

11 gaseous elements Rare gases He, Ne, Ar, Kr, Xe, Rn Diatomic gaseous elements H_2 , N_2 , O_2 , F_2 , Cl_2

Gaege		
Gases	Gas	T _{boil} , K
	H ₂	20
	He	4.4
	Ne	27
ements	Ar	87
	Kr	120
	Xe	165
	Rn	211
	N ₂	77
	O ₂	90
ents	F ₂	85
	Cl ₂	238

Gas

Large part of chemical and physical theories was developed on experiments with gases.

Different kinds of "air" \rightarrow studies on gases, concept of gas

Gas sylvestre = CO_2

CO₂ is formed:

- Burning coal with KNO₃ (salpeter)
- Fermentation of beer and wine
- Action of vinegar on limestone
- Grotto del Cane

Johann Baptista van Helmont (1579-1644)

2

Pressure

Collisions of gas molecules with container walls

F = force, NA = area, m²

101325 Pa 760 mm Hg 760 torr (Torricelli) 1 atm

EVANCELIS IN TORRICELLI

Evangelista Torricelli (1608-1647)

barometer 1643₃

Hydrostatic Pressure

$p = h \rho g$

5

Boyle's Law

1662

Product of gas pressure and its volume is a constant for a given amount of gas at constant temperature

p V = const.

Robert Boyle (1627 - 1691)

Isothermic

Does not depend on the kind of gas, mixture of gases

Exceptions NO₂

Scuba Diving

Air in a tank for a 60 minute dive at surface

How much air ? X minutes in 30 m

1787

degree

Jacques A. C. Charles (1746 - 1823)

The first solo flight in ballon The first H_2 ballon

Joseph Louis Gay-Lussac (1778 - 1850) ¹²

p = const. Isobaric

13

$$V = a t + b$$
 $p = const.$ Isobaric

V = a t + bV = a (t + b/a)

b/a = 273 °C absolute temperature scale

V = kT T = absolute temperature [K]

Concept of absolute zero temperature

Isobars

$$\mathbf{V} = \mathbf{V}_0 \left(1 + \alpha \mathbf{t} \right)$$

 $\alpha = 1/273$ coefficient of thermal expansion

t = temp. in °C

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

const. *n* and *p*

Amonton's Law

$$\mathbf{p} = \mathbf{p}_0 \left(1 + \alpha \mathbf{t}\right)$$

$\alpha = 1/273$ coefficient of thermal expansion

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$
 const. n and V
$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$
 isochore

Law of Constant Volumes (Gay-Lussac)

1809 Gases combine in simple volume ratios2 volumes of hydrogen + 1 volume of oxygen

 \rightarrow 2 volumes of water vapor

Joseph Louis Gay-Lussac (1778 - 1850) ¹⁹

Avogadro's Hypothesis

1811 A. Avogadro deduced from Dalton's atomic theory and from Gay-Lussac's law:

At the same temperature and pressure, the same volumes of different gases contain the same number of particles.

Gases are diatomic molecules

 H_2 , N_2 , O_2

Not accepted till 1858, Cannizzaro Water till that time was considered as OH, M(O) = 8after 1858 H₂O, M(O) = 16

Amadeo Avogadro (1776 - 1856) ²⁰

Law of Constant Volumes

At the same temperature and pressure, the same volumes of different gases contain the same number of particles.

Gases are diatomic molecules

Avogadro's Law

1811

The same volumes of different gases contain the same number of particles (at const. p, T) V = n const.

Volume of 1 mole of gas = **22.4 liter**

V/n = const.

at 0 °C and 101 325 Pa (STP) $V_{M} = 22.4 \ | \ mol^{-1}$ molar volume of ideal gas

(at 0 °C and 100 000 Pa (1 bar) $V_{M} = 22.71 \text{ I mol}^{-1}$)

Pressure depends on the number of molecules, temperature and volume

$$p V = f (n, T)$$

Ideal Gas

 Composed of small particles (atoms, molecules) that are in constant motion along linear trajectories in random directions with high velocities.

- Dimensions of particles are very small in comparison to their distances
- They do not exert attractive or repulsive forces.
- Collisions are **elastic**, no loss of energy.

 $E_{kin} = \frac{1}{2} m v^2$

• Kinetic energy of a particle depends on temperature (but not on pressure).

$$E_{kin} = \frac{1}{2} m \left\langle v^2 \right\rangle = \frac{3}{2} k_B T$$

V = n const.1 mole of a Real GasV/n = const. $V_m = 22.41$

At standard temperature and pressure (STP) p = 101.325 kPa = 1 atm = 760 torr $t = 0 \text{ }^{\circ}\text{C}$

Ideal Gas Equation

Ideal gas

Molecular volume is zero (very small in comparison to gas volume)
No intermolecular forces

$$p V = n R T$$

n = amount of substance

V = (n R T) / p p = (n R T) / Vn/V = p / RT R = gas constant

Ideal Gas Equation

Calculation of Gas Density and M_r

p V = n R T = (m/M) R T r = m/V = p M / R T Gas Density $M = r RT / p = r V_m$ Gas molar mass $V_m = R T / p$

Partial Pressure, p_i

p_i = Pressure of a component of a mixture if it was alone in a given volume.

Molární zlomek

 $\mathbf{x}_{i} = \mathbf{n}_{i} / \Sigma \mathbf{n}_{i}$

 $\Sigma \mathbf{x}_{i} = \mathbf{1}$

Pressure of gas trapped above a liquid

p = p(gas) + vapor pressure

Dalton's Law of Partial Pressures

 $p_{tot} = p_1 + p_2 + p_3 + \dots + p_n = \sum p_i$

 $p(air) = p(O_2) + p(N_2) + p(Ar) + p(CO_2) + p(other)$

Partial Pressure

Pressure of a component of a mixture if it was alone in the given volume.

 $P_{He} = x_{He} P_{tot} \qquad P_{Ne} = x_{Ne} P_{tot}$ $P_{tot} = P_{He} + P_{Ne}$

Nonideal (Real) Gas

Nonideal (Real) Gas

Z = compressibility factor

Z > 1 Molar volume of nonideal gas is bigger than ideal gas Repulsive intermolecular interactions prevail

Z < 1 Molar volume of nonideal gas is smaller than ideal gas Attractive intermolecular interactions prevail

Ideal gas	22.41
Argon	22.09
Carbon dioxide	22.26
Nitrogen	22.40
Oxygen	22.40
Hydrogen	22.43

Van der Waals State Equation of Real Gases

$$\left(p + \frac{a}{V_m^2}\right) \left(V_m - b\right) = RT$$

 V_m = molar volume of gas

b = volume of molecules of gas (must be substracted)

a = intermolecular attraction (must be added to p)

J. D. van der Waals (1837-1923) NP in Chemistry 1910

Van der Waals State Equation of Real Gases

$$(P + \frac{an^2}{V^2})(V - nb) = nRT$$
 $P = \frac{nRT}{(V - nb)} - (\frac{an^2}{V^2})$

Gas	a (l ² bar mol ⁻²)	b (l mol ⁻¹)
Helium	0.034598	0.023733
Hydrogen	0.24646	0.026665
Nitrogen	1.3661	0.038577
Oxygen	1.3820	0.031860
Benzene	18.876	0.11974

Properly Inflated

Underinflated/ Overloaded

Liquification of Gases

Condensation requires vdW forces

Low T, high p, decrease of E_{kin} , close approach of molecules

Ideal gas cannot be liquified

Critical temperature = above critical temperature, gas cannot be liquified by any high pressure

Joule-Thompson Effect

Joule-Thompson effect = change of temperature during adiabatic expansion of compressed gas thru an orifice (pressure drops dp < 0)

 $\mu = dT/dp$ Joule-Thompson coeficient

 $\mu > 0 \text{ cooling } (dT < 0) \text{ breaking of vdW bonds,}$ required energy is taken from E_{kin}, T drops.
Below J-T inversion temp. O₂, N₂, NH₃, CO₂, freons
N₂ (348 °C) O₂ (491 °C) $\mu = 0 \text{ ideal gas, real gas at J-T inversion temp.}$

Joule-Thompson Effect

Joule-Thompson effect = change of temperature during adiabatic expansion of compressed gas thru an orifice (pressure drops dp < 0)

 $\mu = dT/dp$ Joule-Thompson coeficient

 μ < 0 heating (dT > 0) Above J-T inversion temp. H₂, He, Ne.

He (-222 °C)

There are repulsive interactions in compressed gas that are removed upon expansion, energy is released = heating

Liquification of Gases

38

Kinetic-Molecular Theory of Gases

1738

Daniel Bernoulli (1700-1782)

Atoms and molecules are in perpetual motion, temperature is a measure of intensity of this motion

Statistical mechanics, Clausius, Maxwell, Boltzmann

Average velocity of molecules of H₂ at 0 °C

 $\langle v \rangle = 1.84 \ 10^3 \text{ m s}^{-1} = 6624 \text{ km h}^{-1}$

Kinetic-Molecular Theory of Gases

Average kinetic energy of gas molecules $E_{kin} = \frac{1}{2} m < v^2 >$ m = gas molecule mass <v> = Root-mean-square speed

Average kinetic energy of all gases at a given temperature is the same

$$E_{kin} = \frac{3}{2}k_B T$$

Maxwell-Boltzmann Distribution

Maxwell-Boltzmann Distribution

 $dN = 4\pi N (m / 2 \pi kT)^{3/2} \exp(-\frac{1}{2} mv^2 / kT) v^2 dv$

Most probable speed $v_{mp} = (2kT / m)^{\frac{1}{2}}$ Average speed $v_{av} = (8kT / \pi m)^{\frac{1}{2}}$ Root-mean-square speed $v_{rms} = (3kT / m)^{\frac{1}{2}}$

Speed ~
$$\sqrt{\frac{kT}{m}} = \sqrt{\frac{RT}{M}}$$

42

Kinetic-Molecular Theory of Gases

Number of molecules

Speed, m s⁻¹

No molecule has zero speed Maximum speed $\rightarrow \infty$ The higher the speed, the less molecules

Maxwell-Boltzmann Distribution

Diffusion

Mean free path, *I*, average distance between collisions

Depends on p and T

 $I = \text{const T}/\text{p} = \text{const}/\text{n} \pi (2r)^2$

n = number of particles in m³r = molecular radius

l = 500 – 1000 Å At normal p,T

Viscosity, thermal conductivity

Effusion

Graham's Law

 $v_1/v_2 = (\rho_2/\rho_1)^{\frac{1}{2}} = (M_2/M_1)^{\frac{1}{2}}$