Heterogeneous Phase Equilibria

Equilibrium

• **Thermal** - *T* same in the whole system

• **Mechanical** - *p* same in the whole system

• **Chemical** - amount of substance of individual components is constant, d*G* = 0, **chemical potentials** of all components in all phases are the same

Condition of phase coexistence : Phases have the same *G*Transition between phases Δ*G* **= 0**

Chemical hemical Potential otential

$$
\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T, p, n_j}
$$

Chemical potential = changes in *G* caused by changing composition *ni*

Differences in chemical potential lead to chemical reactions, diffusion,….

Chemical potential of every component in all coexisting phases is the SAME.

Gibbs' Phase Rule

Phase (P) = homogeneous part of a system separated by a physical interface where the properties and structure change discontinuously, states of matter (s, l, g), modifications (Ice I - XII, He I and II)

 $P = 1$: mixture of gases, solution $P = 2$: liquid + sat. g, sat. solution + solid $P = 3$: liquid + sat. g + sat. solution + solid

Component (C) = chemically independent constituents of the system $C =$ the minimum number of independent species necessary to define the composition of all phases of the system, $CaCO₃$, $CO₂$, CaO

Degrees of freedom (F) = intensive variables p, T, c $F =$ the number of intensive variables which are independent of each other, can change without changing P

Gibbs' Phase Rule

- Each phase requires C-1 data on composition (molar fractions *xi*) plus *T* and *p* to define its state, total P(C-1) + 2 state **variables**
- Each component follows P-1 equilibrium conditions $\mu(\alpha) = \mu(\beta)$ equal chemical potentials of a component in P phases total C(P-1) **conditions**
- Number of degrees of freedom is number of **variables** minus number of **conditions** $F = P(C-1) + 2 - C(P-1)$

• **F = C - P + 2**

Gibbs' Phase Rule

$P + F = C + 2$

Number of phases (P) Degrees of freedom (F) Number of components (C)

J. Willard Gibbs (1839-1903)

Phase Diagrams

Phase diagram = graphic information about the state of a system

Variables – p, T, C – 1 data on composition (for more than 1 component in the system, the corresponding phase diagram is more than 3 dimensional)

Cuts thru a phase diagram – some variables kept constant:

p = const. isobaric diagram $T =$ const. isothermic diagram $c =$ const. isoconcentration diagram

p-T Phase Diagram Diagram for One for One-Component Component System

Clausius Clausius-Clapeyron Clapeyron Equation Equation

Clapeyron equation for a phase change

for l-g equilibrium – boiling: 1) $V_m(g) \gg V_m(l)$, than $\Delta V_m = V_m(g)$ **2)** $V_m(g)$ from state eq. of **id.** gas

$$
\frac{dp}{dT} = \frac{\Delta H_m}{T\Delta V_m}
$$

() ⁼ **Differencial Clausius-Clapeyron eq.**

$$
\frac{d \ln p}{dT} = \frac{\Delta H_m}{RT^2}
$$

$$
V_m(g) = \frac{RT}{p}
$$

Integrated Clausius-Clapeyron eq.

$$
\ln\left(\frac{p_2}{p_1}\right) = \frac{-\Delta H}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)
$$

Water Vapor Tension Water Vapor Tension

 $H_2O(1) \leftrightarrows H_2O(g)$ ΔH $\rm 0$ $_{\rm vyp}$ = 40.66 kJ mol⁻¹

Water Vapor Tension Water Vapor Tension

$$
\ln \frac{K_2}{K_1} = \ln \frac{p_T}{p_{\text{var}}} = \ln p_T = \frac{\Delta H_{\text{vyp}}^0}{R} \left(\frac{1}{T_{\text{var}}} - \frac{1}{T} \right)
$$

$$
\ln P_T = \frac{40660 \, Jmol^{-1}}{8.315 \, JK^{-1}mol^{-1}} \left(\frac{1}{373 \, K} - \frac{1}{323 \, K} \right) = -2.03
$$

$$
P_{323} = e^{-2.03} = 0.131 \, atm
$$

Tension of saturated water vapor at 50 $^{\circ}$ C = 323 K

CO2 Phase Diagram Diagram

Phase Diagram for carbon dioxide.

He Phase Diagram Diagram

100 Solid (hcp) p/bar (bcc) -He cannot be 10 solidified at normal λ -line atmospheric pressure Liquid He-II (superfluid) 0.1 He does not have Triple point triple point of g-l-s phase 0.01 \overline{z} 1 coexistence 2.17

Two-Component Phase Diagram

 $C = 2, P + F = 4$ $F = 4 - P$ Minimum one phase present $P = 1$ $P + F = C + 2$

 $\mathsf{F}_{\mathsf{max}}$ = 3 (T, p, x) 3-dimensional diagram

 $F = 2$ Isothermal $T = const.$ p is a function of ^x

Isobaric: $p = const.$ T is a function of x

Mixture of Two Liquids Mixture of Two Liquids

Ideal mixture of 2 liquids: vdW interactions **A-A**, **B-B** and **A - B** are similar e.g. hexane-heptane Chemically similar compounds $\Delta H_{sol} = 0$ $\Delta V_{sol} = 0$

Nonideal mixture: vdW interactions **A-A**, **B-B** are different (stronger or weaker) then**A-B**

$$
\Delta H_{sol} \neq 0 \qquad \Delta V_{sol} \neq 0
$$

Equilibrium Equilibrium *l* [↔] *g* **in** ^a**Mixture of 2 Liquids**

- Both phases are mixtures of **A** and **B**.
- $\,$ y $_{\rm A}$, y $_{\rm B}$ molar fractions in g
- $\,$ p $_{\rm A}$, p $_{\rm B}$ partial press. in g
- $\,$ x $_{\rm A}$, x $_{\rm B}$ molar fractions in I

Two-Component Phase Diagram

20

Destillation at T = const. by Decreasing Pressure by Decreasing Pressure

Two-Component Phase Diagram

Destillation at p = const. by Increasing Temperature by Increasing Temperature T

Fractional distillation

Vapor Pressure in Vapor Pressure in Ethylester of Acetic Acid of Acetic Acid and Acetic Anhydride Anhydride

Total Vapor Pressure in Ethylester of Acetic Acid and Acid and Acetic Anhydride Anhydride

n-Pentane and Methylester of Acetic Acid

Raoult's and Henry's Laws

n-Pentane and Methylester of Acetic Acid

Azeotropic Azeotropic Mixture with Mixture with Min. Tboil (Max. p) Ethanol – Water Boiling Point Vapour composition Positive deviations from Raoult's law A and B interactions weakeremperature than A-A and B-B, a mixture evaporates more easily than pure components Boiling a_2 \parallel a. Endothermal dissolutiontemperature of liquid **GRASSING TAXABY GREGORY LOCKY LIBRARY BUTES** ia ay
A eala <mark>ina w</mark>a a, ia sai
Sian B 'a₁ aar a and as dam âår **Molar Fraction** x_{A}

Azeotropic Azeotropic Mixture with Mixture with Min. Tboil (Max. p)

Fractional distillation provides ethanol with max. 95.6% in distillate and pure water as a residue

Ethanol – Water w = 95.6% x = 0.895

Positive deviations from Raoult's law A and B interactions weakerthan A-A and B-B, a mixture evaporates more easily than pure components Endothermal dissolution

Azeotropic Azeotropic Mixture with M Mixture with Max. Tboil (Min. p)

HCl – Water 108.584 °C 20.222 % HCl

Negative deviations from Raoult's law, A and B interactions stronger than A-A and B-BExothermal dissolution

Two Components Miscible Both in Two Components Miscible Both in (l) and (s)

Substitutional Alloy Cu-Ni

Solidification Curves of Solidification Curves of Cu -Ni Alloy

Equilibrium Phase Diagram - Cu-Ni

Lever Rule Lever Rule

Mass ratio of liquid and solid phase

 $\frac{20}{70-20}$ * 100 $\%W_{\rm s} = \frac{30 - 20}{\ }$ − $W_{S} = \frac{30}{70}$ W_S = A / (A + B)

$$
W_{L} = B / (A + B)
$$

$$
\% W_{L} = \frac{70 - 30}{70 - 20} * 100
$$

Two Components Miscible in (I) and Immiscible in and Immiscible in (s)

Eutectic At eutectic composition, the mixture melts at the lowest temperature directly to a liquid

Pb-Sn solder (Pb 38%) melts at 183 °Ctin 232 °C and lead 327 °C

Pb-Sn Solder

