}$ + (RT/nF) In [M $^{\mathsf{n}+}]$ Activity **Concentration**

14

Nernst Equation

Reduction Mn+ + n e[−] [→] M $E_{M,M^{n+}} = E^{\circ}{}_{M,M^{n+}} - \frac{RT}{nF} \ln Q$

E° = standard **reduction** potential

n = number of exchanged electrons

 $Q =$ [products] / [educts] = [M] / [Mⁿ⁺]

 $E = E^{\circ} - (RT/nF)$ ln (1 / [Mⁿ⁺]) = E° + (RT/nF) ln [Mⁿ⁺]

Standard Hydrogen Electrode

Potential of one redox pair, E and Eº, cannot be measured directly

Can measure electromotoric force of a cell, potential difference of two redox pair ů s

Hydrogen Electrode selected as a standard: $^0({\mathsf{H}}_2,\, {\mathsf{H}}^{\scriptscriptstyle{+}})=\mathsf{0}$

 $2\, \mathsf{H}_3\mathsf{O}$ + + 2 e $\overline{=}$ H₂ + 2 H₂O E = $\mathsf{E^0} -$ (RT/2F) ln {p(H₂) / [H⁺]² } = = Eº + (RT/2F) ln {[H+]² / p(H₂)} $E^0 = 0$ [H⁺] = 1 p(H₂) = p_{H2} / p₀ = 1 T = 298 K $E = 0$

Standard Hydrogen Electrode

Electrochemical Series

Standard <u>reduction</u> potentials Mⁿ⁺ + n e[–] → M (in water at 25 °C)

Standard Reduction Potentials

F 2 + 2 e − → **2 F** − **E 0 = +2.87 V** positive E 0 **F 2** is a strong oxidation agent reaction equil. shifted to right 2 F $^-\!\rightarrow$ $\mathsf{F}_2^{}$ + 2 $\mathsf{e}^{\scriptscriptstyle -}\hspace{-1.2pt}$ \quad E $^{\rm o}$ = –2.87 V F − is a weak reduction agent **Na + + e** − → **Na E 0 =** −**2.71 V** negative E 0 **Na+** is a weak oxidation agent reaction equil. shifted to left Na → Na⁺ + e − E $0 = +2.71$ V Na is a strong reduction agent

Standard Reduction Potentials

Standard Reduction Potentials

F 2 + 2 e − → **2 F** − **E 0 = +2.87 V**

(Standard oxidation potential) opposite sign 2 F $^-\!\rightarrow$ $\mathsf{F}_2^{\phantom i}$ + 2 $\mathsf{e}^ \mathsf{E}^0$ = $-2.87\;\mathsf{V}$

Electromotoric Force

Anode $Zn | Zn^{2+} | Cu^{2+} | Cu$ Cu Cathode

 $[M^{n+}]=1$ M

 E_{Zn} = $\mathsf{E^0}_{\mathsf{Zn}}$ +(RT/2F) In [Zn²⁺] E_{Cu} = $\mathsf{E^0}_{\mathsf{Cu}}$ + (RT/2F) In [Cu²⁺]

convention!!! $\mathsf{E}_{\mathsf{cell}}$ = $\mathsf{E}(\mathsf{right})$. E(left)

 $\mathsf{E}_{\mathsf{cell}}$ intensive variable, **not multiplied by n!!!**

 $\mathsf{E}_{\mathsf{cell}}$ = $\mathsf{E^0}_{\mathsf{Cu}}\text{--}\,\mathsf{E}$ $^{0}_{Zn}$ = +0.34 − ([−]0.76) = +1.10 V

When E_{cell}>0 then reaction is spontaneous, producing current Zn + Cu²⁺ 与 Zn²⁺ + Cu

Electromotoric Force

E_{cell} [V] = EMS = EMF

Free Energy

 $\Delta G^0 = - n F E^0_{cell}$

Maximum $\mathsf{E}_{\;\text{cell}}^0$ is directly proportional to the difference of free energies of reactants and products

Method for measuring ΔG^0 of reactions

Nernst Equation

Zn + Cu²⁺ 与 Zn²⁺ + Cu

 $\Delta G = - n F E_{cell}$ $Q = [Zn^{2+}] / [Cu^{2+}]$

 $\Delta G = \Delta G^0$ + RT ln (Q)

−n F E_{cell} = −n F E^o_{cell} + RT In (Q)

$$
E_{cell} = E^0_{cell} - \frac{RT}{nF} \ln Q
$$

Walther Hermann Nernst (1864-1941)

Nernst Equation

 $Zn + Cu^{2+} \leq Zn^{2+} + Cu$ $Q = [Zn^{2+}] / [Cu^{2+}]$

$$
E_{cell} = E^0_{cell} - \frac{RT}{nF} \ln Q
$$

 $\Delta \mathsf{G}$ = $-$ n F $\mathsf{E}_{\mathsf{cell}}$

When Q = [Zn²⁺] / [Cu²⁺] <K then E_{ell}>0

Equilibrium

 $\begin{equation*} \mathsf{Q} \rightarrow \mathsf{K} \end{equation*} \begin{align*} \Delta \mathsf{G}^0 = -\, \mathsf{RT} \, \mathsf{In} \ (\mathsf{K}) \end{align*}$

 $\Delta G = \Delta G^0$ + RT ln (K)

 $\Delta {\sf G}$ = $-$ n F $\sf E_{\sf cell}$ $\Delta G = 0$ the cell reached equilibrium $\mathsf{E}_{\mathsf{cell}}$ = 0 $\;$ battery is empty

Electric current flows from anode to cathode Concentrations change Cell spontaneously discharges and reaches equilibrium Free energies in both half-cells become equal

Redox Electrodes

An electrode of inert metal submerged in a solution of oxidized and reduced forms (metal cations, organic compounds,…)

Pt | Fe³⁺, Fe²⁺|| Ag⁺ | Ag^{Fe³⁺ + e $\frac{1}{2}$ **Fe²⁺**}

$$
E_{Fe^{3+},Fe^{2+}} = E^{0}{}_{Fe^{3+},Fe^{2+}} + \frac{RT}{F} \ln \frac{a_{Fe^{3+}}}{a_{Fe^{2+}}}
$$

Nernst-Peters equation

$$
E_{red,ox} = E^0_{red,ox} + \frac{RT}{nF} \ln \frac{a_{ox}}{a_{red}}
$$

Redox Electrodes

An electrode of inert metal submerged in a solution of oxidized and reduced forms (metal cations, organic compounds,…)

Pt | Cr3+, Cr2+|| Ag+ | Ag Cr3+ + e ' Cr2+

E_{cell} = E(right) – E(left)

$$
= E^{0}(Ag^{+}, Ag) - E^{0}(Cr^{3+}, Cr^{2+})
$$

= +0.80 V − ([−] 0.41 V) = +1.21 V

 $Ag^+ + Cr^{2+} \rightarrow Ag + Cr^{3+}$

Redox Electrodes

 ${\sf Equilibrium}\,\, {\sf E}_{\sf cell} = 0 \qquad \quad {\sf E}({\sf right}) = {\sf E}({\sf left})$ $E^{0}(Ag^{+},Ag) - RT/F$ In 1/[Ag⁺]_{eq} = $E^{0}(Cr^{3+}, Cr^{2+}) - RT/F$ In $[Cr^{2+}]_{ea}$ / $[Cr^{3+}]_{ea}$

 $E^{0}(Ag^{+},Ag) - E^{0}(Cr^{3+},Cr^{2+}) =$ $-$ RT/F In [Cr $^{2+}$]_{eq} / [Cr $^{3+}$]_{eq} $-$ RT/F In [Ag⁺]_{eq}

 \ln $[Cr^{3+}]_{eq}$ / $[Cr^{2+}]_{eq}$ $[Ag^+]_{eq}$ =

ln K_{eq} = [E⁰(Ag⁺,Ag) − E⁰(Cr³⁺,Cr²⁺)] F / RT

30 **Measurements of equilibrium constants Keq**

Concentration Galvanic Cell

Cathode Ag + + e − → Ag Anode $\mathsf{Ag} \to \mathsf{Ag}^*$ + e − E(left) = E 0(Ag +,Ag) + (RT/F) ln[Ag +]anode

E(right) = E 0(Ag +,Ag) + (RT/F) ln[Ag +]
Icathode

> $\mathsf{E}_{_{\mathsf{cell}}}$ = E(right) . E(left)

E_{čl} = RT/F In[Ag⁺]
Icathode – RT/F In[Ag⁺]anode

$$
E_{cell} = \frac{RT}{F} \ln \frac{[Ag^+]_{cathode}}{[Ag^+]_{anode}}
$$

 $\mathsf{E}_{\mathsf{cell}}$ > 0 $\mathsf{E}_{\mathsf{cell}}$ = 0 $\mathsf{E}_{\mathsf{cell}}$ < 0

Types of Cells

Galvanic

Electrolytic

Spontaneous redox reaction produces electric current Non-spontaneous redox

 $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$

reaction can be driven by added electric work

 Z n $^{2+}$ + Cu \rightarrow Zn + Cu $^{2+}$

Galvanic and Electrolytic Cells

ElectrodesAnode – Oxidation (AO) Cathode – Reduction (K R)

Galvanic cell [−] $\rm Zn\,\rightarrow\,Zn^{2+}\,+\,2\,e^-$ Electrons produced Galvanic cell + $\mathrm{Cu^{2+}}$ + 2 e[−] → Cu Electrons consumed

Electrolytic cell ⁺ $\mathrm{Cu}\rightarrow \mathrm{Cu^{2+}}$ + 2 e^{-} 2 Br \rightarrow Br $_2\,$ + 2 $\rm e^-$

Electrolytic cell [−] Zn²⁺ + 2 e[−]→ Zn $Ag^+ + e^- \rightarrow Ag$

Electrolysis

Electrolyte: aqueous solutions, melts

Electrodes: inert Pt, C, Ti, Hg, Fe,....

Salt melts:

Cathode: Ag⁺ + e⁻ → Ag

Anode: 2 Br \rightarrow Br $_2$ + 2 e $^{\scriptscriptstyle +}$

Electrolysis of NaCl Melt

Electrolysis of NaCl Melt

37

Electrolysis of Aqueous Solutions

Aqueous solutions of salts:

Electrode reactions: solvent or salt ions

Water: Cathodic reduction 2 H₂O + 2 e⁻ \rightarrow H₂ + 2 OH⁻ E $^{\rm o}$ = –0.83 V

Metals with reduction potencial Eº < –0.83 V cannot be reduced at cathode: Al, Mg, Na, K, Li

Anodic oxidation 6 $\mathrm{H_2O} \rightarrow$ 4 $\mathrm{H_3O}$ Ions with E^0 > 1.23 V cannot b $^+$ + O₂ + 4 e⁻ E $0 = +1.23$ V $^{\rm o}$ > 1.23 V cannot be oxidized at anode : F − , M n $^{2+}/\mathsf{M}$ n O_4^-

Electrolysis of Aqueous Solutions

Faraday's Law

1 F = charge of 1 mole of electrons = ${\sf N}_{\sf A}$ e = 6.022 1023 mol−1 1.602 10−¹⁹ C

1 F = 96487 C mol−¹

Charge of 1 F precipitates 1/n mol of ions $Mⁿ⁺$

 $I = q / t$ 1 A = 1C per 1s

Charge passed: $q = 1t$ Number of moles of e: $n(e) = q / F = l t / F$ Number of moles of ions M^{n+} : n(M) = I t / n F Mass of metal: $m(M)$ = n(M) A_r = A_r I t / n F

Michael Faraday (1791-1867)

Electrochemical Power Sources

Primary Power Sources = cannot be recharged

Leclanche, dry cell, 1.5 V

 $\rm Zn\,\rightarrow Zn^{2+}$ + 2 $\rm e^{-}$

2 MnO₂ + 2 H₂O + 2 e⁻ \rightarrow 2 MnO(OH) + $\,$ 2 OH $^{-}$

Electrochemical Power Sources

Secondary Power Sources = rechargable

NiCd, 1.3 V Cd + 2 OH − → Cd(OH)₂ + 2 e[–] 2 NiO(OH) + 2 H $_2$ O + $\,$ 2 $\mathrm{e}^ \rightarrow$ 2 Ni(OH) $_2$ + $\,$ 2 OH $^-$

Lead battery, 2.04 V $\mathsf{Pb} \texttt{+} \texttt{SO}_4$ $^{2-}\!\rightarrow$ PbSO $_4^{}$ + 2 $e^ \mathsf{PbO}_2$ + SO_4 ^{2−} + 4 H₃O⁺ + 2 e $^{-}$ \rightarrow PbSO $_{4}$ + 6 H $_{2}$ O Discharge = diluting $\mathsf{H_2SO_4}$

Electrochemical Power Sources

LiON, 2.5 V

Li \rightarrow Li $^+$ + $\rm e^-$

x Li $^+$ + TiS $_2$ + $\,$ x e $^ \rightarrow$ Li $_{\rm x}$ TiS $_{\rm 2}$ (x = 0-1)

Lithium Titanium Disulfide

Fuel Cells

